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Intermittency measurement in two-dimensional bacterial turbulence
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In this paper, an experimental velocity database of a bacterial collective motion, e.g., Bacillus subtilis, in
turbulent phase with volume filling fraction 84% provided by Professor Goldstein at Cambridge University
(UK), was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished
by performing a Hilbert-based methodology analysis to retrieve the scaling property without the β-limitation.
A dual-power-law behavior separated by the viscosity scale �ν was observed for the qth-order Hilbert moment
Lq (k). This dual-power-law belongs to an inverse-cascade since the scaling range is above the injection scale
R, e.g., the bacterial body length. The measured scaling exponents ζ (q) of both the small-scale (k > kν) and
large-scale (k < kν) motions are convex, showing the multifractality. A log-normal formula was put forward to
characterize the multifractal intensity. The measured intermittency parameters are μS = 0.26 and μL = 0.17,
respectively, for the small- and large-scale motions. It implies that the former cascade is more intermittent than
the latter one, which is also confirmed by the corresponding singularity spectrum f (α) versus α. Comparison
with the conventional two-dimensional Ekman-Navier-Stokes equation, a continuum model indicates that the
origin of the multifractality could be a result of some additional nonlinear interaction terms, which deservers a
more careful investigation.
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I. INTRODUCTION

The most fascinating aspect of the hydrodynamic turbu-
lence is its scale invariance, which is conventionally charac-
terized by the qth-order structure functions,

Sq(�) = 〈|�u�(x,t)|q〉x,t ∼ �ζ (q), (1)

where �u�(x,t) = u(x + �,t) − u(x,t) is velocity increment
of the Eulerian velocity field, � is the separation scale, and
〈 · 〉x,t means an ensemble average over x and t [1]. The
separation scale � should lie in the so-called inertial range
�ν � � � L, where �ν is known as the Kolmogorov scale
or viscosity scale, and L is the integral length scale. It was
first introduced by Kolmogorov [2] in the year 1941 (K41 for
short) with a nonintermittent scaling exponent ζ (q) = q/3 [1].
The K41 theory is deeply related with an idea of energy
cascade, which was first introduced phenomenologically by
Richardson in the year 1922 [3]. The energy cascade has
been interpreted as a main feature of the energy conservation
law in the 3D turbulence, in which the energy is transferred
from large-scale structures to small-scale ones, until the
viscosity scale �ν , where the kinetic energy is converted into
heat [1]. Generally, for a monofractal process, for instance
fractional Brownian motion, a self-similarity process with
stationary increments on different separation scales �, the
scaling ζ (q) is linear with q, e.g., ζ (q) = qH , where H is
the so-called Hurst number. However, for the high-Reynolds
number turbulent flows, the experimental ζ (q) obtained from
various experiments and numerics deviates from the K41
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value q/3 [4–7]. A concept of multifractality and multiscaling
is put forward to interpret this deviation [8,9]. It is further
recognized as a main result of the energy dissipation field
intermittency [1]. The “intermittent” or “intermittency” of the
small-scale fluctuation was firstly noticed experimentally by
Batchelor and Townsend [10]. It means a huge small-scale
variation of the energy dissipation rate; see a nice example
in Ref. [11, see Fig. 1] or in Ref. [12, see Figs. 2 and 3].
It is a result of strong nonlinear interactions in the Navier-
Stokes equations. Several theoretical models have been put
forward to describe the intermittent property of the energy
dissipation field, for instance, the log-normal model [13],
log-Poisson model [14,15], log-stable model [16,17], to list
a few. Multifractality has also been recognized as a common
feature of complex dynamic systems, such as financial activi-
ties [18–20], wind energy [21], geosciences [22,23], to name a
few.

