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Simplicial complexes are generalized network structures able to encode interactions occurring between more
than two nodes. Simplicial complexes describe a large variety of complex interacting systems ranging from
brain networks to social and collaboration networks. Here we characterize the structure of simplicial complexes
using their generalized degrees that capture fundamental properties of one, two, three, or more linked nodes.
Moreover, we introduce the configuration model and the canonical ensemble of simplicial complexes, enforcing,
respectively, the sequence of generalized degrees of the nodes and the sequence of the expected generalized
degrees of the nodes. We evaluate the entropy of these ensembles, finding the asymptotic expression for the
number of simplicial complexes in the configuration model. We provide the algorithms for the construction of
simplicial complexes belonging to the configuration model and the canonical ensemble of simplicial complexes.
We give an expression for the structural cutoff of simplicial complexes that for simplicial complexes of dimension
d = 1 reduces to the structural cutoff of simple networks. Finally, we provide a numerical analysis of the natural
correlations emerging in the configuration model of simplicial complexes without structural cutoff.
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I. INTRODUCTION

Network theory has been successful over the past 15 years in
characterizing social, technological, and biological networks.
Nevertheless, the increasingly large data sets available in the
field require the development of more sophisticated models
of networks [1], such as multilayer networks [2,3] and
generalized network structures [4,5]. In particular, a wide
variety of networks, including brain networks [6,7], social
and collaboration networks [8], immune networks [9], tagged
social networks [4,5], and “folksonomies” [10,11], can be
modeled by simplicial complexes [12–16]. Therefore, progress
in understanding and modeling simplicial complexes has
a variety of applications, ranging from brain research and
data mining [6,17,18], to recommendation algorithms [19],
characterization of dynamical processes [20], and inference of
missing links [21].

Simplicial complexes are a generalization of networks con-
structed using not only nodes and links (that are, respectively,
simplices of dimension zero and one) but also using triangles
(simplices of dimension d = 2), tetrahedra (simplices of
dimension d = 3), and higher-dimensional simplices. Using a
theoretical physics terminology, simplicial complexes describe
the many-body interactions between two or more nodes.

Simplicial complexes are emerging as a tool to describe
complex networks with large clustering coefficient and abun-
dant number of short loops that are not easily treatable by
traditional statistical mechanics approaches. The presence of
many short loops in real network datasets has often been
recognized as a signature of a hidden geometry of net-
works [22,23]. Simplicial complexes are ideal mathematical
objects for discretizing geometry as is demonstrated by their
wide use in the context of quantum gravity [24–27] and
therefore they can also open scenarios in uncovering the hidden
geometry of complex networks.

Finally, simplicial complexes constitute the network-like
structure that allows for the topological analysis of network
datasets. The area of network topology is currently the subject

of increasing interest, with recent investigations character-
izing brain networks and network dynamics [6,7,17,18,20]
providing results so far unobtainable through other network
approaches.

For all these reasons it has become necessary to build
null models for simplicial complexes using equilibrium
and nonequilibrium approaches. Interestingly, extending our
knowledge of static and growing network models [28–39] to
simplicial complexes might reveal the role of the dimension-
ality of simplicial complexes in determining their structure.

Recently, a framework for nonequilibrium growing simpli-
cial complexes has been formulated [12–15]. This framework
is able to generate in one limit complex manifolds of dimension
d and in another limit complex networks growing with
preferential attachment. Interestingly, it has been observed
that for dimension d > 2 growing manifolds are scale-free,
because the increase of the dimensionality of simplicial
complexes over d = 2 allows for the emergence of an efficient
preferential attachment [14]. Interestingly, in this context it
has also been shown that simplicial complexes growing by
uniform attachment of simplices generate scale-free networks
for d � 2 [15].

The formulation of equilibrium models of simplicial
complexes is currently a hot topic in graph theory and
pure mathematics [40–42]. Recently, exponential random
simplicial complexes have also been attracting the attention
of physicists and network scientists [16].

Here we develop an equilibrium statistical mechanics
approach for simplicial complexes of dimension d. In par-
ticular we consider simplicial complexes formed exclusively
by d-dimensional simplices. We characterize their structure
with the generalized degree introduced in Refs. [13–15] and
defined as the number of d-dimensional simplices incident to
a given δ-dimensional face. Moreover, we treat in detail the
configuration model and the canonical ensemble of simplicial
complexes, respectively, with given generalized degree of the
nodes and with expected generalized degrees of the nodes.
The configuration model for simplicial complexes generalizes

2470-0045/2016/93(6)/062311(14) 062311-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.062311


OWEN T. COURTNEY AND GINESTRA BIANCONI PHYSICAL REVIEW E 93, 062311 (2016)

the configuration model for simple networks [29–31] and
the hypergraph model proposed in Ref. [4]. The canonical
ensemble is instead to be related to exponential random
simplicial complexes [16].

These ensembles can be treated using statistical mechanics
arguments that are able to characterize their relation. Al-
ready in the context of simple networks one can distinguish
between microcanonical and canonical conjugated network
ensembles, which enforce, respectively, hard or soft constraints
[29,32–35]. For example, the configuration model enforcing a
given degree sequence and the exponential ensemble enforcing
the expected degree sequence are, respectively, the micro-
canonical and the canonical conjugated network ensembles.
Similarly, here we show that the configuration model of sim-
plicial complexes is the microcanonical ensemble conjugated
to the canonical ensemble given by the exponential random
simplicial complex. Interestingly, here we show that the two
ensembles treated in this paper enforce an extensive number
of constraints and, therefore, as already noted in the context of
simple networks [29], they are not asymptotically equivalent.

The entropy of these ensembles, which has a number of ap-
plications in network analysis and network inference [43,44],
is here calculated analytically. From the entropy of the config-
uration model of simplicial complexes the asymptotic combi-
natorial formula for the number of simplicial complexes in the
ensemble is derived. This formula generalizes the Canfield-
Bender formula for the number of networks in the sparse
configuration model [45]. When characterizing the properties
of these ensembles, a special role is played by their structural
cutoff that is the maximum generalized degree that guarantees
the absence of correlations between the generalized degrees of
the nodes in the simplicial complex. In any simplicial complex
of dimension d > 1, the structural cutoff is larger than the
structural cutoff of simple networks [46]. In the absence of the
structural cutoff, simplicial complexes show relevant degree
correlations analyzed here by numerical simulations. These
results extend the known results observed in the canonical
ensemble of simple networks [36].

The paper is structured as follows: in Sec. II we introduce
simplicial complexes and the generalized degree of their nodes;
in Sec. III we treat the canonical ensemble of simplicial
complexes enforcing a given sequence of expected generalized
degrees of the nodes; in Sec. IV we treat by statistical mechan-
ics methods the configuration model of simplicial complexes
with given sequence of generalized degrees of the nodes; in
Sec. V we discuss the natural correlations observed in our
numerical realizations of the the configuration model of sim-
plicial complexes; finally, in Sec. VI we give the conclusions.

II. SIMPLICIAL COMPLEXES AND
GENERALIZED DEGREES

A. Simplicial complexes of general dimension d

A d-dimensional simplex is formed by a set of (d + 1)
interacting nodes and includes all the subsets of δ + 1 nodes
(with δ < d), which are called the δ-dimensional faces of the
simplex.

