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Asymmetries arising from the space-filling nature of vascular networks
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Cardiovascular networks span the body by branching across many generations of vessels. The resulting
structure delivers blood over long distances to supply all cells with oxygen via the relatively short-range process
of diffusion at the capillary level. The structural features of the network that accomplish this density and ubiquity
of capillaries are often called space-filling. There are multiple strategies to fill a space, but some strategies do not
lead to biologically adaptive structures by requiring too much construction material or space, delivering resources
too slowly, or using too much power to move blood through the system. We empirically measure the structure
of real networks (18 humans and 1 mouse) and compare these observations with predictions of model networks
that are space-filling and constrained by a few guiding biological principles. We devise a numerical method that
enables the investigation of space-filling strategies and determination of which biological principles influence
network structure. Optimization for only a single principle creates unrealistic networks that represent an extreme
limit of the possible structures that could be observed in nature. We first study these extreme limits for two
competing principles, minimal total material and minimal path lengths. We combine these two principles and
enforce various thresholds for balance in the network hierarchy, which provides a novel approach that highlights
the tradeoffs faced by biological networks and yields predictions that better match our empirical data.
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I. INTRODUCTION

The vital functions of the cardiovascular system are the
distribution of oxygen and nutrient resources throughout the
body, as well as the collection and filtration of waste by
circulating blood. Transfer of resources and waste occurs
primarily at the capillary level via diffusion through nearby
tissue. Consequently, this smallest level of the network must
reach all living cells in order to maintain them, filling the
entire space of the body. In models developed by Krogh
for effective diffusion of oxygen [1], cells cannot survive
beyond a maximum distance from a capillary. This defines
a service volume of cells that is associated with each capillary,
which has a typical size that has been observed to vary across
species based on cellular metabolic rate [2,3]. The constraint
on maximum distance from capillaries necessitates that the
final levels of the cardiovascular network are also space-filling
throughout the body. In this paper we investigate the relation
between this space-filling property and basic optimization
principles such as the minimization of costs from construction
material and pumping power. Specifically, we highlight how
this relation influences the asymmetries in sizes and flow rates
of sibling segments as measured in empirical data.

A central focus of our investigation of cardiovascular sys-
tems is the space-filling properties of networks, but these prop-
erties are also of great interest in many other contexts. General
space-covering hexagonal patterns appear in nature in the cell
structure of beehives as well as in economic theories for market
areas [4]. Trees (the woody, perennial plants) have been studied
for both how forests fill an area [5], as well as how the vascular
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structure within an individual plant determines the hydraulics
of resource delivery [6,7]. Apollonian networks [8] describe
the space-filling packing of spheres of various sizes, which are
similar in the cardiovascular system to considering the volumes
of different subtrees of the network. Efficiently filling space in
two dimensions is important for information visualization [9].
In addition to these applications, Kuffner and LaValle study
space-filling tree networks (i.e., networks that branch and have
no closed loops) to determine a route from one location to
another [10], but without the biological constraints that we im-
pose here. For cardiovascular networks, this motion planning is
analogous to how the vascular structure routes blood. Efficient
routing of blood through a hierarchy is central to models that
investigate allometric scaling of metabolic rate with body mass
[2,3,11–14], which build on metabolic scaling by Kleiber [15].
Determining specific space-filling strategies will inform these
models to better describe the cardiovascular system.

Developmental processes (i.e., growth) as well as evolu-
tionary pressures, such as efficiency in material and energy
use, shape the structure of cardiovascular networks. For
instance, the system must be robust to developmental processes
and damage that cause changes in vessel lengths and the
number of hierarchical levels [16,17]. We investigate optimal
space-filling networks without invoking an explicit growth
or developmental process, as do most models of vascular
networks. Nevertheless, our choices are consistent with the
present knowledge of vascular development. A key feature
of vascular development is that the growth of individual
segments and branching are triggered by signaling (e.g., by
VEGF [18]), effectively guiding angiogenesis and the eventual
location of capillaries. Remarkably, such guidance leads to
an efficient, global, space-filling network built from local
chemical concentrations. This is all the more remarkable
because general strategies for efficiently filling a volume or
surface are nontrivial, especially when the distribution system
must reliably deliver blood at each stage of development.
Because the vasculature must be efficient throughout all
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stages of growth, we focus on the static properties of optimal
space-filling networks.

In this paper, we explain how the challenges of constructing
an efficient space-filling network can lead to the asymmetric
structures in both the local relations of segments, as well as in
the paths from the heart to each service volume that we observe
in empirical data. At the local level, the ratio of lengths between
parent and child segments may vary across the network, devi-
ating from strict self-similarity. Additionally, sibling segments
may vary in length, which we call asymmetric branching.
Within our numerical method, these features arise as a result of
optimizing branch-point positions relative to adjacent branch
points across the network. Variation in the length and number
of levels in paths means that the network is also not symmetric
or balanced in these global properties. By allowing these
asymmetries and explicitly ensuring space-filling structure,
we expand other models that are strictly balanced in network
hierarchy and perfectly symmetrical in local quantities.

Asymmetries observed in real systems motivate our in-
vestigation of the space-filling properties and asymmetries
in cardiovascular networks. These observations show that
such networks have a tendency for the lengths of sibling
segments to be distributed less symmetrically than is the case
for radii. The empirical data in Sec. V come from two types of
sources. Images collected through microtomography of mouse
lung comprise one data set. The mice were part of a study
with different manipulations of matrix GLA protein (which

causes the vasculature to be under- or over-branched [19]),
but we focus on the wild-type specimen for our analysis.
The other data set, collected through MRI, excludes the
lungs and instead focuses on the central vasculature in the
human head and torso [20]. We utilize the custom software
Angicart [20] to analyze these two distinct vascular data sets.
Because of the noninvasive nature of these data acquisitions
and analysis techniques, future studies have the opportunity to
track the development of cardiovascular systems as individual
organisms grow and age, including repair after the system
incurs damage (i.e., wound healing). Such studies can elucidate
the effects that patterns of growth and changes from damage
have on the final, mature state of the network.

