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Transition state theory for solvated reactions beyond recrossing-free dividing surfaces
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The accuracy of rate constants calculated using transition state theory depends crucially on the correct
identification of a recrossing-free dividing surface. We show here that it is possible to define such optimal
dividing surface in systems with non-Markovian friction. However, a more direct approach to rate calculation is
based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain
an explicit expression for the rate of crossing an anharmonic potential barrier. The excellent performance of our
method is illustrated with an application to a realistic model for LiNC � LiCN isomerization.
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I. INTRODUCTION

Molecular dynamics (MD) is an excellent, although com-
putationally very demanding, tool to accurately predict rates
for chemical reactions and other activated barrier crossing
processes. Alternative, and simpler, approaches can account
for the reaction mechanism and rates, often relying on
dimensional reduction. Transition State Theory (TST) [1–3]
is among the most popular, because it provides a very simple
answer to the two most relevant issues in rate theory: to predict
whether a trajectory is reactive or not, and to provide a simple
expression to accurately compute the corresponding rates. For
this reason, TST has been used in fields far from the original
chemical reaction dynamics where it was born, such as celestial
mechanics [4], atomic ionization [5], surface science [6], or
condensed matter [7].

The fundamental problem that TST has faced since its
inception is the correct identification of an optimal dividing
surface (DS) separating reactants from products that is crossed
once and only once by all reactive trajectories. Although this
DS must obviously sit somewhere close to the top of the
energetic barrier between reactants and products, its exact
geometry is critical, because trajectories recrossing it give
rise to an overestimation of the true rate constant. A popular
alternative is the variational TST (VTST) that identifies the DS
location by minimizing the number of recrossings (see [8] for
a review). Fortunately, it has been recently shown that using
sophisticated geometrical techniques [9–11] the problem can
be solved exactly for gas phase reactions. For a reaction that
is driven by a noisy environment with ohmic friction it can
be solved if the DS itself is made time dependent [12–18].
Anharmonicities of the energy barrier can be taken into account
perturbatively [19–22].

In this paper, we make TST exact also in the more realistic,
and more complicated, case of non-Markovian friction. In-
deed, we show how to define a rigorously recrossing-free DS in
phase space. This DS is time-dependent and moves randomly,
“jiggling” in the vicinity of the barrier. By allowing a time-

dependent DS, we overcome the limits of fixed configuration
space surfaces, which often cannot be made recrossing-free,
as Mullen et al. [23] have recently shown in several examples.

Even though the time-dependent DS satisfies the no-
recrossing requirement of traditional TST, a major advance
can still be achieved by shifting the focus away from the
DS, which has to be arbitrarily selected by hand, and onto
invariant dynamical structures that the system presents to
us. Specifically, we obtain a hypersurface in phase space
that unambiguously separates reactive from nonreactive tra-
jectories. In this way, reactive trajectories can be identified
simply from their initial conditions, without any laborious
numerical simulation. This separatrix, which will be shown
to be a stable manifold (SM), provides both a more solid
foundation and a more convenient practical tool for rate theory
than the conventional DS. We compute the SM perturbatively
and thus obtain an analytical expression for the transmission
factor and the rate constants for the crossing of anharmonic
potential barriers under non-Markovian noise. We demonstrate
the efficiency of our theory by recovering the correct reaction
rates for a realistic model of the LiCN � LiNC isomerization
in an argon bath.

Our current results shed new light on the surprising agree-
ment between PGH theory [24] and our earlier results [25]
on the LiCN reaction at temperatures far above the activated
regime for which PGH theory was initially developed. These
results led Pollak and Ankerhold [26] to revisit the assumptions
of PGH theory. They found that the bath temperature does
not severely affect the energy loss terms and hence does
not modify the form of the rates. In this paper we obtain
reaction rates in agreement with numerical simulations from
a different theoretical starting point, and thus provide further
confirmation that a rate description of the process is indeed
appropriate. Likewise, our results improve those reported by
Pollak et al. [27,28], where similar corrections to PGH were
obtained by applying a VTST to a Hamiltonian system whose
dynamics mimics that of the popular generalized Langevin
equation (GLE) [29], providing at the same time a simpler and
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FIG. 1. Geometric objects in phase space for Eq. (3) with an
anharmonic barrier. The TS trajectory is indicated by a yellow dot. Its
stable manifold (SM, light blue surface and trajectories therein) and
its unstable manifold (black curve) move and get deformed randomly.
The purple curve marks the intersection of the SM with the surface
of initial conditions (plane x = 0). It partitions the surface of initial
conditions into reactive (green) and nonreactive (red) regions and
defines the critical velocity V ‡(ζ ). Representative reactive (green) and
nonreactive (red) trajectories intersect the surface of initial conditions
as indicated by black dots.

clearer picture of the reaction mechanism from a geometrical
point of view (cf. Fig. 1).