A simplicial complex of dimension d is formed by simplices
of dimension at most equal to d glued along their faces.

As mathematical objects simplicial complexes are distinct
from hypergraphs [4,5], the difference being that simplicial
complexes include all the subsets of a given simplex. Never-
theless, in most of the interesting network science applications
the terms simplicial complex and hypergraph might be used to
indicate the same type of network data.

Here we consider d-dimensional simplicial complexes of
N nodes formed exclusively by d-dimensional simplices. We
indicate with Qd (N ) the set of all possible and distinct d-
dimensional simplices in a d-dimensional simplicial complex
of N nodes, while we indicate with Sd,δ the set of all
δ-dimensional simplices present in a given d-dimensional
simplicial complex. The simplicial complexes that we consider
in this paper are fully identified once the adjacency tensor
a is fully specified. The adjacency tensor a has elements
aα = 0, 1, indicating for each possible d-dimensional simplex
α ∈ Qd (N ) if the simplex is present (aα = 1) or absent
(aα = 0) in the simplicial complex, i.e.,

aα =
{

1 if α ∈ Sd,d

0 otherwise .

The generalized degrees [14,15] are relevant structural prop-
erties of simplicial complexes. The generalized degree kd,δ(α)
of a δ-dimensional face (or δ-face) α of the d-dimensional
simplicial complex quantifies the number of d-dimensional
simplices incident to the δ-face α. The generalized degree
kd,δ(α) can be defined in terms of the adjacency tensor a as

kd,δ(α) =
∑

α′∈Qd (N)|α′⊇α

aα′ . (1)

The generalized degrees are not independent of each other.
In fact, the generalized degree of a δ-face α is related to the
generalized degree of the δ′-dimensional faces incident to it,
with δ′ > δ, by the simple combinatorial relation,

kd,δ(α) = 1(
d − δ

δ′ − δ

) ∑
α∈Sd,δ′ |α′⊇α

kd,δ′ (α′), (2)

Moreover, since every d-dimensional simplex belongs to(
d + 1
δ + 1

)
δ-dimensional faces, in a simplicial complex with M

d-dimensional simplices we have

∑
α∈Sd,δ

kd,δ(α) =
(

d + 1
δ + 1

)
M. (3)

In this paper we focus specifically on the generalized degree
of the nodes r = 1,2, . . . N given by

kd,0(r) =
∑

α′∈Qd (N)|α′⊃r

aα′ . (4)

The generalized degree of the node indicates the number of
d-dimensional simplices incident to each node r . Clearly, since
the simplicial complexes under investigation are only formed
by d-dimensional simplices, the generalized degree of the
nodes satisfy

N∑
r=1

kd,0(r) = (d + 1)M, (5)
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where M are the number of d-dimensional simplices in the
simplicial complex. The generalized degree kd,0(r) of the
nodes will play a crucial role in this paper because we will
discuss the properties of the configuration model with given
generalized degree sequence of the nodes. In the subsequent
sections we will focus on the configuration model and
the canonical ensemble for simplicial complexes enforcing,
respectively, a given sequence of the generalized degree of the
nodes and given sequence of the expected generalized degree
of the nodes. We will always consider networks in which the
number of simplices M is of the same order of magnitude of
the number of nodes,

M ∝ N, (6)

which is the relevant regime for most of the applications to
complex networks.

Before discussing the properties of these ensembles, in the
following paragraphs we will characterize simplicial com-
plexes of dimension d = 1, 2 using the generalized degrees
of their δ-faces (for examples of simplicial complexes in
dimension d = 1, 2; see Fig. 1). The extension to higher
simplicial complexes is straightforward.

B. Case of a simplicial complex of dimension d = 1

Simplicial complexes of dimension d = 1 are formed
exclusively by nodes and links (which are the 1-dimensional
simplices). The adjacency tensor of the 1-dimensional simpli-
cial complex is nothing else than the adjacency matrix {arm},
with elements arm indicating if the link (r,m) is present or not
in the network. In this case the generalized degree k1,0(r) of
the nodes, simply indicate the number of links incident to the
node, i.e., its degree. In fact, we have

k1,0(r) =
N∑

m=1

arm. (7)

C. Case of a simplicial complex of dimension d = 2

Here we consider the case of a simplicial complex of di-
mension d = 2 characterizing interactions occurring between
three nodes, i.e., a simplicial complex formed exclusively by
triangles. We assume that the number of nodes in the simplicial
complex is N . This simplicial complex is determined by the

(a) (b)

FIG. 1. Examples of simplicial complexes of dimension d = 1
(panel A) and d = 2 (panel B) are shown. Simplicial complexes
of dimension d = 1 are simple networks. Simplicial complexes of
dimension d � 2 characterize interactions occurring between more
than two nodes (specifically interactions occurring between d + 1
nodes).

adjacency tensor {armn} of elements armn = 1 if the nodes
(r,m,n) are linked by a triangle, and armn = 0 if the nodes
(r,m,n) are not connected by a triangle. The generalized degree
k2,0(r) of node r is given by

k2,0(r) =
∑
m<n

armn, (8)

while the generalized degree k2,1(r,m) of a link (r,m) is given
by

k2,1(r,m) =
∑

n

armn. (9)

The generalized degree k2,0(r) of node r indicates the number
of triangles incident to it, while the generalized degree
k2,1(r,m) of the link (r,m) indicates the number of triangles
incident to the link. The generalized degree of the nodes is
related to the generalized degree of the links. In fact it is easy
to see that

k2,0(r) =
∑
m<n

armn = 1

2

∑
m,n

armn = 1

2

∑
m

k2,1(r,m). (10)

Since each triangle is incident to three nodes, we have

N∑
r=1

kd,0(r) = 3M, (11)

where M are the number of d-dimensional simplices in the
simplicial complex.

III. CANONICAL ENSEMBLE OF
SIMPLICIAL COMPLEXES

A. Canonical ensemble with given sequence of expected
generalized degree of the nodes

In this section we discuss the canonical ensemble of simpli-
cial complexes (also called the exponential random simplicial
complex) with given sequence of expected generalized degree
of the nodes. In this ensemble of simplicial complexes each
simplicial complex G is assigned a probability P (G). The
entropy S of the ensemble evaluates the typical number of
simplicial complexes belonging to the ensemble and is given
by

S = −
∑
G

P (G) ln P (G), (12)

where the sum is extended to all simplicial complexes G under
consideration, or equivalently, over all adjacency tensors a.