In the 2D turbulence, an additional enstrophy (i.e., the
square of vorticity � = 1

2ω2) conservation is emerging below
the forcing scale �F as a forward enstrophy cascade. On the
other hand, above this forcing scale, the energy conservation
leads to an inverse energy cascade, forming a remarkable
large-scale motion, which could reach the system size [24].
Note that both the energy and enstrophy are injected into
the system via the forcing scale �F . A 2D turbulence theory
was put forward in 1967 by Kraichnan [25] to interpret this
dual-cascade phenomenon. This 2D turbulence theory has
been recognized as “one of the most important results in
turbulence since Kolmogorov’s 1941 work” [26]. More pre-
cisely, there is a forward enstrophy cascade with E(k) ∼ k−3

when kF � k � kν , in which kF is the forcing wave number,
and kν is the viscosity wave number where the enstrophy is
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dissipated; and there is an inverse cascade with E(k) ∼ k−5/3

when kα � k � kF , in which kα is the Ekman friction wave
number [25,27]. This 2D turbulence theory has been partially
confirmed by experiments and numerical simulations for the
velocity field [27]. However, the statistics of the vorticity field
shows inconsistence [28–30]. Concerning the multifractality,
an extremely important feature of the turbulent systems, the
inverse energy cascade is nonintermittent or anomaly free,
which was confirmed by experiments not only using the
velocity field [26,31] but also the vorticity field [30]. However,
on the other hand, it has long been controversial whether or
not the forward enstrophy cascade is intermittent since the
classical structure function analysis fails to detect the scaling
behavior when the slope of the Fourier power spectrum is
β � 3 [1,32]. Nam et al. [33] theoretically showed that when
the Ekman friction is present, the forward enstrophy cascade is
then intermittent [34]. As already mentioned above this result
is difficult to verify experimentally by using the conventional
structure function analysis since the convergence condition
requires the scaling exponent β of the Fourier spectrum,
i.e., E(k) ∼ k−β , to be in the range (1,3) [1,12,32]; see also
discussion in Sec. III. This is known as the β limitation. Re-
cently, Tan, Huang, and Meng [30] applied the Hilbert-Huang
transform, a method free with β limitation, to the vorticity field
obtained from a high-resolution numerical simulation database
with resolution 81922 grid points. They confirmed that the
forward enstrophy cascade is intermittent, and the inverse
cascade is nonintermittent. Wang and Huang [31] proposed a
β-limitation free multilevel segment analysis and applied it to
the 2D velocity field. They confirmed again that the forward en-
strophy cascade is intermittent when considering the velocity
statistics.

Specifically for a bacterial suspension in a thin fluid, if the
considered spatial size is much larger than the thickness of the
suspension, it could be approximated as a 2D fluid system.
In such a system, the fluid is stirred by the bacterial activities
at their body length R. Due to the hydrodynamic interaction
or other mechanisms, the flow exhibits a turbulent-like move-
ment, showing multiscale statistics [35–46]. Such flows are
then called as bacterial turbulence or active turbulence. In this
special flow system, the energy is injected into the system via
the scale of the bacterial body length R typically around few
μm [41]. The flow velocity is also of the order of a few μm per
second. The corresponding Reynolds number is about Re =
O(10−3). In the traditional view of the classical hydrodynamic
turbulence, the flow at such a low Reynolds number is
laminar without turbulent-like statistics. It is surprising that the
statistics of the active fluid exhibits a turbulent-like fluctuation,
e.g., long-range correlation of velocity [37,39,40,42,45,47],
power-law behavior [35,41,43,45,48], etc. For example, Wu
and Libchaber reported that due to the collective dynamics of
bacteria in a freely suspended soap film, the measured mean
displacement function of beads demonstrates a superdiffusion
in short times and normal diffusion in long times [35]. Wensink
et al. [41] observed a dual-power-law (DPL) behavior in a
quasi-2D active fluid. Due to the viscosity damping by the
low-Re solvent, the experimental power-law behavior extends
roughly up to �ν � 10R � 50 μm, corresponding to a wave
number kν/kR � 0.1, where kR = 1/R is the wave number of

the bacterial body length, and �ν is the viscosity scale [49].
Above this wave number, e.g., 0.1 � k/kR � 1, one may
has the energy-inertial regime of classical turbulence with
a power-law roughly as E(k) ∼ k−8/3; and below it, e.g.,
k/kR � 0.1, but not far from the viscosity scale kν , the viscous
damping play an important role with a power-law that roughly
can be fitted as E(k) ∼ k5/3 [41]. It is worth pointing out
that these two power laws are on the same side of the injection
scale R. Both of them belong to the inverse cascade. To the best
of our knowledge, there are very few works related with the
multifractality of the bacterial turbulence since the structure
function analysis fails to capture the scaling behavior. Liu and
I [48] experimentally found that the multifractality revealed
by the extended self-similarity (ESS) technique is increasing
with the cell concentration. Note that in the ESS approach,
instead of plotting the qth-order structure function Sq (�) versus
the separation scale �, the experimental Sq(�) is often plotted
against with S2(�) or S3(�) [50]. It provides a more robust way
to extract the scaling exponent ζ (q) [51–53]. With the help of
ESS, the relative scaling exponent is found to be universal for a
large range of Reynolds number and the statistics order q up to
10 [51].