II. METHOD

For the sake of a simple presentation we restrict ourselves
to systems with one degree of freedom (dof), although the
generalization to higher dimensions is straightforward. It will
be reported elsewhere [30].

The reduced dynamics of a 1-dof system coupled to an
external heat bath with memory effects can be adequately
described by the GLE [29]

mẍ = −dU (x)

dx
− m

∫ t

−∞
γ (t − s) ẋ(s) ds + mRα(t), (1)

where m is the mass of the particle, x its position, U the
potential of mean force, γ (t) the friction kernel, and Rα(t)
the fluctuating colored noise force per unit mass exerted by
the heat bath. It is related to γ (t) by the fluctuation-dissipation
theorem, 〈Rα(0)Rα(t)〉α = kBT γ (t)/m, where 〈· · · 〉α denotes
the average over the different realizations α of the noise.

If the friction kernel takes the exponential form

γ (t) = γ0

τ
exp(−t/τ ) (2)

with a characteristic correlation time τ and a damping
strength γ0, the GLE (1) can be replaced by a system of
differential equations on a finite dimensional extended phase

space [31–34]

ẋ = v, v̇ = ω2
bx + f (x) + ζ, ζ̇ = −γ0

τ
v − 1

τ
ζ + ξα(t), (3)

where the mean force −dU (x)/dx = mω2
bx + mf (x) is split

into a linear term and non-linear corrections f (x) = −εc3x
2 −

ε2c4x
3 − · · · . The perturbation parameter ε measures the

anharmonicity of the barrier potential and will be set equal
to 1 at the end of the calculation. The auxiliary coordinate
ζ is given by ζ = − ∫ t

−∞ γ (t − s) ẋ(s) ds, and ξα is a white
noise source satisfying the fluctuation-dissipation theorem
〈ξα(t) ξα(s)〉α = [2kBT γ0/(mτ 2)]δ(t − s).

If f (x) = 0, the equations of motion (3) are linear and
can be solved by diagonalizing the coefficient matrix. We
find one positive eigenvalue λ0 and two eigenvalues λ1,2 that
are negative or have negative real parts. The corresponding
diagonal coordinates are denoted by zi .

Equations (3) have a unique solution, called the TS
trajectory [12,13,20–22] that remains “jiggling” in the vicinity
of the saddle point for all times. It depends on the realization
α of the noise. We denote its diagonal coordinates by z

‡
i (t) and

its position by x‡(t). For the harmonic barrier, i.e., f (x) = 0,
the coordinates z

‡
i (t) can be obtained explicitly as an integral

over the noise ξα [13,21,22]. The TS trajectory gives rise to a
time-dependent DS x = x‡(t) that is recrossing-free in the
harmonic approximation [12,13] as well as in anharmonic
systems [16–18]. However, we will not consider this DS
any further and focus instead on the invariant structures that
determine the reaction dynamics.

In relative coordinates �zi = zi − z
‡
i , Eq. (3) reads

�żi = λi �zi + Ki f (x). (4)

Here Ki = −(λj + λk)/[(λi − λj )(λi − λk)], where i,j,k take
the values 0,1,2 and must be different. In the harmonic limit
Eq. (4) has the simple solution �zi(t) = �zi(0) exp(λit).
Thus, as λ0 > 0, �z0(t) is associated with an exponentially
growing unstable direction in phase space, whereas �z1(t)
and �z2(t) are both associated with stable directions. The
plane �z0 = 0 forms the SM of the TS trajectory. Trajectories
within it asymptotically approach the TS trajectory as t →
∞; they are trapped near the barrier top. Because the SM
contains trajectories that are neither reactive nor nonreactive,
it separates reactive from nonreactive trajectories.

When anharmonic terms are present, the SM is deformed
in a time-dependent manner, but it stills remains the separatrix
between reactive and nonreactive trajectories: All trajectories
starting above the SM approximate the unstable manifold for
large positive values of �z0 and finish in the product well
defined by x > 0, while trajectories that lie below the SM
will follow the negative part of the unstable manifold into the
reactant well x < 0, as sketched in Fig. 1.