The canonical ensemble is the least-biased ensemble of
simplicial complexes that satisfies the constraints,

kr = kd,0(r) =
∑
G

P (G)
∑

α∈Qd (N)|r⊂α

aα. (13)

The canonical ensemble is the maximum entropy ensemble
satisfying the constraints in Eq. (13). Therefore, in order to
derive the probability P (G) of a simplicial complex G in the
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canonical ensemble, we maximize the functional F given by

F = S +
N∑

r=1

λr

[
kr −

∑
G

P (G)kd,0(r)

]

+μ

[
1 −

∑
G

P (G)

]
, (14)

where we have introduced, by means of the N Lagrangian
multipliers λr , the constraints in Eq. (13), and by means of the
Lagrangian multiplier μ the normalization constraint for the
probability P (G). Maximizing F with respect to P (G), we
obtain that the canonical ensemble of simplicial complexes
enforcing a given sequence of expected generalized degrees of
the nodes {kr} has probability given by

P (G) = 1

Z
e−∑

r λr kd,0(r), (15)

where kd,0(r) is given by Eq. (4), and the normalization
constant Z is given by

Z =
∏

α∈Qd (N)

[1 + e−∑
r⊂α λr ]. (16)

The Lagrangian multipliers {λr} occurring in Eq. (15) are fixed
by the Eqs. (13) and (15). Substituting the expression for P (G)
in Eq. (15) into Eq. (13), we get

kr =
∑

α∈Qd (N)|r⊂α

e−∑
m⊂α λm

1 + e−∑
m⊂α λm

. (17)

The probability pα that each d-dimensional simplex α ∈
Qd (N ) is in the simplicial complex is given by

pα =
∑
G

P (G)aα = e−∑
r⊂α λr

1 + e−∑
r⊂α λr

. (18)

Interestingly, for this ensemble, the probability P (G) can
be written as a product of the marginal probabilities for the
individual d-dimensional simplices pα , i.e.,

P (G) =
∏

α∈Qd (N)

[
paα

α (1 − pα)1−aα
]
. (19)

Consequently, the entropy S can be written as

S = −
∑

α∈Qd (N)

[pα ln pα + (1 − pα) ln(1 − pα)]. (20)

B. The canonical ensemble of simplicial complexes
with structural cutoff

As long as the maximum generalized degree of the nodes is
smaller than the structural cutoff, the probabilities pα can be
expressed as the normalized product of the generalized degrees
of the nodes belonging to α. In fact, assuming e−λr � 1, the
probability pα given by Eq. (18) can be approximated by

pα 	
∏

r⊂α,α∈Qd (N)

e−λr . (21)

Equation (17) can now be simplified and rearranged to give
an explicit expression for e−λr in terms of kr and the other

Lagrangian multipliers:

e−λr = kr

d!

(
∑

m e−λm )d
. (22)

Note that in this last expression we made the following
approximation

∑
m1<m2<...<md+1

d+1∏
j=1

e
−λmj 	 1

d!

(∑
m

e−λm

)d

, (23)

valid in the limit in which the number of nodes N is large,
i.e., N 
 1 and e−λr � 1. Summing over all the nodes of the
simplicial complex, we get∑

r

e−λr = (〈k〉Nd!)1/(d+1). (24)

Finally, combining Eqs. (22) and (24), we get

e−λr = kr

[
d!

(〈k〉N )d

]1/(d+1)

. (25)

Using this result we get the simplified expression for the
probability pα of the d-dimensional simplex α, given by

pα = d!

∏
r⊂α kr

(〈k〉N )d
, (26)

where α ∈ Qd (N ). This expression is valid as long as e−λr

[given by Eq. (25) satisfies the hypothesis e−λr � 1. This
implies that the maximum generalized degree of the nodes
Kmax should be much smaller than the structural cutoff Kd for
simplicial complexes; i.e.,

Kmax � Kd =
[

(〈k〉N )d

d!

]1/(d+1)

. (27)

Interestingly, the cutoff Kd for the present ensemble of
simplicial complexes scales like Nd/(d+1); i.e., it is increasing
with an exponent that is larger for larger dimensions d.

This regime is the regime in which there are no correlations
between the generalized degrees of the nodes. Moreover, in
this regime only a few links can be incident to more than one
d-dimensional simplex. In fact, given the expression for pα

provided by Eq. (26), it is possible to evaluate in this ensemble
the expected generalized degree of the link kd,2(r,m) for d > 2.
This is given by

kd,1(r,m) =
∑

α|(r,m)⊂α

pα = d
kr km

〈k〉N . (28)

Therefore, only the pairs of nodes (r,m) with generalized
degree of the nodes kr ,km 
 N1/2 and kr ,km � Nd/(d+1) are
likely to be incident to more than one d-dimensional simplex.

C. The canonical ensemble of simplicial complexes
of dimension d = 1

For d = 1 our construction of the canonical ensemble of
simplicial complexes for networks reduces to the canonical
ensemble (exponential ensemble) of networks [28] with given
expected degree sequence. The probability P (G) of a given
one-dimensional simplicial complex (i.e., network) specified
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by the adjacency tensor {arm} is given by Eq. (15), given in
this case by

P (G) = 1

Z
e−∑

r λr k1,0(r), (29)

where k1,0(r) is given by Eq. (7) and the normalization constant
Z is given by

Z =
∏
r<m

(1 + e−λr−λm ). (30)

The Lagrangian multipliers λr are fixed by the condition

kr = k1,0(r) =
∑
m

prm, (31)

with prm indicating the probability that the link between the
nodes r,m is present in the network. The probability prmn are
given by

prm = e−(λr+λm )

1 + e−(λr+λm)
. (32)

The probability P (G) of a simplicial complex G in this
canonical ensemble can be expressed as a product of the
marginal probabilities for the individual links:

P (G) =
∏
r<m

[
parm

rm (1 − prm)1−arm
]
. (33)

Therefore, the entropy S of the ensemble is given by

S = −
∑
r<m

[prm ln prm + (1 − prm) ln(1 − prm)]. (34)

Finally, in the presence of the structural cutoff on the gen-
eralized degree of the nodes, i.e., if the maximal generalized
degree of the nodes Kmax satisfies

Kmax � K1 = (〈k〉N )1/2, (35)

the probabilities prm take a simple factorized expression given
by

prm = kr km

〈k〉N . (36)

We note here that the structural cutoff of simplicial complexes
of dimension d = 1 given by Eq. (35) reduces to the structural
cutoff of simple networks [46] as expected.

D. The canonical ensemble of simplicial complexes
of dimension d = 2

In this subsection we summarize the results for the case of a
canonical ensemble of two-dimensional simplicial complexes
where we constrain the expected generalized degree of the
nodes to be k2,0(r). The probability P (G) of a given simplicial
complex specified by the adjacency tensor {armn}, which is
given by Eq. (15) that reads for this case

P (G) = 1

Z
e−∑

r λr k2,0(r), (37)

where k2,0(r) is given by Eq. (8) and the normalization constant
Z is given by

Z =
∏

r<m<n

(1 + e−λr−λm−λn). (38)

The Lagrangian multipliers λr are fixed by the condition

kr = k2,0(r) =
∑
m<n

prmn, (39)

with prmn indicating the probability that the triangle between
the nodes r,m,n is present in the simplicial complex, which is
given by

prmn = e−(λr+λm+λn)

1 + e−(λr+λm+λn)
. (40)

The probability P (G) of a simplicial complex G in this
canonical ensemble can be expressed as a product of the
marginal probabilities for the individual triangles:

P (G) =
∏

r<m<n

[
parmn

rmn (1 − prmn)1−armn
]
. (41)

Therefore, the entropy S of the ensemble is given by

S = −
∑

r<m<n

[prmn ln prmn + (1 − prmn) ln(1 − prmn)]. (42)

Finally, in the presence of the structural cutoff on the gen-
eralized degree of the nodes, i.e., if the maximal generalized
degree of the nodes Kmax satisfies

Kmax � K2 =
( 〈k〉N√

2

)2/3

, (43)

then the probabilities prmn take a simple factorized expression
given by

prmn = 2
kr km kn

(〈k〉N )2
. (44)

Here the structural cutoff K2 scales like N2/3. It is, therefore,
much larger than the structural cutoff for simple networks.

