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Reaction-diffusion-like formalism for plastic neural networks
reveals dissipative solitons at criticality
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Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to
play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like
formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive
learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the
change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary
to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that
close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons
is determined analytically and the evolution and interaction of several such coexistent objects is investigated.
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I. INTRODUCTION

Activity in neuronal networks influences their coupling
structure due to spike time-dependent synaptic plasticity
(STDP) [1], which, in turn, influences the activity. Several
works analytically investigated structures appearing in net-
works of neurons with plastic synapses under the influence
of external signals. These studies required special network
architectures, investigating, e.g., a kind of possible “ele-
mentary cell” of the network [2]. Other works considered
all-to-all connected networks [3] or averages over realizations
of the activity in space [4] or systems without continuous
spatial dimension [5]. Hebbian [6] and similar learning rules,
which can be considered as a simple STDP-like rule, are
used in many neural network models, like Hopfield and
Boltzmann networks [7]. These works employ the energy
minimization principle known in physics and set the values of
synaptic weights according to the patterns to be stored, without
considering the time evolution of the weights explicitly. These
systems are able to store one level associations between
patterns and recognize and restore externally applied and pre-
viously learned patterns. The memory capacity as well as the
time required to recognize an input have been investigated [7].
Activity propagation in non-plastic feed-forward systems was
considered in [8]. A set of integro-differential equations,
describing a spatially extended network, was introduced in [9]
as the neural field model. A scheme of solution for a simplified
version neglecting refractoriness [10] was later extended for
neurons with adaptation [11] and different nonlinearities [12].
The spatial and structural organization of the cortex [13,14]
separates different neural inputs either in real space or in an
effective space that represents a continuum of features. For
example, the orientation selectivity of neurons in the visual
cortex is represented in some species by neurons topologically
arranged on a one-dimensional ring [15]. One suggested
mechanism [16,17] to implement short-term memory is by
localized bump solutions, which are also considered in [12].
The latter work shows the relation between the formalism
of reaction-diffusion-like systems and spatially extended non-
plastic neural networks.

Our work demonstrates such a relation for neural networks
with long-term plasticity. The formalism thus fills the gap
between a series of studies of plastic networks without spatial
dimension and the formalism describing activity in spatially
extended networks. The presented analysis therefore opens
the possibility to study the transfer of short-term memory,
encoded by bump solutions, into long-term memory, stored
by synaptic modifications. Here we analytically consider a
feed-forward network with space-dependent connectivity and
linear-nonlinear model neurons with a simple STDP-inspired
synaptic learning rule, similar to the BCM rule [18]. We
reduce the discrete problem by the diffusion approximation
to obtain an equation similar, but not equivalent, to a
reaction-diffusion equation with one component, also called
the Kolmogorov-Petrovsky-Piskounov equation [19,20]. We
derive the requirements on the nonlinearity necessary for a
regime of stable signal propagation, exposing that fine-tuning
of parameters is necessary, explaining earlier results [21]. The
bump solutions that are stable in the critical and metastable in
the subcritical regime are described analytically. The interneu-
ral connections inside a bump are strengthened, resembling
cell assemblies [22] and showing how externally presented
objects (external input) change intrinsic system properties
(connectivity).

We further investigate how several such coexisting bump
solutions mutually influence each other. In particular, we
study how their interaction depends on the spatial extent
of the bumps, the distance between them, and the system
parameters. In the regime close to stable propagation from
one layer to the next we find that several coexisting activity
bumps can either unite or remain disjointed, depending on the
initial conditions. Their unification can be interpreted as an
emergence of connections between cell-assemblies. In this way
the system is able to represent a set of associations between
internal representations of corresponding external stimuli. The
improved formalism can be generalized to neural networks
with several neuron types.

In the presented analysis we focus on the stationary state
into which the network settles after a long waiting time. In
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this regard, time is not explicitly represented. Still, one can
relate the change of the activity distribution from one layer
to the next to the evolution of activity in time in a single
recurrently connected layer, where the layers play the role of
time slices. As shown in the discussion, such a mapping is
strictly valid for non-plastic networks. Moreover, for the most
interesting case of metastable solutions, the presented results
for plastic feed-forward networks can serve as approximations
to the solutions expected in recurrent plastic networks evolving
in time.