In this paper, we investigated the multifractality of the
bacterial turbulence experimentally using the Hilbert-Huang
transform to identify the power-law behavior and extract
scaling exponent ζ (q) directly without resorting to the ESS
technique. It is found that the intermittent correction is
relevant in the observed DPL. The corresponding inter-
mittency parameter provided by a log-normal formula is
μS = 0.26 and μL = 0.17, respectively, for the small-scale
fluctuations above the viscosity scale and the large-scale
fluctuations below the viscosity scale. The observed multi-
fractality could be a result of the several additional nonlin-
ear terms appearing in an Ekman-Navier-Stokes-like model
equation [41].

II. EXPERIMENTAL DATA

The experiment data analyzed here is provided by Professor
R. E. Goldstein at Cambridge University (UK). We recall
briefly the main parameters of this quasi-2D experiment in a
microfluidic chamber. The bacteria used in this experiment is
Bacillus subtilis with an individual body length approximately
5 μm, in which the energy is injected into the system. The
volume-filling fraction is φ = 84% with bacterial number
N � 9968 and aspect ratio a = 5, i.e., the ratio between
the bacterial body length R and the body diameter. The
quasi-2D microfluidic chamber is with a vertical height Hc

less or equal to the individual body length of B. subtilis
(approximately 5 μm). With these parameters, the flow is then
in a turbulent phase [41]. The PIV (particle image velocimetry)
measurement area is 217 μm × 217 μm. The image resolution
is of 700 pix × 700 pix with conversion rate 0.31 μm/pix and
frame rate 40Hz. The commercial PIV software Dantec Flow
Manager is used to extract the flow-field component with a
moving window size 32 pix × 32 pix and 75% overlap. This
results a 84 × 84 velocity vector and a total 1015 snapshots,
corresponding to a time period ∼25 s. Therefore, totally we
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FIG. 1. (a) A snapshot of the velocity streamline, which is color
encoded by the velocity amplitude. (b) The velocity ux(x) at y =
50 μm and y = 150 μm. Energetic structures are observed roughly
with a spatial scale ∼50 μm, corresponding to 10 times of the bacterial
body size R.

have 7 161 840 data points, which ensures a good statistics at
least up to the statistical order q = 4.

Figure 1(a) shows a snapshot of the streamline, where the
velocity amplitude is encoded in color. Figure 1(b) shows
the velocity ux(x|y) slice at y = 50 and 150 μm. Visually,
we observe energetic structures roughly with a spatial scale
∼50 μm, corresponding to ten times of the bacterial body
size, i.e., 10R. The origin of this structure is unclear. We
will turn back to this point in Sec. VI. The flow field is
homogeneous and isotropic. In the following analysis, only the

velocity component ux(x,y,t) is considered. It is first divided
into 84 lines along the direction x. Statistical quantities are
then estimated for all snapshots.

III. SCALE MIXTURE PROBLEM OF STRUCTURE
FUNCTION ANALYSIS

We show here the scale mixture problem of the conventional
structure function analysis. The second-order structure func-
tion S2(�) can be associated with the Fourier power spectrum
E(k) via the Wiener-Khinchin theorem [1,12],

S2(�) =
∫ +∞

0
E(k)[1 − cos(2πk�)]dk, (2)

where � is the separation scale, and k is the wave number. A
prefactor is ignored. It implies that except for the case k =
n/�, n = 0,1,2, . . . , all Fourier components have contribution
to S2(�). Or in other words, it contains information from
different Fourier components [32]. Taking a pure power-law
form E(k) ∼ k−β , the convergence conditions at k → 0 and
k → +∞ require β ∈ (1,3) [1,12,32]. Unfortunately, if the
data set has energetic structures, the structure function analysis
will be strongly biased. For instance, the ramp-cliff structure
in the passive scalar turbulence [32,54], vortex trapping event
in the Lagrangian velocity [55], high-intensity vortex in 2D
turbulence [30,31], daily cycle or annual cycle in the collected
geosciences data [22], to list a few. Therefore, before applying
the structure function analysis, as we will show below, it is
better to perform a scale-by-scale analysis to see whether
such influence exists or not. To characterize quantitatively
the relative contribution of different Fourier components, we
introduced here a contribution kernel function I(k,�),