In this paper, we study the optimization principles that
correspond to evolutionary pressures for efficiency in material
cost and power loss. Our focus is the influence of space-filling
patterns on length asymmetry distributions without the explicit
inclusion of radius information. The list of candidate networks
includes all possible hierarchical (topological) connections
between the heart and all capillaries. For each hierarchy and
unique permutation of pairings between terminal vessels and
service volumes [see Fig. 1(d)], we must determine the posi-
tions of the branch points. The combination of the hierarchy,
service-volume pairings, and branch-point positions defines
the configuration of a candidate network. For these reasons,
we must search through many candidate configurations to
determine the most efficient structure. We quantify the fitness

FIG. 1. (a) Schematic of the simplest bifurcating tree network, showing the heart (hollow red triangle) and two service volumes (filled
brown circles) with labels for the lengths of each associated segment. (b) Local optimization of branch point position. Three possible locations
for a bifurcation junction. The rightmost configuration shows the Fermat point of �123 that minimizes the sum of segment lengths. From left
to right, the sum of lengths are 2.38, 2.19, and 2.08. (c) The two distinct bifurcations (left) collapse to a single trifurcation (center) and set to
the geometric median of the four endpoints (right). From left to right, the sum of lengths are 2.50, 2.09, and 2.02. (d) Global optimization via
search through the space of hierarchies. Comparing C (a measure of some length property of the network) for each of the 15 configurations
for four service volumes shows that the bottom right configuration is optimal with respect to C. The relative order and position of both the tips
and branch points in (d) do not correspond to relative positions in space.
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of each candidate network using individual segment lengths
between branch points as well as full path lengths between
each capillary and the heart.

To perform a reliable comparison between candidate con-
figurations, it is crucial to determine branch-point positions in a
consistent way. We determine these positions iteratively for the
entire network in order to identify the global optimum. While
the local process of choosing branch points that minimize total
vessel lengths (or similar features) is relatively straightforward
to iterate over the network, any single branch point and its
relation to its neighbors relies indirectly on updates that are
applied elsewhere. This dependence emerges from the fact
that each end of a vessel is connected to a branch point, which
upon repositioning affects the lengths of all vessels that it
joins. The uniqueness of the Fermat point—the branch point
position that minimizes the sum of the lengths of vessels at a
single junction—is already well established (for example, see
Ref. [21]). This allows us to carefully construct an algorithm
(described in Sec. II C) that reliably relaxes all branch-point
positions into the global optimum.

After determining the positions of branch points for a
given hierarchy, we compare distinct configurations to find
the optimum network. The search through configurations is
also a central problem in phylogenetics, where the goal is to
construct phylogenies to identify similar groups of species
and trace the development of genes through speciation. Even
in the case of genes that control biological traits, a loosely
analogous space-filling phenomenon emerges in the form of
species filling the niches in the environment. With our specific
goal of complete spatial covering of network tips, we develop
strategies in Sec. IV for exploring the space of hierarchies that
are similar to those used on phylogenetic trees.

The organization of the subsequent sections is as follows. In
Sec. II, we describe the basic assumptions for our space-filling
network model, including the details of the local optimization
of branch-point locations and the global paths through the
network. In Sec. III, we introduce the specific quantitative
network properties that we use to compare the fitness of
candidate networks. We introduce the properties of the space
of tree hierarchies and our implemented exploration strategies
in Sec. IV. In Sec. V, we detail the results from the several
layers of optimization that we implement, and we discuss the
insights that they offer in Sec. VI.

II. CONSTRUCTION OF ARTIFICIAL
VASCULAR NETWORKS

To better understand the connection between the local
asymmetries of individual vessel lengths and the global
constraint on space-filling capillaries, we optimize candidate
networks that are embedded in two spatial dimensions (2D)
in silico with respect to specific optimization principles.
Corroborated by simulations, constructing networks in three
spatial dimensions (3D) gives qualitatively similar results but
requires much larger numbers of tips that necessitate a greater
computational investment. The small quantitative differences
between 2D and 3D are likely explainable because of the extra
space (i.e., an extra dimension) to arrange vessels, allowing for
an increased number of possible arrangements of neighboring
vessels at all levels. Consequently, we focus on 2D networks

to achieve configurations with larger numbers of branching
levels, ease computation, and obtain the same general results
and conclusions. We explore these optimized artificial 2D
networks and quantify their branching length asymmetries to
compare with our empirical data. Our model’s simplification of
the cardiovascular network focuses on the lengths of segments
as defined by the straight line between adjacent branch points.
Reticulated structures occur within leaves to mitigate damage
[16,17] and within animals as anastomoses (or pathologically
as fistulas). However, we focus on the vast majority of the
cardiovascular system that distributes resources through a hi-
erarchical, treelike structure, in which no segments or subtrees
rejoin downstream to form closed loops before reaching the
capillaries. This is sufficient for the focus of our investigation
of the asymmetric, space-filling structure that distributes the
resource-rich blood from the heart throughout the body.

The space-filling property of the cardiovascular network
constrains the hierarchical structure of the network and the
positions of branch points. Here we describe our process for the
construction of individual networks and the space of possible
networks through the following steps: defining a distribution
of space-filling service volumes in the space of the body,
identifying all unique hierarchies and pairings between tips
of hierarchies and distinct service volumes, and determining
the positions of branch points for each hierarchy and pairing.

A. Space-filling service volumes

Because real systems do not organize or grow on a regular
(symmetric, isotropic) grid, we position service volumes
randomly within the space they fill. Although the exact location
of tips in the adult organism or at intermediate stages of growth
is not known during earlier stages of development, the sources
of the largest concentrations of VEGF and other signals guide
vascular growth and thus effectively define the service volumes
before the physical vessels are even present. Construction of
service volumes begins by choosing a random point within
the body volume that represents the location of a capillary.
We then randomly choose other points (capillary locations)
so that none lie within a predefined constant distance from
another capillary location. After determining a set of capillary
locations that span the 2D area, the entire body is partitioned
into Voronoi cells fed by the closest capillary. In this way, each
capillary becomes associated with a specific service volume,
and the sum of the service volumes fills the entire space (see
Fig. 3 or 5).

B. Space of hierarchically distinct trees and pairings
with service volumes

Because multiple branching levels connect the service
volumes to the heart, there are many possible hierarchical
orderings of branching junctions across these different levels.
For example, there are two unique hierarchies when there are
four service volumes: the top three configurations in Fig. 1(d)
are the same perfectly balanced hierarchy, while the remaining
trees have the same unbalanced hierarchy. The distinguishing
feature is the pairings of tips in the hierarchy to specific service
volumes (1–4).
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There are many distinct pairings of terminal tips with the
set of fixed service volumes for each bifurcating tree. For four
service volumes, there are a manageable 15 unique bifurcating
trees [shown in Fig. 1(d)]. Before determining branch-point
positions for small networks, we exhaustively search through
all possible hierarchies and pairings with service volumes. For
large networks, the number of distinct hierarchies and pairings
[(2n − 3)!! for n distinct service volumes] is prohibitively
large, so we sample the space as described in Sec. V B.