II. RESULTS

A. Model definition

Here we consider feed-forward networks consisting of M

layers of N neurons each. A neuron at position x̃ in layer n + 1
gets as input ux̃ the weighted sum of outputs r of an odd number
K of neurons from the neighborhood in the previous layer n,
ux̃ = ∑x=x̃+(K−1)/2

x=x̃−(K−1)/2 wx̃xrx , where the indices x̃ and x describe
the positions of the postsynaptic neuron in the layer n + 1, and
of the presynaptic neuron in the layer n, respectively. Here wx̃x

is the synaptic weight from neuron x to neuron x̃. The neuron’s
output r = f (u) is given by its input u mapped by the nonlinear
function f . The function f reflects the nonlinear nature of
neurons. Some neuron models explicitly contain a nonlinear
component that continuously maps their input to their output,
in other models the nonlinearity results from a threshold on the
membrane voltage which needs to be reached to let the neuron
emit spike. The nonlinearity also captures the saturation of the
outgoing activity due to the limitation of the cell’s resources,
often modeled by the saturating part of the ubiquitously
found sigmoidal-shaped nonlinearities. For simulations we
used f (x) = A/(1 + e−β(x−θ)) − A/(1 + eβθ ). The network
architecture is illustrated in Fig. 1. The absence of feedback
allows the solution of the system, finding successively the
activities and synaptic weights for each pair of layers using
the solution for the activity distribution of the previous layer
as an input.

We assume a Hebbian plasticity rule

ẇx̃x = −α(wx̃x − w0) + γ rxrx̃ (1)

for the presynaptic neuron x and the postsynaptic neuron x̃. If
a stationary solution exists it can be found requiring ẇx̃x = 0

FIG. 1. Two adjacent layers in the considered feed-forward
architecture. Synapses between layers obey the plasticity rule (1).

as

wx̃x = w0 + γ

α
rxrx̃ = w0 + γ

α
f (ux)f (ux̃). (2)

In the following we use ξx = ux̃ as the summed input to
the postsynaptic neuron to better distinguish it from the
presynaptic neuron’s u.

In equilibrium, after the learning processes stopped, ξ is
found as a solution of the self-consistency equation

ξx = f̌
(
rξ
x

) =
(K−1)/2∑

�x=−(K−1)/2

wx x+�x rx+�x

(2)= w0

(K−1)/2∑
�x=−(K−1)/2

rx+�x + γ

α
rξ
x

(K−1)/2∑
�x=−(K−1)/2

r2
x+�x (3)

with rξ = f (ξ ) and the symbolˇdenoting the inverse function.
In the approximation neglecting further derivatives (that

is exact for K = 3) one can replace the sums over the
neighborhood appearing in Eq. (3) with (K + a∂2

x ), where
a = ∑(K−1)/2

n=0 n2 = (K − 1)K(K + 1)/24 and ∂x denotes the
discrete lattice derivative. Subsequently, we make the transi-
tion from a discrete index x to a continuous variable, also
denoted as x, where ∂x becomes the ordinary derivative. So,
the activity in the system arises from the interplay between
the diffusion described by the ∂2

x -operator and two types
of nonlinearities: The explicit nonlinearity is given by the
activation function f of the neuron, the implicit nonlinearity
results from the term r2

x in Eq. (3), originating in the (Hebbian)
plasticity rule. In this approximation, Eq. (3) can be rewritten
as

ξ = f̌ (rξ ) = w0
(
K + a∂2

x

)
r + γ

α
rξ

(
K + a∂2

x

)
r2. (4)

B. Analysis of global stability and self-reproducing solutions

One can search for possible stable solutions ξx = ux ,
satisfying

f̌ (r) = w0
(
K + a∂2

x

)
r + γ

α
r
(
K + a∂2

x

)
r2, (5)

where rx = f (ux). There are no terms explicitly depending on
the variable x, so one can reduce the order of the equation by
introducing y(r) = [∂xr](r), the derivative of r depending on
r . We can hence express the second derivatives in Eq. (5) as