I(k,�) = E(k)[1 − cos(2πk�)]

S2(�)
, (3)

where E(k) is the Fourier power spectrum provided by the ex-
perimental velocity field. Figure 2(a) shows the experimental
I(k,�), in which the power-law range 0.03 < k/kR < 0.075
and 0.15 < k/kR < 0.5 (see analysis result in Sec. V) are
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FIG. 2. (a) The experimental contribution kernel I(k,�), in which the range of the dual-power-law is indicated by horizontal lines. The peak
location (the viscosity scale) of the Fourier power spectrum E(k) is indicated by kν , corresponding to a spatial scale �ν = 1/kν . The dashed
line illustrates � = 1/k. (b) The measured large-scale contribution Q(�) = ∫ 1/�

0 I(k,�)dk.
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illustrated by solid lines. The dashed line indicates � = 1/k.
Visually, most of the contribution is coming from the large-
scale part, i.e., k/kR � 0.2. It also displays an up-down
symmetry. This is because the Fourier power spectrum E(k)
increasing with k when k/kR � 0.1 and taking its peak at
k/kR � 0.1; see Fig. 5(a). A relative cumulative function is
introduced to characterize the relative contribution from the
large-scale part,

Q(�) =
∫ 1/�

0
I(k,�)dk × 100%. (4)

Figure 2(b) shows the measured Q(�), in which the expected
power-law range is indicated by solid line. Experimentally,
S2(�) in the first power-law range, i.e., 0.15 < k/kR < 0.5, is
strongly influenced by the large-scale motions; in the second
power-law range, i.e., 0.03 < k/kR < 0.075, it is strongly
influenced by the energetic structures around k/kR � 0.1.
Due to the presence of energetic structures, the expected
power-law behavior is then destroyed or biased in the physical
domain [41]. A similar phenomenon has been observed
for the vorticity field of the traditional 2D turbulence with
high-intensity vortex structures [30], and for passive scalar
turbulence with ramp-cliff structures [32], etc. For more details
about this topic, we refer the readers to Ref. [12].

IV. HILBERT-HUANG TRANSFORM

In this work, we will employ a β-limitation free approach,
namely Hilbert-Huang transform [56,57]. It has the capability
to isolate different events not only in the physical domain
but also in spectral space [12,30,54,55]. This method consists
two steps: (i) empirical mode decomposition (EMD), and (ii)
Hilbert spectral analysis. In the following, we present more
details of this Hilbert-based approach.

A. Empirical mode decomposition

In reality, most of the collected signals are multicomponent,
which means that different time or space scales are coexis-
tent [56,58]. It is thus necessary to apply a proper method to
separate a given signal into a sum of monocomponents to have
a better view of them. For example, in the classical Fourier
analysis, a trigonometric function sine or cosine is chosen as
the monocomponent [59]. The given data set is then associated
with the energy (the square of the amplitude) and the wave
number (the inverse of the period of the given sine or cosine
wave), known as the Fourier power spectrum.

In this Hilbert-based approach, the so-called intrinsic
mode function (IMF) has been put forward to represent the
monocomponent, which satisfies the following two conditions:
(i) the difference between the number of local extrema and the
number of zero-crossings must be zero or one; (ii) the running
mean value of the envelope defined by the local maxima and the
envelope defined by the local minima is zero [56,60]. Each IMF
then has a well-defined Hilbert spectrum [56]. It allows both
the amplitude- and frequency or wave-number-modulation
simultaneously since its characteristic scale is defined as the
distance between two successive extreme points [61].