III. REACTION RATES

The reaction rate can be computed by sampling trajectories
from a Boltzmann ensemble at the barrier top and calculating
the reactive flux across the surface of initial conditions x = 0.
Under the TST assumption that this surface is recrossing free,
i.e., a trajectory is reactive if it starts with an initial velocity
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v > 0, this procedure yields a reaction rate kTST that overesti-
mates the true rate kexact. The violation of the TST assumption
can be quantified by the transmission factor κ = kexact/kTST �
1. The exact rate is obtained if the flux calculation includes only
trajectories that are actually reactive. These are the trajectories
that lie above the SM, or, as Fig. 1 shows, whose initial velocity
is larger than a critical velocity V ‡(ζ ) that depends on the
realization of the noise and on the initial value of the auxiliary
coordinate ζ . This critical velocity encodes all the relevant
information about the reaction dynamics. Because it leads to
an exact characterization of reactive trajectories, the critical

velocity and the SM that determines it are more fundamental
to the theory than the DS that has customarily been used. We
compute the critical velocity by a perturbative expansion V ‡ =
V ‡(0) + εV ‡(1) + ε2V ‡(2) + · · · . This computation follows the
method developed in Refs. [21,22] for the case of Markovian
friction. Full details will be presented elsewhere [30].

Equipped with the critical velocity one can com-
pute [15,21,22] the transmission factor κ = 〈e−V ‡ 2/2kBT 〉α,ζ ,
which is averaged both over the noise α and the initial value
of ζ . Now, by expanding κ as κ = κ0 + εκ1 + ε2κ2 + · · · , we
finally obtain its lowest order

κ0 = λ0

ωb
, κ1 = 0,

(5)

κ2 = −3κ0kBT

4mω4
b

(
f

0,0
0,1,−1

f
0,0
1,η−1,η

)2{
2c2

3

[
f

2,4
110,329,−12 + 5f

10,0
4,−17,4 + 2

(
f

0,5
10,41,10 + f

4,3
115,197,−28 + f

6,2
115,22,8 + f

8,1
55,−94,6

)]
9ω2

b f
0,0
0,1,η f

0,0
1,2(η−2),4ηf

0,0
4,2η−1,η

+ c4f
0,0
0,1,η

}
,

with η = λ0(1 + λ0τ )/(ω2
b τ ), and f

a,b
c,d,e = κa

0 ηb(c κ4
0 +

d κ2
0 + e). The leading order κ0 recovers the well known

Grote–Hynes theory (GHT) [35]. Because all odd order terms
are zero, the perturbation expansion proceeds in powers of
kBT .

IV. MODEL

To illustrate the performance of our method we apply
it to a simple, yet realistic, model for the LiNC � LiCN
isomerization. It has a number of properties that make it
very attractive for dynamical studies. Most importantly, the
bending mode in this system is very floppy, so that chaos sets
in at moderate values of the excitation energy. This reaction
has been extensively studied by some of us in the past and
very recently in connection to THz reactivity control [36].
Most relevant in the present context, it furnished the first
observation [25,37] of the turnover predicted by Kramers in
his 1940 seminal paper [24,26,38].

To describe the configuration of the LiCN molecule, we use
the distance r between the C and N atoms, the distance R of
the Li atom from the center of mass of the CN fragment, and
the angle ϑ between the Li atom and the CN axis (see Fig. 2).
Because the CN triple bond is very rigid, the distance r will
not deviate much from its equilibrium value re = 2.186 a.u.
A potential energy function describing the motion of the
Li atom relative to a rigid CN was introduced by Essers
et al. [39]. An improved model can be obtained by combining
this potential with a Morse potential for the CN vibration [40].
The potential energy of the molecule with r = re is shown
in the inset to Fig. 2. It has two wells at ϑ = 0 and ϑ = π

rad that correspond to the two linear isomers Li–CN and
Li–NC.

Extensive MD simulations of this molecule in a bath of 512
argon atoms were reported in Refs. [25,37]. It was found there
that the isomerization rates for the transitions from the Li–NC
to Li–CN configuration and back can be well described by a
one-dimensional model in which the molecule is assumed to
move along the minimum energy path (MEP). The MEP and

the corresponding potential energy profile are shown in Fig. 2.
This effective potential yields the parameters in Table I that
will be used in perturbation theory (PT).