∂2
x r = ∂xy = ∂ry ∂xr = y ∂ry,

∂2
x (r2) = 2(∂xr)2 + 2r ∂2

x r = 2y2 + 2ry ∂ry = 2z + r ∂rz,

(6)

where we used the substitution z(r) = y2 = (∂xr)2 in the last
step. Equation (5) then takes the form of a linear differential
equation in z:

f̌ (r) = w0(K r + a y ∂ry) + γ

α
(r3K + ar (2z + r ∂rz))

= w0K r + γ

α
r3K + 2

γ

α
ar z +

(
1

2
w0a + γ

α
ar2

)
∂rz,

(7)
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replacing y ∂ry in the first line with 1
2∂rz in the second line.

The solution of the corresponding homogeneous equation
2 γ

α
arz + ( 1

2w0a + γ

α
ar2) ∂rz = 0 is H (r) = c 2

a(w0+2 γ

α
r2) (with

an arbitrary constant c), and as solution of Eq. (7) one gets

z(r) = 2

a
(
w0 + 2 γ

α
r2

) ∫ r (
f̌ (r ′) − K

(
w0 + γ

α
r ′2)r ′)︸ ︷︷ ︸

≡q(r ′)

dr ′,

(8)

where we used that the factor in front of ∂rz cancels with H−1.
We are seeking solutions that start at r = 0. As z is the

square of a real number and hence cannot be negative, a solu-
tion that exists for all r has to satisfy Q(r) = ∫ r

0 q(r ′) dr ′ � 0.
We call rmax the largest value of r reached, for which ∂xr = 0
and therefore z(rmax) = 0, from which follows

Q(rmax) = 0. (9)

For this case Q(r), q(r) and the stable solution r(x) are shown
in Fig. 2. The physical meaning of q(r) is the competition
between the nonlinearity f and the effective nonlinearity
K(w0 + γ

α
r2)r that describe the propagation of r neglecting

diffusion: K(w0 + γ

α
r2)r is the value of a postsynaptic

neuron’s membrane potential ξ for the case that presynaptic
and postsynaptic neurons have u = f̌ (r). So, a positive q(r)
indicates a decrease of u and r from one layer to the next,
negative q(r) corresponds to both measures increasing. So,
in a stable system we must have Q(r) � 0 for all r � 0. By
definition, Q(r = 0) = 0. If there are no other r at which
Q(r) = 0, no self-consistent solution exists that propagates
from layer to layer without change. If one tries to construct
the stable solution according to Eq. (8) for this case, one will
always have positive ∂xr for every r > 0, which means that for
every r > 0 “external support” (additional input) is needed to

r

(a)

r

q

(b)

r

Q

(c)

x

r

(d)

FIG. 2. Stable solution in the critical regime. (a) Explicit f̌ (r)
(black) and implicit K(w0 + γ

α
r2)r nonlinearity (gray). (b) Their

difference, q(r). (c) Q(r) = ∫
q(r)dr , a minimum of Q of 0 enables

a stable non-trivial solution r(x) shown in (d)—theoretical prediction
of the stable solution with dashed line and simulation results with
solid line. Simulation parameters: N = 800, M = 400, K = 41,
w0 = 0.99/K , γ = 0.99/K , θ = 0.6, β = 3.6, A = 1.0754.

compensate the diffusion effects. Without such support, every
finite signal will decay after some layers. If, in contrast, a
position r > 0 exists at which Q(r) = 0, a solution exists that
has this r as the maximum. If q(r) = ∂rQ(r) at that point
is negative, an arbitrary small positive perturbation added to
this maximum r will grow. So, Q(r) < 0 for some r means
the absence of a stable solution and explosion of activity for
sufficiently strong activation patterns.

The solution is given in the form z(r) = (∂xr)2, where the
choice of a positive or negative sign in taking the square root
corresponds to a solution that is first increasing or decreasing,
respectively, when moving from left to right. The length of
a “plateau” with ∂xr = 0 and Q(rmax) = 0 is an arbitrary
parameter of the solution which can be chosen freely.