We do not disqualify configurations if one vessel path
crosses with another (these would likely separate in three
dimensions), and there is no exchange of resources or
interaction in blood flow at such locations. Crossings are not
observed for networks that minimize only total network length
without a constraint on hierarchical balance, but they often
occur for optimal configurations with a strong constraint on
hierarchical balance.

C. Optimization of branch point positions for
a fixed hierarchy and pairing

We now detail our algorithm for the optimization of the
positions of branch points that connect a distribution of service
volumes to the heart through a hierarchical network. Within
our algorithm, the position of each branch point depends solely
on the location of the adjacent branch points in the network.
Distant vessels affect each other indirectly, but not through any
direct long-range process. Using the limited, local information
given by the neighborhood of a branch point, each junction is
assigned a uniquely defined position that minimizes the sum
of the Euclidean distances to each neighboring junction. This
is equivalent to the Fermat point of the triangle formed by the
two downstream ends of the child vessels and the one upstream
end of the parent vessel [see Fig. 1(b)]. Although it may
seem counterintuitive to specify the downstream endpoints
before the branching junction is in place, these endpoints
correspond to sources of VEGF during growth, allowing us
to specify the downstream branch point before the physical
vessels or branching are in place. In real systems, the exact
branch point location has also been shown to depend on
the specific architectural geometry and location of highest
shear stress in the parent vessel [22]. This effect might add
small corrections to our predictions but is not expected to
change the qualitative properties that we observe, especially
when averaged over the entire network. The Fermat point of
a triangle is a special case of the more general geometric
median, the unique point that minimizes the sum of distances
to an arbitrary number of other fixed points. We follow the
algorithm presented in Ref. [23] to avoid errors in determining
the geometric median. Assigning branch-point positions as
geometric medians effectively minimizes the construction
costs for the local network structure.

We construct our networks from simple bifurcations, but
using the Fermat point to assign branch-point positions can
lead to coincident (degenerate) bifurcations, as shown in
Fig. 1(c). Degenerate branch points are consolidated at the
geometric median of the upstream endpoint of the parent
and three or more downstream endpoints of the associated
children segments. In this way, two degenerate bifurcations
become a trifurcation and, more generally, n degenerate

bifurcations become a single (n + 1)-furcation. Networks that
are hierarchically distinct in their bifurcating structure can be-
come identical networks by collapsing bifurcations. Through
exhaustive explorations (described in Sec. V A), we find that
this marginally reduces the number of possible configurations.
Because we have no a priori filter to identify which bifurcating
trees are redundant, we must consider the entirety of the space
of labeled, rooted, bifurcating trees throughout the algorithm
to identify sufficiently optimal configurations. Every branch
point in the network is checked and appropriately updated
until the total sum of the changes in position—the Euclidean
distance between the position before and after an update—is
below a predetermined threshold, which we have chosen to
be 0.001 (<0.2% of the minimum service volume separation
π−1/2) in order to quickly arrive at a reasonable final configu-
ration. With positions defined in a consistent way, we can now
compare the properties of distinct hierarchies to determine
which is the best for a particular space-filling strategy.

III. SELECTION CRITERIA
FOR BIOLOGICAL NETWORKS

All characteristics of an organism that affect fitness and
are heritable are under selection. A key question is which
features of the vascular network are under selection. Here we
define specific fitness measures that are tied to the structure
of the network configuration that allows us to rank candidate
networks and determine the optimal configuration.

A. Global length properties of space-filling configurations

Here we introduce a standardized fitness measure that
allows us to compare candidate networks for their suitability to
transport blood and resources. Each independent measure for
a network’s fitness relates to a physical quantity that likely
guides the evolution of the cardiovascular system toward
a more efficient network. Specifically, the system’s cost in
construction material and the maintained volume of the blood
relates to the total network length—the sum of the lengths of
all segments. Competing with this minimization of materials,
the dissipation of the heart’s pumping power relates to the path
lengths between each capillary and the heart. The power dissi-
pated by smooth (Poiseuille) flow through a segment is directly
proportional to the length of the segment [24]. In the absence
of radius information, reducing the cost of pumping blood is
equivalent to reducing the total path lengths that blood travels.

We define these two fitness measures—one dealing with
total network length and the other with individual path
lengths—as

L =
∑

all segments i

in network

�i, (1)

H = 1

Ntips

∑
all paths p

in network

∑
all segments i

in path p

�i, (2)

where Ntips is the number of distinct service volumes,
corresponding to the number of tips and distinct paths. Total
network length L is addressed directly by the local positioning
of unweighted Fermat points. Global information is required
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to calculate total network length, but it can be minimized
if each segment length is minimized. That is, globally
minimizing total path length is achievable through a sequence
of local minimizations of each individual vessel length within
the constraints of the optimization and network structure.
Minimization of mean path length H cannot be achieved via
a sequence or series of local choices because whole paths (not
individual segments) must be compared with one another by a
search through network hierarchies. Such global information
is inaccessible to a single branching junction during growth,
and thus would seem to rely on information outside the realm
of the actual growth process for vasculature. However, this
property may not be as inaccessible as it first seems because
information about mean path lengths can be partially inferred
from local tissue and network properties, such as total blood
flow to the area or local vessel densities, especially capillaries.
The generalized total cost function C linearly combines these
two measures by their respective weights CL and CH :

C(CL,CH ) ≡ CLL + CHH. (3)

This cost function connects minimization of material and
power dissipation to study optimal networks that are space-
filling.

Because an increase in cost corresponds to a decrease in
fitness, we place this approach in an evolutionary framework
by inverting and scaling our cost function C to be a relative
fitness function f :

f (CL,CH ) ≡ Cmin

C(CL,CH )
, (4)

where Cmin is the most optimal network under consideration.
By this definition, the optimal configuration has a fitness f = 1
and less optimal configurations have a fitness f < 1.

B. Equal distribution of resources through hierarchical balance

Because the network tends to exhibit nearly symmetric
branching in radius and must distribute resources equally to
each capillary in the body, the network hierarchy cannot be
overly unbalanced, with one segment having many more tips
to supply than its sibling. In accordance with this argument,
empirical data do not show major arteries branching directly
into capillaries. We address this constraint by selecting for
networks with more balanced hierarchies.