We note that this model is to be related with the model of
tagged social networks represented by hypergraphs presented
in Refs. [4,5]. Nevertheless, it differs with respect to the cited
work because in the present work the three nodes linked in
a given two-dimensional simplex represent the same type of
nodes. This difference is responsible for the factor two present
in the righthand side of Eq. (44).

E. Generation of simplicial complexes
by the canonical ensemble

For generating the canonical ensemble of d-dimensional
simplicial complexes with expected generalized degree se-
quence of the nodes {kr} with r = 1,2, . . . N , we propose the
following algorithm:

(a) Calculate the probabilities pα of any d-dimensional
simplex α ∈ Qd (N ) given by Eq. (18) in the absence of the
structural cutoff Kd or by Eq. (26) in presence of the structural
cutoff Kd .

(b) Draw every possible d-dimensional simplex α ∈
Qd (N ) with probability pα .
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IV. THE CONFIGURATION MODEL
OF SIMPLICIAL COMPLEXES

A. The configuration model of simplicial complexes
with given generalized degree of the nodes

The configuration model of simplicial complexes with
given sequence of the generalized degrees of the nodes {kr} is
the ensemble in which we assign the same probability to each
simplicial complex with the generalized degrees of the nodes
satisfying kd,0(r) = kr for every node r . The construction of
simplicial complexes is allowed only if the generalized degree
sequence of the nodes is graphical, i.e., if at least one simplicial
complex can be constructed with it. For simple networks, i.e.,
for simplicial complexes of dimension d = 1, the conditions
that a degree sequence must satisfy in order to be graphical
have been fully identified [30,47]. For simplicial complexes
we know that at least the generalized degree of the nodes
must satisfy Eq. (5). In practice, it will often be useful to start
from sequences of generalized degree of the nodes occurring
in real data sets, which are by definition graphical. This will
be recommended in order to construct a randomized simplicial
complex that will provide a null model to the real dataset.

The configuration model enforcing a given graphical
sequence of the generalized degrees of the nodes assigns to
each d-dimensional simplicial complex G formed exclusively
by d-dimensional simplexes the probability

P (G) = 1

N
∏

r=1,N

δ(kr ,kd,0(r)). (45)

Here N is the number of simplicial complexes with the given
graphical sequence of generalized degree of the nodes {kr}
given by

N =
∑
G

∏
r=1,N

δ(kr ,kd,0(r)). (46)

In Fig. 2 we show how from a given graphical sequence of
generalized degree of the nodes it is possible in general to
construct different simplicial complexes.

B. Generation of the simplicial complexes
by the configuration model

In this subsection we generalize the algorithm for the con-
figuration model of networks with given degree sequence to the
configuration model of d-dimensional simplicial complexes
with given sequence {kr}r�N of the generalized degrees of the
nodes. For describing this algorithm, we will use a set of M

auxiliary factor nodes μ = 1,2 . . . ,M , with M satisfying

N∑
r=1

kr = (d + 1)M. (47)

The algorithm is described in Fig. 3 in the case d = 2 and
proceeds as follows:

(i) Initially, kr stubs are placed on each node r =
1,2, . . . ,N . Additionally, d + 1 stubs are placed on each
auxiliary factor node μ = 1,2, . . . M . Initially each stub is
unmatched.

(ii) A set of d + 1 unmatched random stubs of the
nodes is chosen with uniform probability. Without losing

(a)

(b) (c)

(d) (e)

FIG. 2. The figure shows the construction of two different
d = 2 dimensional simplicial complexes belonging to the same
configuration model of simplicial complexes. In panel (a) the N = 6
nodes are shown together with stubs, indicating their generalized
degree. In panel (b) triples of stubs are matched together to form
two-dimensional simplices. In panel (c) the corresponding simplicial
complex is visualized. In panels (d) and (e) a different matching of the
stubs is shown together with its corresponding simplicial complex. As
is evident from the figure, a given generalized degree sequence of the
nodes can give rise to different simplicial complexes. The logarithm
of the total numberN of simplicial complexes that can be constructed
from a given generalized degree sequence of the nodes is the Gibbs
entropy � of the configuration model.

generality we assume that the stubs belong to the set of nodes
(r1,r2, . . . ,rd+1).

(iii) If the nodes (r1,r2, . . . ,rd+1) are all distinct and no
factor node μ is already matched with the set of nodes
(r1,r2, . . . ,rd+1), we match the d + 1 stubs of an unmatched
random factor node to the nodes (r1,r2, . . . ,rd+1). Otherwise,
we start again from step (i).

(iv) If all the stubs are matched we construct the simplicial
complex by placing a simplex between the nodes connected to
each auxiliary factor node.

In Fig. 3 we show an example of the possible matching
of the stubs of nodes and factor nodes and the consequent
construction of the simplicial complex.

Step (iii) rejects moves that are forbidden. These moves
are described in Fig. 4. This rejection procedure guarantees
that there are no spurious correlations in the structure of
the simplicial complex, but for broad distribution of the
generalized degrees of the nodes it might significantly slow
down the algorithm. In the context of the configuration
model, more sophisticated algorithms have been proposed in
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(a) (b)

FIG. 3. A scheme representing the algorithm for the construction
of the configuration model is shown for the case d = 2. Panel
A represents steps (i), (ii), and (iii). To each node r with r =
1,2 . . . ,N = 6 we assign kr stubs. The nodes are represented with
black circles. A set of M auxiliary factor nodes (cyan triangles)
is considered. Each factor node has d + 1 stubs. Subsequently, an
allowed matching of the stubs is found. Panel B shows how from
the matching of the stubs we can construct a simplicial complex by
adding a simplex between all of the nodes connected to a common
factor node in panel A.

Refs. [30,31] and we believe that along these lines it could
also be possible to optimize the code for the case of simplicial
complexes in the future.

Here, when numerically implementing the algorithm (see
Supplemental Material [48] for the codes generating random
simplicial complexes in d = 1,d = 2,d = 3), we have chosen
to allow a rejection of a small number nF of forbidden
moves. Therefore, we have modified the above algorithm by
substituting step (iii) with:

(iii a) If the nodes (r1,r2, . . . ,rd+1) are all distinct and
no factor node μ is already matched with the set of nodes
(r1,r2, . . . ,rd+1), we match the d + 1 stubs of an unmatched
random factor node to the nodes (r1,r2, . . . ,rd+1).

(a)

(b)

FIG. 4. Two examples of forbidden moves are shown. In panel A
the same set of nodes (r1,r2, . . . ,rd+1) is selected more than once to
form a simplex. In panel B the set of nodes (r1,r2, . . . ,rd+1) selected
to form a simplex is not formed by d + 1 distinct nodes. Here the
forbidden moves are shown for the configuration model of simplicial
complexes of dimension d = 2.