The form of the remainder of the bump—the left and right
wings r = p(x)—is independent of the plateau’s width and
can be obtained analytically from Eq. (8) or by numerical
integration as the inverse function of

p̌(r) =
∫ r

±1/
√

z dr =
∫ r

±1

/√
2

a
(
w0 + 2 γ

α
r2

)Q(r) dr,

(10)

integrating from an arbitrary value of r between 0 and rmax and
taking plus to indicate the left and minus to indicate the right
wing.

C. Long-living solutions in the sub-critical regime

If no rmax > 0 with Q(rmax) = 0 exists, but Q(r̃max) has
a local minimum close to zero, one gets similar structures
as the “immortal” solutions for Eq. (9). The bump solutions
propagate over large but finite numbers of layers before they
disappear. This number is approximately proportional to the
initial width S of the plateau: for S larger than K , the successive
reduction of this width does not affect the processes on the
borders, and the rate of reduction s of the plateau’s width from
layer to layer, is approximately constant, depending only on
network parameters as shown in Fig. 3. The value of s can
be calculated as the propagation speed that makes the solution
stable. Obtaining the rate profile for the previous layer as a
slightly shifted version r(x) − s∂xr(x) of the profile r(x) in
the current layer, one obtains from Eq. (4)

f̌ (r) = w0
(
K + a∂2

x

)
(r − s∂xr) + γ

α
r
(
K + a∂2

x

)(
r − s∂xr

)2

r

Q

(a)

x

r

(b)

layer

∫
rd

x

(c)

FIG. 3. Single bump evolution in subcritical regime. (a) Q(r)
near its minimum close to but bigger than 0. (b) Rate profiles r(x)
in different layers showing the reduction of the plateau’s width
for a long-living rate profile leading to linear decrease with the
layer’s number of

∫
r(x) dx. (c) The theoretical expectation (12)

and the simulated result for
∫

r(x) dx. Parameters as for Fig. 2 apart
from A = 1.0745.
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or, after sorting, neglecting terms O(s2), using the definition
of q(r) in Eq. (8) and multiplying with ∂xr

q(r)∂xr − sw0K(∂xr)2 − sw0a∂3
x r ∂xr + aw0∂

2
x r ∂xr

= −2s
γ

α
Kr2(∂xr)2 + γ

α
ar∂xr∂

2
x (r2) − 2s

γ

α
ar∂2

x (r∂xr)∂xr

which, after integrating over x from minus infinity to the
beginning of the plateau, leads to

Q(r̃max) = −s

∫ r̃max

0
w0K∂xr + aw0∂

3
x r + γ

α

(
2Kr2∂xr

+ 2ar∂2
x (r∂xr) + ar∂2

x (r2)
) + aw0∂

2
x r dr. (11)

The last two terms in the latter expression vanish,
because

∫ r̃max

0 ∂2
x r dr = ∫ r̃max

0 y∂ry dr = 1
2 (∂xr)2|r=r̃max

r=0 = 0.

Further we have
∫ r̃max

0 r∂2
x (r2) dr = 1

2

∫ r̃2
max

0 ∂2
x (r2) dr2 =

1
2

∫ r̃2
max

0 y2∂r2y2 dr2 = 1
4 (∂x(r2))2|r=r̃max

r=0 =0 with y2 = [∂x(r2)]
(r2) analog to y(r) = [∂xr](r), because r̃max is the plateau
height and derivatives of r-dependent functions are 0. One
can therefore obtain s with

s = −Q(r̃max)

/( ∫ r̃max

0

(
w0K∂xr + 2

γ

α
Kr2∂xr

+ 2
γ

α
ar∂2

x (r∂xr) + aw0∂
3
x r

)
dr

)
. (12)

We can replace ∂xr with the dependence ∂xr = √
z(r) given by

Eq. (8) obtained for Q(r̃max) = 0. This approximation is mean-
ingful for integrative quantities that are not influenced strongly
by the local variation of Q near r̃max. The chain rule allows the
replacement of ∂x with ∂xr∂r , in this way one can express s in
terms of the integral of the function containing z(r) over r .

To understand how the system represents two or more
coexistent signals, we investigate the situation with two
coexistent metastable solutions. Two such bumps can unite
into one if the minimal amplitude of r between their borders
becomes big enough for self-generated growth before one of
the plateaus disappears.