A hierarchy is better balanced if there are roughly equal
numbers of tips supplied downstream by each sibling segment.
Conversely, a hierarchy becomes more poorly balanced as the
disparity grows between the number of tips. In this sense, we
define the degree that a hierarchy is unbalanced U as

U = 1 − min
all sibling
pairs (i,j )

{
N

(i)
tips

N
(j )
tips

}
, (5)

where N
(i)
tips is the number of distinct downstream service

volumes supplied through segment i and segment j is always
the sibling with the most downstream tips. In our algorithm,
we select against hierarchies for which the degree of unbalance
U is greater than some threshold U0. This selection process is
tantamount to another fitness requirement and constraint (e.g.,
natural selection) on the vascular network. Thus, to express all

of our selection constraints within a single equation, we write
down the full fitness as

F (CL,CH ; U0) = IU<U0f (CL,CH ), (6)

where Is is the indicator (or step or Heaviside) function, which
is 1 if statement s is true and 0 otherwise. In our computational
implementation, it is easiest to separate these steps since
hierarchical balance can exclude a configuration immediately,
but the calculation is exactly equivalent to the fitness function
above (which may be thought of as an approximation to a
more physically appropriate sigmoidal function). We eliminate
configurations above this threshold before optimizing branch
points and calculating fitness.

IV. GLOBAL OPTIMIZATION IN THE SPACE
OF HIERARCHIES

To determine the optimal hierarchy and its connectivity, we
search the space of rooted, labeled, bifurcating trees. The posi-
tions of the branch points are fixed by the process in Sec. II C.
The globally optimal network of all configurations maximizes
the fitness F while satisfying the space-filling constraint on
service volumes. As an example, the optimal configuration
in Fig. 1(d) corresponds to the hierarchy in the bottom right,
where the fitness F (1,0; 1) = 1 includes only total network
length L [Eq. (1)], resulting in a Steiner tree [25]).

Our exploration of configuration space has many similar-
ities to phylogenetic trees, for which software is available
to search through the space of hierarchies [26,27]. Since
the available software is not tailored to our specific goals
of optimizing space-filling networks, we implement our own
algorithms. Because of the large number of distinct bifurcating
rooted trees (that grows factorially with size), efficient search
strategies generally focus on regions with greater fitness. We
develop strategies to search through possible configurations
and find space-filling networks that best satisfy the general
biological constraints from Sec. III.

A. Navigating in the space of hierarchies

Our numerical technique guides the search by selecting
changes that increase configuration fitness. Making small
changes in the branching structure, such as a single swap of
two segments in the hierarchy or a regraft of one segment to
a spatially near part of the tree, yields new configurations.
Because the change to the hierarchy is small, using the
positions of branch points from the previous configuration
as the starting positions of the iterative process described in
Sec. II C saves time in optimizing the global positions in the
new configuration.

For local swaps in the hierarchy, we exchange a segment
with one child (including the associated downstream subtrees)
of the segment’s sibling (i.e., its nibling). There are 2(n − 2)
possible nibling swaps for n � 2 discrete service volumes.
However, nibling swaps do not address changes for segments
that are distant in the hierarchy but have small spatial
separation. To account for these changes, we regraft single
segments to spatially near branches of the hierarchy. We limit
the search of spatially proximal branch points to those within
twice the minimum service volume separation of each other.
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This restriction maintains a linear increase in the number
of explored regrafts with the number of service volumes,
in contrast to the factorial increase that would result from
including all possible regrafts.

B. Seed for trajectories: Balanced hierarchy construction

We accelerate the identification of near-optimal networks
by choosing an initial configuration that is maximally bal-
anced (i.e., minimizes U ) and avoids many suboptimal
structures (e.g., configurations with many repeated crossings
or noncontiguous subtrees) for every set of service volume
distributions. To improve overall computation time, some
approaches explore permutations of pairing tips with service
volumes under a constant hierarchy [28]. For real systems, the
dimensionality of the space (i.e., the body volume) for each
branch point position never exceeds three, which allows us to
use spatial partitioning to directly construct a configuration,
with compact, nonoverlapping subtrees. Such a favorable
configuration avoids less-fit configurations and satisfies the
intuitive guidelines that branch points connect nearby subtrees
(efficiency by proximity) and that sibling subtrees have similar
numbers of service volumes in accordance with symmetric
branching in radius.

To ensure the maximal hierarchical balance for the seed,
we begin with a single set that contains all terminal service
volumes. This set is then partitioned into two subsets of
equal size (or within 1 service volume if the number is odd,
which guarantees U � 0.5), using a straight line to define
the boundary between the two sets. When appropriate, this
line passes through the geometric center (i.e., the unweighted
average position) of the previous set of points and the
geometric center of the new subset. Resulting sets further split
into smaller subsets to yield a complete, bifurcating hierarchy.
We refer to this process and the resulting seed as the balanced
hierarchy construction (BHC).

C. Efficient search trajectories

We further accelerate our search by limiting the number of
nearby configurations considered at each step. We accomplish
this through a carefully guided greedy search through the
space of hierarchies (effectively simulated annealing [29,30]
at zero temperature), which often finds a near-optimal con-
figuration. A greedy strategy offers expedited elimination
of configurations that are far from optimal; the algorithm
abandons configurations that saturate at a fitness lower than
the current most optimal configuration. Our implementation
allows five iterations of the process in Sec. II C, then excludes
configurations that fail to reduce the cost C [Eq. (3)] by at
least 5% of the remaining difference from the current optimal
configuration. The algorithm with this exclusion scheme
successfully identifies near-optimal configurations.

Because the sampling process is not exhaustive, the search
through the space of possible hierarchies is not guaranteed to
yield a globally optimal configuration. However, performing a
reasonably thorough search as we outline here and conducting
several runs from the BHC seed (in our simulations, at least
ten runs) increase the likelihood of identifying a configuration
that is near-optimal and shares many of the branching length

asymmetries that an optimal configuration exhibits. With
dependable algorithms for determining branch point positions
and for exploring the space of possible hierarchies, we can
now investigate the length properties of space-filling networks
under several basic space-filling strategies.

V. RESULTS AND ANALYSIS

We now present the results of optimized networks and of
the analysis on real vascular networks, including the properties
of the most optimal networks. To build intuition about the
space of hierarchies, we first explore the space exhaustively
for small networks and establish the distinct patterns that the
two optimizations L and H produce. In comparing optimal
configurations with observations of real systems, we find better
agreement by enforcing a constraint on the degree of unbalance
U in the hierarchies of candidate configurations.