(iii b) If the nodes (r1,r2, . . . ,rd+1) are not all distinct or
a factor node μ is already matched with the set of nodes
(r1,r2, . . . ,rd+1), we update a variable nx that counts how many
similar events have occurred so far. If nx � nF , we do not
accept the move and we go back to step (ii); if nx > nF , we
go back to step (i).

This algorithm reduces to the one described before when
nF = 1, and when nF � N it speed up significantly the code,
without altering significantly the properties of the simplicial
complexes.

C. Relation with bipartite network models

Bipartite networks are formed by a set of nodes r =
1,2, . . . ,N and a set of factor nodes (groups) μ = 1,2, . . . ,P

where links only join a node with a factor node (a group). A
given bipartite network has adjacency matrix A with elements
Ar,μ = 1 if the node r belongs to group μ, and Ar,μ = 0
otherwise. The bipartite network might, for example, describe
a network formed by scientists (the nodes) and by scientific
papers (the groups) where each paper is connected to the set
of its authors. Similar models have been proposed for social
networks [8] and for immune networks [9]. Each group μ

of a bipartite network can be related to a simplicial complex
constructed by joining all the nodes connected to a common
factor node (group). In particular, if all the factor nodes
have the degree equal to d, all these simplicial complexes
are d-dimensional. Therefore, it is important to discuss here
the relation between the configuration model for simplicial
complexes and the ensemble of bipartite networks in which
we fix the degree sequence of the nodes and of the factors
nodes to be

∑
μ

Arμ = kr ,

N∑
r=1

Arμ = d + 1. (48)

The differences between the configuration model for bipartite
networks with constraints given by Eq. (48) and the configu-
ration model for simplicial complexes are:

(1) In the bipartite network it is possible to observe more
than one factor node connecting the same set of nodes.

(2) In the bipartite network the factor nodes are labeled.
An example illustrating these differences is that of a

bipartite network between authors and papers coauthored
by three authors and the corresponding simplicial complex
describing the collaboration network between the authors. The
difference between these two data sets is that bipartite networks
distinguish between situations where three authors write only
one or several papers together, and they also distinguish
between papers with the same three authors (i.e., the papers
are labeled). In contrast, simplicial complexes indicate only
whether a given set of three authors have coauthored at
least one paper together, independently on the paper title and
content.
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D. Canonical ensemble conjugated to the configuration
model of simplicial complexes

The configuration model for simplicial complexes enforc-
ing the generalized degree sequence of the nodes {kr} and
the canonical ensemble of simplicial complexes enforcing the
expected generalized degree of the nodes {kr} are conjugated
network ensembles when kr = kr for every node r . The config-
uration model can also be called the microcanonical ensemble
conjugated to the canonical ensemble of simplicial complexes.
This terminology is borrowed from statistical mechanics that
treats ensembles of dynamical systems with given energy
(microcanonical ensemble) or with given expected (average)
energy (canonical ensemble). In statistical mechanics these
two ensembles are thermodynamically equivalent; i.e., their
statistical properties are the same when one considers systems
formed by large number of particles as, for example, a gas
of molecules. For network ensembles, the most fundamental
example of conjugated microcanonical and canonical ensem-
bles are the Erdös and Renyi random graphs in which we
fix the total number of links (microcanonical ensemble) and
the random graph in which we fix the average number of links
(canonical ensemble). These network ensembles are equivalent
in the thermodynamic limit like the microcanonical and the
canonical ensemble of a gas of molecules. Nevertheless, in
network theory it is often the case that we are interested in
characterizing network ensembles with an extensive number
of constraints like the ones in which we fix the degree sequence
(microcanonical ensemble) or the expected degree sequence
(canonical ensemble). In these cases we no longer observe
the equivalence of the two conjugated ensembles [29,35].
In the following section we will provide evidence that the
configuration model of simplicial complexes and its conju-
gated canonical ensemble of simplicial complexes are not
asymptotically equivalent.

E. The entropy of the configuration model
of simplicial complexes

The entropy evaluates the logarithm of the (typical) number
of simplicial complexes in the ensemble. This quantity
characterizes the complexity of the constraints or, in other
words, how complex are the simplicial complexes in the
ensemble [32]. In fact, an ensemble constructed from very
stringent, complex constraints will give rise to few network
realizations. Therefore, the entropy of network ensembles
can be used in a variety of inference problems [43,44].
Moreover, the entropy of conjugated ensembles can indicate
whether the two ensembles are asymptotically equivalent.
In fact, if the entropy of two conjugated ensembles is not
the same in the large network limit, the two ensembles are
not asymptotically equivalent. In this paragraph we provide
a summary of the results obtained for the entropy of the
configuration model of simplicial complexes. The details of
the derivations will be given in the Appendices.

The entropy � of the microcanonical ensemble defined by
the configuration model of simplicial complexes with given
sequence {kr} of generalized degree of the nodes is defined as
the logarithm of the number of simplicial complexes belonging

to the ensemble, i.e.,

� = lnN = ln

[∑
G

∏
r

δ(kr ,kd,0(r))

]
. (49)

In fact, it can be easily shown that

� = lnN = −
∑
G

P (G) ln P (G), (50)

where P (G) is given by Eq. (45). To distinguish the entropy
� from the entropy S of the canonical ensemble defined in
Eq. (12), we call � the Gibbs entropy and S the Shannon
entropy. When considering the entropies � and S of con-
jugated microcanonical (configuration model) and canonical
ensemble, with kr = kr , ∀r we obtain (see Appendix A for
details)

� = S − �, (51)

where � is the entropy of large deviation, which is the
logarithm of the probability that in the canonical network
model with expected generalized degree sequence {kr} (with
kr = kr ), the generalized degrees of the nodes take exactly the
values kd,0(r) = kr . Therefore, � can be expressed as

� = − ln

[∑
G

P (G)
∏

r

δ(kr ,kd,0(r))

]
, (52)

where

P (G) =
∏

α∈Qd (N)

[
paα

α (1 − pα)1−aα
]
, (53)

with

pα = e−∑
r⊂α λr

1 + e−∑
r⊂α λr

, (54)

and

kr =
∑

α|r⊂α

pα. (55)

Since � is nonnegative, Eq. (51) shows that the Gibbs entropy
� is less than or equal to the Shannon entropy S, and when �

is not negligible, the two entropies are not the same, indicating
a nonequivalence of the microcanonical (configuration model)
and the canonical ensemble for simplicial complexes.

For simplicial complexes with the structural cutoff, �

given by Eq. (52) can be calculated using the saddle point
approximation (see Appendix B for details), obtaining

� = −
N∑

r=1

ln[πkr
(kr )], (56)

where πkr
(kr ) is the Poisson distribution with average kr

evaluated at kr ; i.e.,

πkr
(kr ) = 1

kr !
kkr

r e−kr . (57)

This expression is easily interpreted. In fact, in the canonical
ensemble the generalized degree of each node follows a
Poisson distribution with average kr = kr . Therefore, the
probability that each of these generalized degrees takes exactly
the value kd,0(r) = kr is given by πkr

(kr ). We note here that
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� given by Eq. (56) is an extensive quantity and therefore the
Gibbs entropy � is significantly different from the Shannon
entropy S of the canonical ensemble, implying that the two
conjugated ensembles are not asymptotically equivalent.