Without loss of generality we take x = 0 for the midpoint
between the bumps. If the distance between the two closer
ends of the bumps’ plateaus is larger than some critical value,
the minimal r = rmin at the position x = 0 decays. One can
roughly estimate the change δrmin of rmin from one layer to the
next, approximating r(x) near x = 0 with the direct sum of
the two bumps’ wings, i.e., r = p(x + p̌(rmin/2)) + p(−x +
p̌(rmin/2)) with p(x) denoting a wing of a bump with p(0) =
r̃max at the plateau’s edge. The factor 1/2 appears because
the direct sum of two identical bump solutions approximately
produce the value rmin. In this approximation

δrmin(rmin) = rnew
min (rmin) − rmin,

rnew
min = f

([
w0

(
K + a∂2

x

)
r + r

(
K + a∂2

x

)
r2

]∣∣
x=0

)
(13)

The rate of change at the minimum δrmin(rmin) is shown in
Fig. 4. The critical distance is given by p̌(rcrit

min/2), δrmin

(rcrit
min) = 0. For larger distances no direct unification of two

bumps is possible independent of their plateaus’ widths.

r

0

∂
n
r

(a)

x

r

(b)

x

r

(c)

x

r

(d)

FIG. 4. Coexisting bumps in sucritical regime. (a) Theoretical
prediction of the change of minimal activity rmin between bumps
after one layer. (b) Propagation of two bumps uniting to one.
(c) Two bumps remain disjointed, because their initial distance
exceeds the maximal distance for unification. (d) Rate profiles in three
layers. The activity of the bumps is shifted upwards in proportion to
the layer number for clearer visual display. The evolution over layers
illustrates the construction of an “association tree”: first the left and
the middle bumps are joint, and later the right one. Parameters as for
Fig. 3 apart from γ = 0, w0 = 1.4/K , β = 3.63 for (a)–(c).

The “next generation” of bumps resulting from the merging
of two bumps of the previous generation can interact in the
same way with each other as well as with the bumps of previous
generations that are still alive. In this way, an association
tree reflecting the input structure can be created, as illustrated
in Fig. 4.

III. DISCUSSION

We obtain equations describing the propagation of activity
from layer to layer in feed-forward networks of nonlinear rate
neurons with an STDP-inspired plasticity rule. We find that the
stability of the considered network is determined by the sign
of the minimum of the function Q(r): for positive sign, every
perturbation decays, for negative sign activity explodes for any
sufficiently strong perturbation. If the minimum is 0, stable
attractive solutions exist. They have an analytically obtained
form containing a plateau of variable width. So, precise tuning
of parameters is required to get stable propagation of activity
patterns unchanged from layer to layer, in agreement with ear-
lier simulation results of [21]. A sigmoidal form of the nonlin-
earity f can help to get an alteration of the signs of q = ∂rQ(r),
necessary to ensure the existence of a minimum of Q(r) = 0 at
a non-vanishing activity level r > 0. A sigmoidal f is therefore
a natural choice to bring the system close to criticality. The
qualitative form of the gain function found here is in line with
the sigmoidal form derived in [23] for feed-forward classifi-
cation networks. The argumentation and the network model
of this earlier work are, however, quite different. Their model
does not include spatial organization. Rather, the authors find
the sigmoid resulting from the requirement of optimal stability
in the recognition of presented and previously learned patterns,
without investigating the learning process itself. For the latter
they employ the known error backpropagation mechanism,
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fixing the synaptic weights prior to the consideration of
the neuronal activation dynamics. Employing field theoretic
arguments, the sigmoid is found as a soliton (kink) solution,
where the input strength to the nonlinearity plays the role of
space. The dissipative soliton solutions in our work, in contrast,
are solutions in real space. Similar long-living bump solutions
exist in systems with positive minima of Q(r) close to 0. These
solutions decay with a velocity increasing with the value of
this minimum. Two bumps can unite if the interplay of the
diffusion and the nonlinearity between them overcomes the
decay when propagating from one layer to the next; otherwise
they remain disjointed. For a united bump the same scenarios
exist, so a kind of association tree can appear in this way.