A. Exhaustive search for small networks

To become more familiar with the landscape of possible
configurations, we exhaustively explore the space of hier-
archies and pairings for networks that are small enough to
quickly yield comprehensive results for a single realization
of fixed service volumes. We collapse and reorganize the
higher-dimensional space of branch point swaps into a single
dimension by ranking each configuration based on the fitness
F . This reorganization involves a normalization of rank so
that the fittest configuration occurs at 0 and the least fit
occurs at 1. Rescaling the rank is necessary even for networks
of the same size and shape because different realizations
may have different numbers of unique configurations after
consolidating degenerate bifurcations (mentioned in Sec. II C),
despite having the same number of service volumes. Larger
networks tend to have greater range with respect to both costs
in L and H .

The minimum distance between each service volume is
constant for each of the networks that constitute the ensemble
of realizations for the curves in Fig. 2. Each curve represents
the average fitness (relative to the fittest configuration for
the particular set of capillary positions, represented by the
subscript best) over an ensemble of networks with a fixed
number of tips and constant total area. In generating the
ensemble, we exclude those that arise with a different number
of tips than what is desired until we accumulate 1000
configurations of the target size. Across curves, the total area
increases to produce networks with more service volumes
more frequently.

One might expect a large set of similarly fit, near-optimal
networks, which would be represented by a plateau near the
optimum. However, the sharp descents away from the optimal
configuration in Fig. 2 indicate that there are few configura-
tions that are near-optimal. From an evolutionary perspective,
this implies that the vascular networks of organisms are under
strong selection. Furthermore, the slope near the optimum
becomes steeper as more service volumes are introduced,
so that the best configurations become more distinct from
other possibilities as the number of service volumes grows.
Considering the very large number of service volumes in real
organisms, this again indicates that real vascular networks
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FIG. 2. Ranked landscapes for unique consolidated configurations from exhaustive exploration of bifurcating trees of fixed area and fixed
Ntips. (a) Exhaustive landscapes for fitness based only on total network length L [F (1,0; 1)]. (b) Exhaustive landscapes for fitness based total
network length L and mean path length H [F (1,9; 1)]. We choose the weights (CL,CH ) = (1,9) so that the contribution from H is not dominated
by the contribution from L.

are under strong selection pressures for space-filling and
efficiency.

Optimal networks that have no constraint on hierarchical
balance fall into two general classifications depending on the
relative weights of total network length L and mean path length
H in the fitness measure f . As shown in the simple examples of
Fig. 3, network fitness measures that are weighted to minimize
L yield bifurcating trees, while measures that are weighted to
minimize H yield hubs. Bifurcating trees better correspond
to real networks, suggesting that total network length L plays
a larger role than mean path length H . Since a single hub is
not observed (and not expected from material costs) in real
systems, we do not consider configurations that ignore total

FIG. 3. Global optimizations in the space of configurations for
two classes of networks: (a) The optimal configuration that minimizes
total network length [L in Eq. (1) for F (1,0; 1)] of the 15 possible
trees [corresponding to Fig. 1(d)] consists only of bifurcations.
(b) The optimal configuration that minimizes mean path length
between each service volume and the heart [H from Eq. (2) for
F (0,1; 1)] of the 15 possible trees consists of a single hub. The regions
of varying background color define the Voronoi cells corresponding
to individual service volumes.

network length L. Therefore, the hub in Fig. 3(b) occurs at
the geometric median of the branch point’s adjacent segment
endpoints in accordance with the method presented in Sec. II C
instead of at the trivial minimum of path lengths in which each
service volume has a unique segment that connects it directly to
the heart. However, optimizing only for L leads to meandering,
bifurcating paths, which become shorter and more direct by
including both costs (L and H ). Furthermore, more global
information is necessary to directly minimize path lengths
than the local environment that we consider in Sec. II C—
specifically, the context of the entire path. This means that
our analysis is best suited for optimality that always includes
a significant contribution from total network length L and a
weaker contribution from mean path length H .

B. Trajectories for sampling larger networks

With better intuition about the space of hierarchies from
small networks, we now explore the space for larger networks
with more service volumes. Branching asymmetries have been
corroborated in small distribution networks from a central
source to an outer boundary [31]. Here we present results
for larger networks with the perimeter and the entirety of
the inner space filled with tips. The branching properties
of larger networks give more applicable results to connect
particular space-filling strategies with the observations of real
cardiovascular systems. We first summarize the properties of
optimized networks without any constraint on hierarchical
balance (U0 = 1).

Because the search through the space of hierarchies is not
exhaustive for large networks, we cannot show ranked land-
scapes averaged over ensembles with different service volume
positions as we did for small networks. Instead, we show land-
scapes from a single realization of service volume positions in
Fig. 4 that come from an ensemble of trajectories that start with
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FIG. 4. Average fitness landscapes for total network length
L [F (1,0; 1)] over 100 trajectories for a single network of each size.

the BHC configuration and end at a local optimum [Fig. 11(a)
in Appendix A]. The greedy algorithm samples fewer less-fit
configurations, yielding a shallower slope near the optimum
than the exhaustively explored landscapes in Fig. 2. Since the
starting point of the search (the BHC configuration) is already
favorable, we expect that the worst-ranked configuration of
the partial search is already very near optimal. While this
may not be the absolutely optimal configuration, we do not
expect the absolute optimum to be found by real biological
networks either. This is both because additional constraints
will likely influence network growth and because there is
noise in any growth process that is this complex. However,
real networks and the best artificial configurations should both
be near optimal. Indeed, for fitness landscapes that we can
explore exhaustively (as shown in Fig. 13(b) in Appendix B),
we show that the optimal network is found in the majority of
searches. For cases where the absolute optimal configuration
is not correctly identified, the algorithm finds a nearly optimal
configuration. As the number of tips increases, there is a
decreasing difference between the absolute optimal network

and the nearly optimal network identified (average normalized
ranked) by our algorithm. This result suggests that there will be
negligible qualitative differences between the network found
by our algorithm and the absolute optimal network in the
context of real biological networks, which are much larger.
We provide further details on the performance of this partial
sampling of the configuration space in Appendix B.

Searches through the space of hierarchies and the properties
of optimal configurations do not vary with different convex
body shapes. Figure 5 shows examples of optimized networks
for a maximally symmetric body shape. The general trends of
long, meandering paths for solely minimizing total network
length L and of more direct paths when including H are
consistent across both isotropic, circular areas and elongated,
rectangular areas.