In our study, the dynamics is modeled by the GLE (1),
in which the angle ϑ plays the role of the position x and the
potential U is the MEP potential UMEP of Fig. 2. The mass m is
replaced by the moment of inertia Iϑ that describes the rotation
of the Li atom relative to the CN fragment. Though the value
of Iϑ varies along the MEP, in the spirit of TST it is fixed to
its value at the saddle point of the potential, Iϑ = 42 852 a.u.
The friction kernel is well approximated by the exponential
form (2) with the decay time τ = 0.84γ0/ω

2
b [40].

FIG. 2. Effective potential for the one-dimensional model of
LiCN isomerization. It corresponds to the minimum energy path
connecting the two potential wells of the LiNC/LiCN molecular
system. The configurations at the barrier top (crossed circle), and
of the two stable isomers associated with the well minima (open
circles) are also shown. Inset: Contour plot of the 2-dof potential.
The minimum energy path is plotted superimposed in dashed red
line.
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TABLE I. Parameters of the effective potential shown in Fig. 2
for the two well minima (isomers) and the saddle point.

Parameter Li–CN Saddle point Li–NC

ϑ (rad) 0 0.917 π

UMEP (10−2 a.u.) 1.04 1.58 0
ω (10−4 a.u.) 7.92 9.65 5.90
c3 (10−7 a.u.) – −8.0 –
c4 (10−7 a.u.) – 7.4 –

V. RESULTS

In Fig. 3, our predictions from PT for both the (a)
forward LiNC → LiCN, and (b) backward LiCN → LiNC
reactions as a function of the adimensional friction γ0/ωb are
compared with the results of all-atom MD simulations. Results
are presented for temperatures T = 2500 K (blue), 3500 K
(green), and 5500 K (red). Perturbative results in orders 0 and
2 are indicated by dashed and full lines, respectively. Because
our rate theory, like GHT, is only valid in the spatial diffusion
limit, where the friction has moderate to strong values, results
for γ0/ωb < 2 are not included in Fig. 3. From the comparison,
the following comments can be made.

The rates always increase with temperature, as should be
expected for an activated process. The rates of the forward
reaction are smaller than those of the backward reaction since
the corresponding energy barrier is larger. The perturbative
correction is negative. Its magnitude increases with temper-
ature, as expected from Eq. (5). For the backward reaction,
where the second-order correction is large, it provides a clear
improvement of GHT for all values of the parameters. For
the forward reaction, the second-order correction is barely
noticeable at low temperatures. At the highest temperature
T = 5500 K, where the perturbative correction is significant,
the MD results are closer to GHT than to the PT results if
damping is weak. For high damping, the second-order PT
again provides a marked improvement over GHT.

In all cases, there is excellent agreement between the MD
and PT rates. In fact, the agreement is striking, considering
that the MD results were obtained from a simulation with an
explicit argon bath that is much more complex than the simple
one-dimensional model that yields the PT results.

VI. CONCLUDING REMARKS

In summary, it is possible in principle to define a time-
dependent recrossing-free DS in phase space for the dynamics
of a particle in an anharmonic barrier that interacts with the
environment via non-Markovian friction, i.e., via colored noise
force. However, we have demonstrated that it is advantageous
to base a rate calculation on invariant geometric structures,

FIG. 3. Reaction rates for the (a) forward and (b) backward
LiNC � LiCN isomerization as a function of the bath friction.
Perturbation theory results of order zero (dashed) and order two
(solid) are shown for temperatures T = 2500 K (blue), 3500 K
(green), and 5500 K (red). For comparison, results of all-atom MD
simulations are shown by symbols with 1σ error bars.

namely the SM of the TS trajectory, instead of a DS, as cus-
tomary in TST. The SM allows the unambiguous identification
of reactive trajectories simply by inspection of their initial
conditions, without having to resort to any time-consuming
numerical simulation. It provides a formally exact rate formula
that we have evaluated through perturbation theory. In this way
we have obtained an explicit expression for the transmission
factor that corrects GHT by including anharmonic effects. It
agrees well with the results of an all-atom model of LiCN
isomerization in an argon bath. Finally, the method outlined
here can be straightforwardly generalized to systems of higher
dimensionality, as will be reported elsewhere [30].
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