Qualitatively, the central results presented in this article
do not require the existence of the correlation sensitive term
(γ �=0) and exist also in systems with static synapses, for which
the correspondence to differential equations is known [12]. For
γ = 0 Eq. (5) is rewritten as q(r) = aw0∂

2
x r , describing the

stable solution of a reaction-diffusion equation (RDE) for one
chemical with the reaction nonlinearity q and diffusion coef-
ficient aw0. One can also interpret the layers in the network as
different states of the system evolution in time on a discretized
time grid. The corresponding time-continuous equation ∂tu =
aw0∂

2
x r − q(r) with redefined q(r) = f̌ (r ′)/τm − Kw0r for

the presence of a linear leak −u/τm is analog to a RDE for
the time evolution of a system with one chemical. Dissipative
solitons are known to be solutions of such systems [20] and
correspond to the bump solutions (8). The non-trivial result
is that such solutions exist also for arbitrary learning rates
γ �= 0 and that their shape can be obtained analytically.

A more general equation

q(r) =
∑

i

Di(r)∂2
xFi(r) (14)

of the same type as Eq. (5), but with an arbitrary number of
functions under the second derivative is solved with the same
substitutions z, y:

q(r) =
∑

i

Di(r)
((

∂2
x r

)
∂rFi(r) + (∂xr)2∂2

r Fi(r)
)

= 1

2

(∑
i

Di(r)∂rFi(r)

)
∂rz +

(∑
i

Di(r)∂2
r Fi(r)

)
z,

(15)

providing the solution in the form

z(r) = 2H (r)
∫

H−1(r ′)
q(r ′)∑

i Di(r ′)∂r ′Fi(r ′)
dr ′,

H (r) = exp

(
−2

∫ r
∑

i Di(r ′)∂2
r ′Fi(r ′)∑

i Di(r ′)∂r ′Fi(r ′)
dr ′

)
. (16)

Further simplifications done for Eq. (8) are applicable only
to this particular problem and are impossible in the general
case. This generalized equation can be used to describe, e.g.,
stable solutions for systems with several neuron and synapse
types, in particular networks including inhibitory neurons.
In this setting, the interaction between several bumps can
exhibit more complex behavior than in the case of non-plastic
synapses [12]. This equation is similar but not equivalent to
an equation describing a one-component reaction-diffusion
system (for only one i this mapping is exact). Still, a similar
analysis of the existence of stable and metastable solutions,
as presented for Eq. (5), is possible for this more general
case. Preliminary results indicate that associative learning and
memory can persist even if the activity is restored to the
baseline level, similar as in [22]. In contrast to classical models
of associative memory, such as fully connected Hopfield
networks and Boltzmann machines [7], our formalism allows
the study of spatially extended representations of earlier
presented, learned objects.

Instead of propagating the activity in a feed-forward
network from one layer to the next, we may consider a
time-continuous system that is recurrently connected. With
the leak term −u/τm, the evolution of activity of such a
system is described by

∂tut (x̃) = −τ−1
m ut (x̃) +

x̃+(K−1)/2∑
x=x̃−(K−1)/2, x �=x̃

wt (x̃,x)rt (x), (17)

where the lower index t denotes time point. The stationary
solutions satisfy the equation

ux =
x̃+(K−1)/2∑

x=x̃−(K−1)/2, x �=x̃

τ

[
w0 + γ

α
f (ux)f (ux̃)

]
f (ux), (18)

which, after diffusion approximation of the sum, is equivalent
to Eq. (5) with parameters τγ , τw0, and K − 1 instead of
γ , w0, and K . Hence, the presented results generalize to
stationary solutions in recurrent networks.
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[14] G. González-Burgos, G. Barrionuevo, and D. A. Lewis, Cereb.

Cortex 10, 82 (2000).
[15] R. Ben-Yishai, R. Bar-Or, and H. Sompolinsky, Proc. Nat. Acad.

Sci. USA 92, 3844 (1995).
[16] A. Compte, N. Brunel, P. S. Goldman-Rakic, and X. J. Wang,

Cereb. Cortex 10, 910 (2000).