To characterize branching features of both our empirical
data and these large configurations, we quantify the asymmet-
ric branching attributes with the two ratios

λL = �c1

�c2

, (7)

λR = rc1

rc2

, (8)

choosing �c1 � �c2 for the lengths of child 1 and 2 [shown
in Fig. 1(a)] and rc1 � rc2 for the data on radii. Note that
perfect symmetry corresponds to λL = λR = 1 and smaller
values of λL and λR correspond to more asymmetric branching.
Distributions for the branching asymmetry ratio in length λL

for various sizes and shapes are shown in Fig. 6. Branch points
for which one of the child segments does not exist because of
degeneracy with a service volume center do not contribute to
the distribution for λL. There is little change in the features of
the distribution of λL across different sizes of networks with
U0 = 1. This trend persists for both isotropic and anisotropic
enclosing shapes. A summary for the cross-generational length
ratio is given in Appendix C.

Many branch points in these networks coincide with a
service volume, predicting large trunks that feed capillaries
directly. Similar results appear in the study of flow through a
dynamic, adaptive network [32]. However, such a trend does
not agree with the empirical data. Although there is asymmetry

FIG. 5. Network configuration for (a) the BHC seed and two optimal configurations for fitness measures (b) total network length L [F (1,0; 1)]
and (c) total network length L and mean path length H [F (1,9; 1)]. We choose the weights (CL,CH ) = (1,9) so that the contribution from H

is not dominated by the contribution from L.
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FIG. 6. Distributions of λL for several sizes of circular areas,
averaged over 100 realizations of service volume distributions and
optimized solely for total network length L [F (1,0; 1)]. Local length
asymmetry between siblings skews toward symmetry for optimal
networks with little hierarchical balance (U0 ≈ 1).

in adjacent segments at branch points and a lack of strict
balance in the hierarchy along different paths, we observe
that large arteries do not branch directly to capillaries and
arrive at the same expectation from the dynamics of blood
flow. The major qualitative distinction between the BHC and
the optimized configurations with U0 = 1 is that the BHC
is a network with a balanced hierarchy. Upon inspection of
empirical data in Sec. V C, we find that the branching length
asymmetries for the BHC configuration motivate an additional

constraint on hierarchical balance during the search through
the space of hierarchies.

C. Comparison of optimized networks with empirical data

The results in Sec. V B show that optimization for total
network length or mean path length with no constraint on
hierarchical balance leads to distributions of asymmetry in
sibling vessel length that skew toward symmetry (λL ≈ 1).
We now present the analysis of λL that characterizes the local
length asymmetries at branch points for real and optimized
networks. From this analysis, we explore how limiting the
degree of unbalance U in an optimal artificial network yields
asymmetries that better match biological networks.

1. Asymmetric vessel length distributions of real networks

We analyze MRI images of the human head and torso as well
as microtomography images from wild-type mouse lung. Both
data sets break from strict symmetry. As shown in Fig. 7, the
network-wide distribution for λR is skewed toward symmetry
(λR ≈ 1), while the distribution for λL is more uniform,
representing a greater contribution from very asymmetric
branching (λL < 1). These results are representative of general
features for length distributions in real biological networks.
The fact that the optimized networks in Sec. V B do not exhibit
a similar distribution for λL signals that important biological
factors are missing. Because of the skew toward symmetry in
sibling segment radii, we limit the hierarchical unbalance of
optimized networks in Sec. V C 2.

2. Degree of balance necessary to match biological networks

Imposing a constraint on hierarchical balance leads to con-
figurations that reflect more realistic asymmetry in branching
lengths. Hierarchical balance, which equalizes the number of
service volumes that each sibling segment supplies, is related

FIG. 7. Observed radius and length branching asymmetry ratios [Eqs. (7) and (8), respectively] in mouse lung and human torsos. (a) Sibling
radius ratio λR distribution. Radii ratios are skewed toward symmetry (λR ≈ 1), although they are not always perfectly symmetric. (b) Sibling
length ratio λL distribution. Length ratios are not skewed toward symmetry (many ratios have λL < 1), contrary to symmetric models.
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FIG. 8. Optimal configurations for several constraints on hierar-
chical balance and two optimization weights for fitness F . The left
column (a, c, e) shows configurations optimized for total network
length L [F (1,0; U0)], while the right column (b, d, f) shows
configurations optimized for both total network length L and mean
path length H [F (1,9; U0)]. The rows from top to bottom show
configurations for U0 = 1.0, 0.9, and 0.6. The BHC seed is the same
as in Fig. 5. We choose the weights (CL,CH ) = (1,9) so that the
contribution from H is not dominated by the contribution from L.

to the blood flow that is required to deliver resources and
effectively limits the asymmetry of sibling radii. In Fig. 8
we show results for several thresholds for the constraint on
hierarchical balance. Decreasing the threshold U0 yields more
realistic distributions for λL, as shown in Fig. 9. Because these
networks are embedded in 2D, decreasing U0 can also result
in more crossings between segments at different levels. By
comparing Figs. 9(a) and 9(b), we see that the constraint on
hierarchical balance leads to similar results independent of
the weight of mean path length H in configuration fitness.
Instead of contributing significantly to fitness, H is effectively
optimized through hierarchical balance.

While enforcing hierarchical balance leads to more realistic
branching and length asymmetry distributions, it is not neces-
sary to have a maximally balanced hierarchy. In Fig. 10, we
show that lowering the threshold U0 reduces network fitness.

As the threshold for hierarchical unbalance U0 decreases, the
average fitness also decreases. Since the distribution of λL is
approximately uniform around U0 ≈ 0.7 and below, the best
value for the hierarchical constraint is U0 ≈ 0.7, because this
yields the fittest networks that have uniform distributions for
length asymmetry.

VI. DISCUSSION

With our determination of branch point positions and
exploration of distinct hierarchical configurations, we can
remark on several consequences that follow from the general
properties of optimized networks. Organizing the lengths
between branch points to fill 2D or 3D space with capillaries
inevitably leads to asymmetries and unbalanced networks
[33]. Strictly symmetric and balanced networks are either
inefficient in materials or not space-filling. For example, in
the H-tree all children branch orthogonally from the parent,
resulting in inefficient paths. Other networks with more
efficient paths lead to capillaries that are equidistant from the
source, which could cover the surface of a sphere but not
fill its volume. For the optimal, space-filling networks that we
explore, we impose a constraint that pushes the network toward
hierarchically balanced branching structures but does not
require maximum balance. One can imagine other interesting
metrics for hierarchical balance, but we concentrate on how
a maximum degree of unbalance U0 affects the structure of
the network. This guarantees a minimum level of balance in
the hierarchy but still allows freedom in the search for optimal
networks, as well as nonuniformity in the hierarchical balance.