F. The asymptotic formula for the number of simplicial
complexes in the configuration model with structural cutoff

The Gibbs entropy � can be evaluated using Eq. (51)
together with Eq. (56) and the expression given by Eq. (20)
for the Shannon entropy, as long as we are in the presence of
the structural cutoff Kd defined in Eq. (27), getting

� = −
∑

α∈Qd (N)

[pα ln pα + (1 − pα) ln(1 − pα)]

+
N∑

r=1

ln
kkr
r e−kr

kr !
, (58)

where in presence of the structural cutoff the probabilities
pα are given by Eq. (26) with kr = kr for every node r .
Substituting the expression for pα into Eq. (58) we get the
asymptotic expression for the logarithm of the number of
simplicial complexes N in the configuration model,

� = lnN

= d

d + 1
ln(〈k〉N )! −

N∑
r=1

ln kr ! − 〈k〉N
d + 1

ln d!

− d!

2(d + 1)(〈k〉N )d−1

( 〈k2〉
〈k〉

)d+1

. (59)

Therefore, the asymptotic expression for the number N of
simplicial complexes in the configuration model is given by

N = [(〈k〉N )!]d/(d+1)∏N
r=1 kr !

1

(d!)〈k〉N/(d+1)

× exp

[
− d!

2(d + 1)(〈k〉N )d−1

( 〈k2〉
〈k〉

)d+1

+ O(ln N )

]
.

(60)

This expression is the generalization of the Canfield-Bender
formula [45] for the ensemble of networks with given degree
sequence. In fact, for d = 1 it is reduced to the Canfield-
Bender formula. Interestingly, we observe that the asymptotic
number N of simplicial complexes in the configuration model
depends on the distribution of the generalized degrees of the
nodes and that this dependency remains important even for
generalized degree sequences with the same average 〈k〉. This
shows that the complexity of the ensemble depends strongly
on the statistical characteristics of the generalized degree
sequence. As observed in Ref. [32] in the context of simple
networks, it can also be shown for simplicial complexes of
dimension d > 1 that scale-free distributions of generalized
degrees with the same average 〈k〉 but with decreasing power-
law exponent γ correspond to more complex ensembles of
simplicial complexes. In fact, they are characterized by a
smaller entropy � and a smaller asymptotic number N of
simplicial complexes.

G. Combinatorial arguments for Eq. (60)

The asymptotic combinatorial expression [Eq. (60) can be
explained using combinatorial arguments, similar to the ones
used to explain the Canfield-Bender formula in Ref. [33]. In
fact, the factor

[(〈k〉N )!]d/(d+1)∏N
r=1 kr !

1

(d!)〈k〉N/(d+1)
(61)

counts all the possible combinations of the stubs of the nodes
in groups of d + 1 stubs when we disregard forbidden moves.
In other words, Eq. (61) counts all the possible matchings
between the stubs of the nodes and the stubs of the factor nodes
obtained by following the algorithm described in Sec. IV B,
considering the fact that the factor nodes are not labeled
and neglecting the occurrence of forbidden moves. In fact,
if we want to construct a simplicial complex with a given
sequence of the generalized degree of the nodes {kr}, the
first step is to take a stub of a node and match it with a
stub of an unmatched factor node. Since the factor nodes are
not labeled every unmatched factor node is equivalent, and
therefore there is a unique way to match a given stub of the
node with an unmatched unlabeled factor node. Subsequently,
we proceed with matching the remaining d stubs of this
newly matched factor node. In order to do this, we choose
an unordered set of d of the remaining stubs of the nodes.
We have [〈k〉N − 1][〈k〉N − 2] . . . [〈k〉N − (d + 1) − 1]/d!
ways to perform this step if we neglect forbidden moves.
Once these stubs have been chosen, all the stubs of the first
factor node are now matched to d + 1 stubs of the nodes.
The remaining factor nodes are all unmatched. The next
step is to take one of the remaining 〈k〉N − (d + 1) stubs
of the nodes and to match it to an arbitrary unmatched factor
node. Since the unmatched factor nodes are all equivalent,

(a) (b)

(c) (d)

FIG. 5. The subsequent matching of the node stubs with the stubs
of the factor nodes is shown here in order to justify Eq. (61) evaluating
the asymptotic number of matchings in the absence of forbidden
moves. First a random stub of a node is matched with a stub of
an arbitrary unmatched factor node (panel A). Subsequently, all the
remaining d stubs of the factor node are matched with stubs of the
nodes (panel B). At this point the unmatched factor nodes are reduced
by one. An unmatched node-stub is matched to a stub of an arbitrary
unmatched factor node (panel C). Subsequently, all the remaining
stubs of the second factor node are matched with stubs of the nodes
(panel D). This procedure continues in the absence of forbidden
moves, until all of the stubs of the nodes are matched with all the
stubs of the factor nodes. By calculating the probability of these
moves, as describe in Sec. IV G we can derive Eq. (61).
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FIG. 6. The average degree knn(κ) of the neighbors of the nodes of degree κ and the average clustering coefficient C(κ) of the nodes of
degree κ , for simplicial complexes of dimension d = 1,2,3 constructed according to the configuration model with distribution of the generalized
degrees of the nodes Pd,0(k) given by Eq. (65) and γ = 2.3,2.8. The simplicial complexes have N = 104 nodes, and nF = 70. The data are
averaged over 100 realizations.

there is a unique way to do this. Subsequently, we proceed
as we have done previously and we find d remaining stubs
of the nodes to be matched to the second factor node.
There are 〈k〉N − (d + 2) remaining stubs to choose from,
so there are [〈k〉N − (d + 2)][〈k〉N − (d + 3)] . . . [〈k〉N −
2(d + 1) − 1]/d! ways of selecting this unordered set of d

stubs. For a visual representation of these steps, see Fig. 5. It
is easy to see in this way that we can proceed by matching all
the stubs of the nodes with the indistinguishable factor nodes
in

(〈k〉N − 1)!∏ 〈k〉N
d+1 −1
s=1 [〈k〉N − s(d + 1)])

1

(d!)〈k〉N/(d+1)
(62)

ways since 〈k〉N/(d + 1) = M counts the number of factor
nodes. As long as d is finite and N 
 1, we can use the
following approximation:

(〈k〉N − 1)!∏ 〈k〉N
d+1 −1
s=1 [〈k〉N − s(d + 1)])

	 [(〈k〉N )!]
d

d+1 , (63)

getting the asymptotic approximation for Eq. (62) given by

[(〈k〉N )!]d/(d+1)

(d!)〈k〉N/(d+1)
. (64)

In order to find the number of distinct matchings given by
Eq. (61) we need to observe that all the permutations of
the stubs of each single node give equivalent matchings. We
need, therefore, to divide the expression found in Eq. (64) by∏

r=1,N kr ! getting Eq. (61). Finally, the exponential term in
Eq. (60) needs to be interpreted as the term that corrects for
the forbidden matchings.