[17] B. Gutkin, C. R. Laing, C. L. Colby, C. Chow, and G.
Ermentrout, J. Comput. Neurosci. 11, 121 (2001).

[18] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, J. Neurosci.
2, 32 (1982).

[19] A. Kolmogorov, I. Petrovskii, and N. Piscounov, Selected Works
of A. N. Kolmogorov I (Springer Netherlands, Dordrecht, 1991),
pp. 248–270.

[20] A. W. Liehr, Dissipative Solitons in Reaction Diffusion Systems
(Springer-Verlag, Berlin, 2013).

[21] S. Kunkel, M. Diesmann, and A. Morrison, Front. Comput.
Neurosci. 4, 160 (2011).

[22] T. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner,
Science 334, 1569 (2011).

[23] S.-H. Han and I. G. Koh, Phys. Rev. E 60, 7608 (1999).

062303-6

http://dx.doi.org/10.1162/NECO_a_00461
http://dx.doi.org/10.1162/NECO_a_00461
http://dx.doi.org/10.1162/NECO_a_00461
http://dx.doi.org/10.1162/NECO_a_00461
http://dx.doi.org/10.1016/S0006-3495(72)86068-5
http://dx.doi.org/10.1016/S0006-3495(72)86068-5
http://dx.doi.org/10.1016/S0006-3495(72)86068-5
http://dx.doi.org/10.1016/S0006-3495(72)86068-5
http://dx.doi.org/10.1007/BF00337259
http://dx.doi.org/10.1007/BF00337259
http://dx.doi.org/10.1007/BF00337259
http://dx.doi.org/10.1007/BF00337259
http://dx.doi.org/10.1007/s00422-005-0574-y
http://dx.doi.org/10.1007/s00422-005-0574-y
http://dx.doi.org/10.1007/s00422-005-0574-y
http://dx.doi.org/10.1007/s00422-005-0574-y
http://dx.doi.org/10.1137/S0036139901389495
http://dx.doi.org/10.1137/S0036139901389495
http://dx.doi.org/10.1137/S0036139901389495
http://dx.doi.org/10.1137/S0036139901389495
http://dx.doi.org/10.1093/brain/120.4.701
http://dx.doi.org/10.1093/brain/120.4.701
http://dx.doi.org/10.1093/brain/120.4.701
http://dx.doi.org/10.1093/brain/120.4.701
http://dx.doi.org/10.1093/cercor/10.1.82
http://dx.doi.org/10.1093/cercor/10.1.82
http://dx.doi.org/10.1093/cercor/10.1.82
http://dx.doi.org/10.1093/cercor/10.1.82
http://dx.doi.org/10.1073/pnas.92.9.3844
http://dx.doi.org/10.1073/pnas.92.9.3844
http://dx.doi.org/10.1073/pnas.92.9.3844
http://dx.doi.org/10.1073/pnas.92.9.3844
http://dx.doi.org/10.1093/cercor/10.9.910
http://dx.doi.org/10.1093/cercor/10.9.910
http://dx.doi.org/10.1093/cercor/10.9.910
http://dx.doi.org/10.1093/cercor/10.9.910
http://dx.doi.org/10.1023/A:1012837415096
http://dx.doi.org/10.1023/A:1012837415096
http://dx.doi.org/10.1023/A:1012837415096
http://dx.doi.org/10.1023/A:1012837415096
http://dx.doi.org/10.3389/fncom.2010.00160
http://dx.doi.org/10.3389/fncom.2010.00160
http://dx.doi.org/10.3389/fncom.2010.00160
http://dx.doi.org/10.3389/fncom.2010.00160
http://dx.doi.org/10.1126/science.1211095
http://dx.doi.org/10.1126/science.1211095
http://dx.doi.org/10.1126/science.1211095
http://dx.doi.org/10.1126/science.1211095
http://dx.doi.org/10.1103/PhysRevE.60.7608
http://dx.doi.org/10.1103/PhysRevE.60.7608
http://dx.doi.org/10.1103/PhysRevE.60.7608
http://dx.doi.org/10.1103/PhysRevE.60.7608