We construct a seed configuration that builds a network
to ensure maximal hierarchical balance while maintaining
efficient contiguity of subtrees. Configurations that tend to
be hierarchically balanced, such as the BHC configuration
(where the constraint is implicit in the construction algorithm)
or optimized configurations that limit unbalance, do not show
a strong skew toward symmetric branching in lengths. This
hierarchical balance may result from gradual, incremental
growth as an individual organism matures and ages. Nearby
vessels grow to supply resources to new tissue, resulting
in contiguous subtrees and favoring routes that reduce path
lengths and avoid a single, meandering artery that branches
directly to capillaries.

Other computational models approach the growth and
optimization of space-filling networks in different ways.
Although there are many algorithms to generate structure that
do not intentionally optimize network architecture or space-
filling properties, near-optimal configurations may emerge
spontaneously from certain simple rules. Examples of such
pattern formation processes and associated algorithmic rules
include models for both angiogenesis [19,34], as well as
vasculogenesis (in terms of chemotaxic [35,36], mechan-
ical substratum [37], and cellular Potts models [38,39]).
However, these models do not adequately address our focus
on branching-length asymmetries for efficient, hierarchical,
space-filling networks. Specifically, the pattern formation
model for angiogenesis does not incorporate consistent space-
filling service volumes, only space-filling arterial structure.
The arterial structure fills some regions so that they are devoid
of capillaries, while multiple tips converge to the same location
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FIG. 9. Distributions for several thresholds of hierarchical unbalance U0. (a) Distributions of λL optimized solely for total network length
L [F (1,0; U0)]. (b) Distributions for λL optimized for total network length L and mean path length H [F (1,9; U0)]. All plots are averaged over
200 realizations of service volume distributions.

elsewhere. The models for vasculogenesis do not optimize the
development of a hierarchical branching network. However,
dynamic vascular remodeling [32] can form structures both
with and without closed loops while maintaining a uniform
distribution of capillaries, although the optimal structures also
suffer from large arteries branching directly to capillaries.
Recently, an alternative search strategy, simulated annealing,
has been applied directly for the positioning of branch point
locations utilizing the properties of blood flow to fill a space
with tips by Ref. [40]. In order to cover larger ensembles
of networks and devote more computational resources to
exploring different hierarchies, we specify the optimal location
for branch points given a specific hierarchy, which removes the
need to search through the possible locations of points through
simulated annealing. We extend and standardize these models
to understand the asymmetric lengths of adjacent segments in
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FIG. 10. Average fitnesses F for ensembles of 100 optimized
configurations. Configurations are more fit if a greater hierarchical
unbalance U0 is allowed, although the distribution for λL does not
change much beyond U0 ≈ 0.7 (see Fig. 9).

vascular networks and how these relate to space-filling service
volumes.

Because of the many different factors and interactions
that influence the structure of the cardiovascular system, our
basic model can be expanded in several directions. Radius
information can be incorporated into optimized networks by
requiring flow to be uniform in all terminal service volumes.
By including radius information, blood flow as well as more
appropriate structural and energetic costs can lead to revised
optimization principles, which require the calculation of the
weighted Fermat point (see, e.g., Ref. [21]) and has been
explored previously in a limited, local context [24,41,42].
Note that lowering the threshold U0 tends to increase the
minimum number of branching levels between the heart and
capillaries. Less drastic hierarchical unbalance implies that
the ratios of parent-child radii β = rc/rp should be near 1
(symmetric branching). This translates the global, topological
property into a local branching quantity.

Increasing the dimensionality of our networks to 3D does
not change the qualitative results for branching asymmetry in
length (λL) with hierarchical balance (specifically U0). The
exact location of the optimal tradeoff between fitness and bal-
ance does shift, but only slightly. The details in the quantitative
shift of the tradeoff, as well as the role that different forms of
the hierarchical unbalance may play could both be explored
for 3D in the future. Studies of large vessels (near the heart)
show the branching of these vessels to be planar [43], but the
planarity cannot always hold across the entire network if tips
must fill a 3D space. Nevertheless, in the absence of obstacles,
all optimization conditions enforce planarity in 3D for branch
points in their local context. Introducing regions where the
network is prohibited (e.g., through bones, organs, or from
self-avoidance) constrains the Fermat point to the surface of a
sphere or some other shape [44,45].

While the topological change of allowing loops introduces
many complications to the properties of flow and hierar-
chical labels [46], such a modification can be beneficial
in understanding reticulated vascular structures. Loops are
especially important when considering network robustness
(i.e., resilience to damage) within organs and leaves [16,17] or
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FIG. 11. Partial search trajectories in the the space of hierarchies. (a) Ranked fitness landscapes for the partially explored hierarchical space
during optimization for total network length L [F (1,0; 1)]. (b) Corresponding similarity measures. All quantities are calculated with respect to
the most optimal configuration found over all runs. The solid line shows the average fitness over 100 trajectories from the BHC for a system
with 36 service volumes. Individual paths are for a network of 48 service volumes. One path begins with the BHC configuration and the other
begins with a random seed (the best performing of 5 random seeds).

pathological growth in tumors [47,48]. These types of network
properties can be included in future models.

Locally, the position of a branching junction minimizes
the sum of vessel lengths in our model. Globally, we impose a
threshold on the minimum hierarchical balance, which reduces
the differential blood flow into sibling segments. Although
real vascular networks consist almost entirely of bifurcations
(although there is rapid, asymmetric branching from the aorta
to capillaries through coronary arteries), the iterative approach
described in Sec. II C can lead to low numbers of bifurcating
junctions for some candidate networks.

Limiting the degree of unbalance in the hierarchy does
not continue to shift the distribution of λL away from

symmetry (λL ≈ 1) below U0 ≈ 0.7, which suggests that there
is an appropriate tradeoff between the hierarchical unbalance
threshold U0 and configuration fitness f that does not require
perfect symmetry for an efficient network structure. The
increased cost of the network in Fig. 10 is similar for both
curves, implying that the increase mostly comes from total
network length L.

The large number of distinct bifurcating hierarchies neces-
sitates that we carefully choose and execute the algorithms for
searching the space of possible configurations. Consequently,
we construct a favorable starting point and concentrate com-
putational resources on regions that are most likely to contain
optimal configurations. Using the numerical implementations

FIG. 12. Average sampling of the partial search algorithm over an ensemble of 100 realizations of tip positions for networks that are
small enough to explore the space of configurations exhaustively. Note the log ordinates. (a) The average rescaled exhaustive rank improves
exponentially as new configurations are explored during sampling. (b) The probability of sampling a given exhaustive rank during a partial
search of the space of hierarchies shows that few poor configurations are sampled, while the fitter configurations are sampled heavily.
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in Secs. II and IV, we identify optimal networks and study the
length properties of individual segments within the context of
a network with space-filling terminal service volumes.