V. NATURAL CORRELATIONS OF THE CONFIGURATION
MODEL OF SIMPLICIAL COMPLEXES

The configuration model of simplicial complexes without
structural cutoff develops significant degree correlations. In
order to characterize the degree correlations present in the
simplicial complexes of different dimension d, we have con-
sider the simplicial complexes constructed by the configuration
model with scale-free distribution Pd,0(k) of the generalized
degree of the nodes kd,0 = k. The distribution Pd,0(k) of the
generalized degree of the nodes is given by

Pd,0(k) = Ck−γ , (65)

with minimal generalized degree m = 1. The generated
simplicial complexes can be analyzed by means of the
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well established tools used in network theory. In particular,
a network structure can be extracted from the simplicial
complexes by assuming that two nodes are linked if they
belong at least to a common simplex. We will call the adjacency
matrix of this network â and the degree of the generic node
r in this network κr . The correlations existing in this network
can be characterized by means of the average degree knn(κ)
of the neighbors of the nodes of degree κ , and the average
clustering coefficient C(κ) of the nodes of degree κ . These
functions are plotted in Fig. 6 for simplicial complexes with
generalized degree distribution Pd,0(k) given by Eq. (65)
and γ = 2.3,2.8. These results show that natural degree
correlations occur in these models. The average clustering
coefficient C(κ) increases with the increasing dimensionality
d of the simplicial complex, and the shape of the function
C(κ) also is strongly dependent on the dimensionality d. On
the contrary, knn(κ) does not appear to change so dramatically
with the dimensionality d of the simplicial complex.

VI. CONCLUSIONS

Simplicial complexes of dimension d > 1 encode infor-
mation about interactions occurring between more than two
nodes while simplicial complexes of dimension d = 1 are
simple networks describing only pairwise interactions. As
such, simplicial complexes are a generalization of network
structures that can be extremely useful for analyzing a large
variety of complex interacting systems ranging from brain
networks to social networks. As approaches to data analysis
of networked systems require the characterization of complex
datasets in terms of simplicial complexes, building null models
for these structures is increasingly important for the advance of
the field. Here we have characterized the structural properties
of simplicial complexes using the generalized degrees, which
capture fundamental properties of their δ faces. We have fully
investigated the configuration model for simplicial complexes
with statistical mechanics techniques relating its properties
with the ones of the conjugated canonical ensemble of
simplicial complexes (also called the exponential random
simplicial complex). The entropy of these ensembles is derived
here with analytical techniques, opening the possibility to use
this quantity as an information theory measure for inference
problems on simplicial complexes. Additionally, we have
found an expression for the structural cutoff of simplicial
complexes that generalizes the structural cutoff of the config-
uration model of simple networks. Finally, we have provided
algorithms for generating simplicial complexes belonging to
the configuration model and the canonical ensembles studied
in this paper, and we have numerically investigated the natural
correlations emerging in these models.

In conclusion, we believe that this paper provides a full
account of two of the most fundamental equilibrium models
of simplicial complexes which can be used as null models
for investigating the structure of simplicial complexes, or for
studying dynamical processes. We believe that these models
constitute only the first step in modeling simplicial complexes
with equilibrium statistical mechanics tools and that our work
will open perspectives for investigating a new generation of
equilibrium models for simplicial complexes.

APPENDIX A: DERIVATION OF EQ. (51) RELATING THE
ENTROPY � CONFIGURATION MODEL AND THE

ENTROPY S OF THE CANONICAL ENSEMBLE

In this section we want to derive the relation

� = S − �, (A1)

where � is the entropy of the configuration model of
simplicial complexes given by the logarithm of the number
of graphs satisfying hard constraints on the generalized degree
kd,0(r) = kr for vertices r = 1, . . . ,N , i.e.,

� = ln

[∑
G

∏
r

δ(kr ,kd,0(r))

]
, (A2)

S is the entropy of the canonical ensemble of simplicial
complexes enforcing the expected generalized degree given by
kd,0(r) = kr and � is the entropy of large deviation, which is
the logarithm of the probability that in the canonical ensemble
mentioned above, the generalized degree kd,0(r) take exactly
the values kd,0(r) = kr . The entropy S is given by

S = −
∑

α

[pα ln pα + (1 − pα) ln (1 − pα)], (A3)

while � is given by

� = − ln

[∑
G

P (G)
∏

r

δ(kr ,kd,0(r))

]
. (A4)

In order to derive Eq. (A1) we use the integral representation
of the Kroenecker δ,

δ(x,y) =
∫ π

−π

dω

2π
eiωx−iωy, (A5)

obtaining for �,

� = ln

[∑
G

∏
r

∫ π

−π

dωr

2π
eiωrkr−iωr

∑
α|r⊂α aα

]
. (A6)

Summing over all simplicial complexes G is equivalent to
summing over all adjacency tensors a of elements aα = 0,1.
Performing the sum we get

� = ln
∫ π

−π

(∏
r

dωr

2π

)
ei

∑
r ωr kr

∏
α∈Qd (N)

[1 + e−i
∑

r∈α ωr ]

= ln
∫ π

−π

(∏
r

dωr

2π

)
eF (ω,k), (A7)

where the function F (ω,k) is given by

F (ω,k) = i
∑

r

ωrkr +
∑

α∈Qd (N)

ln[1 + e−i
∑

r∈α ωr ]. (A8)

We now apply a change of variables ωr → zr , where

ωr = zr + ω�
r , (A9)

and where {ω�
r } indicates the solution to the equation

d

dωr

F (ω,k) = 0. (A10)
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We note, that the above equations imply that the ω�
r are related

to our choice of generalized degree sequence by

kr =
∑

α|r⊂α

e−i
∑

m⊂α ω�
m

1 + e−i
∑

m⊂α ω�
m

. (A11)

We can therefore identify iω�
r with the parameters λr of the

canonical ensemble in which we enforce that the expected
generalized degree of the nodes kd,0(r) take the same value of
the hard constrained generalized degrees, i.e.,

kd,0(r) = kr . (A12)

In fact by setting λr = iω�
r , we get

pα = e−∑
m⊂α λm

1 + e−∑
m⊂α λm

= e−i
∑

m⊂α ω�
m

1 + e−i
∑

m⊂α ω�
m

, (A13)

and Eq. (A11) reads

kr = kd,0(r) =
∑

α|r⊂α

pα. (A14)

Writing F (ω,k) in terms of our variable zr given by Eq. (A9)
we obtain

F (z,ω�,k) = i
∑

r

ω�
r kr

+
∑

α∈Qd (N)

ln[1 + e−i
∑

r∈α ω�
r ] + i

∑
r

zrkr

+
∑

α∈Qd (N)

ln[1 − pα + pαe−i
∑

r∈α zr ], (A15)

where pα is given by Eq. (A13). We identify the first two terms
of this expression with the entropy of the canonical ensemble
S given by Eq. (20). In fact,

S = −
∑

α

[pα ln pα + (1 − pα) ln(1 − pα)]

= i
∑

r

ω�
r kr +

∑
α∈Qd (N)

ln[1 + e−i
∑

r∈α ω�
r ], (A16)

where in the last expression we have substituted in the
expression for pα given by Eq. (A13). Finally, using Eq. (A16)
and inserting the expression found for F (z,ω�,k) [Eq. (A15)]
back in to Eq. (A7) we obtain

� = ln

{
eS

∫ π

−π

(∏
r

dzr

2π

)
ei

∑
r zr kr

×
∏

α∈Qd (N)

[1 − pα + pαe−i
∑

r∈α zr ]

⎫⎬
⎭

= ln

⎡
⎣eS

∑
{aα}

∏
α

paα

α (1 − pα)1−aα

∏
r

δ

⎛
⎝kr ,

∑
α′ |r⊂α′

aα′

⎞
⎠
⎤
⎦.