Our results have many implications for how vascular
networks fill space efficiently. We exhaustively explore fit-
ness landscapes for small networks and carefully guide the
sampling of the space of hierarchies for large networks in
order to determine near-optimal configurations. Our results
show that strict hierarchical balance is not optimal for the
architecture of cardiovascular networks. Furthermore, there
is a tradeoff between hierarchical balance (which is related
to symmetric branching in radius at the local level) and the
distribution for branching in lengths that shows the connection
between the space-filling and efficiency requirements of the
network. By incorporating radius and flow information, as
well as growth patterns that incorporate obstacles and loops,
we can continue to build on present models to better understand
vascular architecture and gain insights for its effects on
resource delivery, metabolic scaling, aging, and repair after
damage.
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APPENDIX A: SIMILARITY MEASURE TO COMPARE
HIERARCHICAL GROUPINGS BETWEEN

CONFIGURATIONS

While collapsing the landscape of measures to a single
dimension informs us about the typical distribution of con-
figurations, it retains no information about the relation of the
hierarchies between different trees. To address this issue, we
define a measure of similarity to compare how two hierarchies
group the same set of tips. This measure is normalized such
that similar hierarchies and groupings of service volumes
have a similarity score near 1, while hierarchies that group
service volumes in very different ways have a similarity score
near 0. To meet these guidelines, we perform a simple count
of the number of identical subtree groupings between two
hierarchies and normalize by the maximum possible number
that could be shared if the trees were identical. In accordance
with these properties, define the similarity S(A,B) between
two configurations A and B as

S(A,B) ≡ σ (A,B)

max {σ (A,A),σ (B,B)} ,

σ (X,Y ) =
∑

subtree m

in network X

∑
subtree n

in network Y

(
Im⊆n + In⊆m

)
,

where Is is the indicator function (1 if statement s is true and 0
otherwise) and subtree refers to the set of tips in that particular
subtree.

Configurations that have a worse fitness measure are less
similar to the optimal configuration, as shown in Fig. 11.

However, note that similarity S(Ti,Topt) is not a monotonic
function when rank i is defined by the configuration’s measure.
For example, consider hierarchy A, which may be very

FIG. 13. (a) The number of unique configurations Nconfig for each fixed number of service volumes is narrowly distributed relative to the
increased number of configurations from introducing an additional service volume. (b) The average probability (over 100 realizations of tip
positions) that a configuration at least as fit as the given rank’s configuration is found (i.e., the probability P � that a rank less than or equal to
the given rank is found) during a sampling through configurations. The search correctly identifies the optimal configuration in most attempts,
and finds very near-optimal configurations otherwise. Note the log abscissa.
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FIG. 14. Distributions for the ratio of child-to-parent length γ . (a) Distributions of γ in mouse lung and human head and torso.
(b) Distributions of γ for several thresholds of hierarchical unbalance U0, optimized solely for total network length L [F (1,0; 1)].

similar to a hierarchy B, which itself is very similar to C.
Then it is possible that A and C are less similar to each
other than each is to B, yet both are ranked higher than B
with respect to a particular measure. This also means that
optimal configurations are not always a single swap or regraft
away from all near-optimal configurations, i.e., local minima
are possible. The average similarity in Fig. 11(b) does not
approach 1, indicating that the subtree grouping of service
volumes can be very different between networks that are nearly
optimal (F ≈ Fopt). Some of the stratification into distinct
levels of similarity is apparent in Fig. 11(a) for the single
trajectories (the “single BHC seed” and “best random seed”).

APPENDIX B: EFFICIENCY OF SAMPLING
IN EXHAUSTIVE LANDSCAPES

To show the proficiency of our sampling algorithm de-
scribed in Sec. V B, we present results for the perfor-
mance of the partial search algorithm on small networks,
for which it is feasible to exhaustively search the space
of configurations and specify the overall rank within the
complete space. In Fig. 12(a), we show the relation di-
rectly between the ranks sampled in the partial search and
the ranks in an exhaustive search over 100 realizations of
tips. The exponential convergence to the optimal configu-
ration during a partial sampling is confirmed in Fig. 12(b),
which shows that the fittest configurations are sampled most
heavily.

Note that in these figures the different endpoints for each
curve, corresponding to different numbers of tips, are due
to the different numbers of unique bifurcating hierarchies
and their pairing with terminal volumes. For example, the
best normalized rank for Ntips = 4 is 1/(2 · 4 − 3)!! = 1/15,
while the best normalized rank for Ntips = 7 is 1/10,395.
To emphasize this increase in possible configurations that
is a result of the inclusion of additional tips, we show the

distributions for the number of unique configurations after
consolidation in Fig. 13(a). The variance in the number of
unique configurations increases with network size, but this
variance is primarily due to the addition of service volumes.
In other words, degenerate branch points that lead to the
same tree configuration do indeed reduce the number of
unique configurations, but not by a significant fraction when
compared to the additional configurations that are introduced
because of an extra tip. The remaining difference is due to the
arbitrary ranking of degenerate configurations, which makes a
significant contribution for a small number of tips but decreases
in severity as more tips (and more levels between the heart and
tips) are added.

Ultimately, the reliability of the algorithm rests on the
ability to determine very near-optimal configurations. In
Fig. 13(b), we show the probability that the partial search finds
a configuration as least as fit as a certain exhaustive ranking.
Although there is no guarantee to find the fittest configuration
in all cases, we do find the best configuration during the
majority of searches. Furthermore, even the worst-performing
partial searches appear in a narrowing margin as more tips
are considered. Due to these trends that show improved
sampling with more tips, we conclude that the partial search
algorithm adequately determines optimal or very-near optimal
configurations for our analysis.

APPENDIX C: PARENT-CHILD LENGTH RATIO γ

In Fig. 14(a) we show the network-wide distribution for
the ratio of child-to-parent lengths γ = �c/�p for child c with
parent p. Although there is the tendency that γ < 1, some child
segments have a relatively shorter parent. Although slight,
an increased threshold for U0 shifts more child segments
to be shorter than their associated parent [see Fig. 14(b)].
Independent of the threshold, the nonzero variance of this
distribution shows that γ is not constant throughout the
network.
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