Therefore, � can be written as

� = ln

⎡
⎣eS

∑
G

P (G)
∏

r

δ

⎛
⎝kr ,

∑
α|r⊂α

aα

⎞
⎠
⎤
⎦, (A17)

where P (G) is given by Eq. (19). Using the definition of �

given by Eq. (A4) it follows that

� = S − �. (A18)

APPENDIX B: DERIVATION OF THE EQ. (56) FOR �

In this Appendix we derive Eq. (56) for � in the presence
of the structural cutoff. The quantity � indicates the logarithm
of the probability that in a canonical ensemble of simplicial
complexes enforcing the sequence of expected degree of the
nodes {kr = kr} we observe a simplicial complex realization
in which the sequence of the generalized degree of the nodes
is exactly {kr}. By indicating with P (G) the probability
of a simplicial complex in the canonical ensemble, we
have

� = − ln
∑
G

P (G)
∏

r

δ(kr ,kd,0(r))

= − ln
∑
G

∏
α

paα

α (1 − pα)1−aα

∏
r

δ(kr ,k2,0(r)), (B1)

where, in presence of the structural cutoff, the probabilities
pα are given by Eq. (A13). In order to evaluate �, we use the
integral representation of the Kroenecker δ,

δ(x,y) =
∫ π

−π

dω

2π
eiωx−iωy, (B2)

getting

� = − ln
∑
G

∏
α

paα

α (1 − pα)1−aα

×
∏

r

∫ π

−π

dωr

2π
eiωrkr−iωr

∑
α′ |r⊂α′ aα′

= − ln
∫ π

−π

∏
r

dωr

2π
eG[{ωr }], (B3)

where

G[{ωr}] = i
∑

i

ωrkr +
∑

α

ln[1 + pα(e−i
∑

r⊂α ωr − 1)].

For an uncorrelated simplicial complex ensemble with struc-
tural cutoff and with pα given by Eq. (26) and pα � 1 we can
approximate G[{ωr}] as

G[{ωr}] = i
∑

r

ωrkr +
∑

α

pα(e−i
∑

r⊂α ωr − 1). (B4)

Using the explicit factorized expression for pα in the presence
of the structural cutoff [Eq. (26), we observe that we can write∑

α

pα(e−i
∑

r⊂α ωr − 1) = d!

(d + 1)!
〈k〉N (νd+1 − 1), (B5)

where

ν =
∑

r

kr

〈k〉N e−iωr . (B6)

We now introduce the density

c(ω|k) = 1

Nk

∑
r

δ(ω − ωr )δ(k,kr ), (B7)

062311-12



GENERALIZED NETWORK STRUCTURES: THE . . . PHYSICAL REVIEW E 93, 062311 (2016)

where

Nk = NPd,0(k) (B8)

indicates the number of nodes with generalized degree of
the nodes kr = k and Pd,0(k) indicates the distribution of the
generalized degree of the nodes. We can, therefore, express ν

given by Eq. (B6) in terms of c(ω|k), obtaining

ν =
∑

k

k

〈k〉Pd,0(k)
∫

dωe−iωc(ω|k). (B9)

Using the δ functions,

δ(c(ω|k),
1

Nk

∑
r

δ[ω − ωr )δ(k,kr )]

=
∫ π

−π

dĉ(ω|k)

2πNk

eiĉ(ω|k)[Nkc(ω|k)−∑
r δ(ω−ωr )δ(k,kr )], (B10)

we can now express � as

� = − ln
∫

Dc(ω|λ̂,k)Dĉ(ω|λ̂,k)eNF [c(ω|k),ĉ(ω|k)],

where F [c(ω|k),ĉ(ω|k)] is given by

F [c(ω|k),ĉ(ω|k)] = i
∑

k

Pd,0(k)
∫

dωĉ(ω|k)c(ω|k)

+ d!

(d + 1)!
〈k〉(νd+1 − 1)

+
∑

k

Pd,0(k) ln
∫

dω

2π
eiωk−iĉ(ω|k).

(B11)

We evaluate the integral Eq. (B11) with the saddle point
method. The saddle point equations read,

∂F [c(ω|k),ĉ(ω|k)]

∂c(ω|k)
= 0,

∂F [c(ω|k),ĉ(ω|k)]

∂ĉ(ω|k)
= 0,

which gives us

− iĉ(ω|k) = kνde−iω, (B12)

c(ω|k) =
1

2π
eiωk−iĉ(ω|k)∫

dω
2π

eiωk−iĉ(ω|k)
. (B13)

Using Eq. (B12) we observe that the integral appearing in
Eq. (B13) can be expressed in terms of ν, obtaining∫

dω

2π
eiωk−iĉ(ω|λ̂,k) =

∫
dω

2π
eiωk+kνde−iω

=
∫

dω

2π
eiωk

∑
h

(νdk)he−iωh 1

h!

= (νdk)k

k!
. (B14)

Substituting this result in to Eq. (B13), we get

c(ω|k) = k!

2π (νdk)k
eiωk−iĉ(ω|k),

k!

2π (νdk)k
eiωk+kνde−iω

. (B15)

Finally, we can substitute this expression in to the definition
of ν given by Eq. (B9), obtaining

ν =
∑

k

k

〈k〉Pd,0(k)
∫

dωe−iωc(ω|k)

=
∑

k

k

〈k〉Pd,0(k)
k!

(νdk)k

∫
dω

2π
eiω(k−1)+kνde−iω

=
∑

k

k

〈k〉Pd,0(k)
k!

(νdk)k

∫
dω

2π
eiω(k−1)

∑
h

(νdk)he−iωh 1

h!

=
∑

k

k

〈k〉Pd,0(k)
k!

(νdk)k
(νdk)k−1

(k − 1)!
= ν−d . (B16)

Therefore, ν is the solution of the equation ν = ν−d , and so
we have

ν = 1. (B17)

Using this result, and Eq. (B14) it is immediate to show that
the value of the functional F [c(ω|k),ĉ(ω|k)] [Eq. (B11)] at the
saddle point is given by

F [c(ω|k),ĉ(ω|k)] = i
∑

k

Pd,0(k)
∫

dωĉ(ω|k)c(ω|k)

+
∑

k

Pd,0(k) ln

[
kk

k!

]
. (B18)

Proceeding as in Eq. (B16), it can be easily shown that

i
∑

k

Pd,0(k)
∫

dωĉ(ω|k)c(ω|k)

= −
∑

k

Pd,0(k)k
k!

kk

∫
dω2πeiω(k−1)+ke−iω

= −〈k〉 = −
∑

k

Pd,0(k)k. (B19)

Finally, evaluating the integral Eq. (B11) at the saddle point
we obtain the simple expression for � given by

� = − ln

[
N

∑
k

Pd,0(k) ln

(
kk

k!
e−k

)]

= − ln

[∑
r

ln (πkr
(kr ))

]
, (B20)

where πkr
(kr ) indicated the Poisson distribution with average

kr calculated at kr ; i.e.,

πkr
(kr ) = kr

kr

kr !
e−kr . (B21)
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