The empirical mode decomposition algorithm is put for-
ward to extract the IMF modes from a given data set, e.g.,

velocity u(x). The first step of the EMD algorithm is to
identify all the local maxima (minima) points. Once all the
local maxima points are identified, the upper envelope emax(x)
(lower envelope emin(x)) is constructed by a cubic spline
interpolation [56,58,62]. Note that other approaches are also
possible to construct the envelope [63]. The running mean
between these two envelopes is defined as

m1(x) = [emax(x) + emin(x)]

2
. (5)

The first component is estimated as

h1(x) = u(x) − m1(x). (6)

Ideally, h1(x) should be an IMF as expected. In reality,
however, h1(x) may not satisfy the condition to be an IMF. We
take h1(x) as a new data series and repeat the sifting process
j times, until h1j (x) is an IMF. We thus have the first IMF
component,

C1(x) = h1j (x), (7)

and the residual,

r1(x) = u(x) − C1(x). (8)

The sifting procedure is then repeated on residuals until rn(x)
becomes a monotonic function or at most has one local extreme
point. This means that no more IMF can be extracted from
rn(x). Thus, with this algorithm we finally have n IMF modes
with one residual rn(x). The original data u(x) is then rewritten
as

u(x) =
n∑

i=1

Ci(x) + rn(x). (9)

A stopping criterion has to be introduced in the EMD algorithm
to stop the sifting process [56,58,60,64]. The first stopping
criterion is a Cauchy-type convergence criterion proposed
by Huang et al. [56]. A standard deviation defined for two
successive sifting processes is written as

SD =
∑L

x=0 |hi(j−1)(x) − hj (x)|2∑L
x=0 h2

i(j−1)(x)
, (10)

in which L is the total length of the data. If a calculated SD is
smaller than a given value, then the sifting stops and gives an
IMF. A typical value SD ∈ [0.2,0.3] has been proposed based
on Huang et al.’s experiences [56,58]. Another widely used
criterion is based on three thresholds, α, θ1, and θ2, which are
designed to guarantee globally small fluctuations, meanwhile
taking into account locally large excursions [60]. The mode
amplitude and evaluation function are given as

a(x) = emax(x) − emin(x)

2
, σ (x) = |m(x)/a(x)| (11)

so that the sifting is iterated until σ (x) < θ1 for some
prescribed fraction 1 − α of the total duration, while σ (x) < θ2

for the remaining fraction. Typical values proposed in Ref. [60]
are α ≈ 0.05, θ1 ≈ 0.05, and θ2 ≈ 10 θ1, respectively, based
on their experience. In practice, a maximal iteration number
(e.g., 300) is also chosen to avoid over-decomposing the data
set.
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A main drawback of this method is that EMD is an
algorithm in practice without rigorous mathematical foun-
dation [56]. Several works attempt to understand better the
mathematical aspect of EMD algorithm [60,62,65–68]. For
instance, Flandrin and Gonçalvès [62] found that the EMD
algorithm acts as a data-driven wavelet-like expansion. Wang
et al. [67] reported that both the time and space complexity of
the EMD algorithm are O(n · log n), in which n is the data size,
but with a larger factor than the traditional Fourier transform.

B. Hilbert spectral analysis

With the achieved IMF modes, the Hilbert spectral analysis
is then applied to each Ci(x) to retrieve the spectral information
via the classical Hilbert transform,

Ci(x) = 1

π
P

∫
Ci(x ′)
x − x ′ dx ′, (12)

in which P means the Cauchy principal value. An analytical
signal is then reconstructed as

CA
i (x) = Ci(x) + jCi(x) = Ai(x) exp[jφi(x)], (13)

in which j = √−1, Ai(x) is the amplitude, and φi(x) is the
phase function, which are, respectively, defined as

Ai(x) = |CA
i (x)| =

√
Ci(x)2 + Ci(x)2, (14)

for the amplitude, and

φi(x) = arctan

[
Ci(x)

Ci(x)

]
, (15)

for the phase function. An instantaneous wave number is then
defined as

ki(x) = 1

2π

dφi(x)

dx
. (16)

Note that the EMD decomposes the given signal very locally
into several IMF modes, and the above-described HSA
approach extracts the instantaneous amplitude Ai(x) and
wave number ki(x) also at a very local level. The EMD-
HSA approach thus inherits a very local ability, namely the
amplitude- and frequency or wave-number modulation to
characterize the nonlinear and nonstationary properties of the
data collected from the real world [12,56,58].

To show the capability of the EMD-HSA approach, we
consider here a toy model with two components on the range
−10 � x � 10,

z(x) = z1(x) + z2(x), z1(x) = sin(x2), z2(x) = x2/20.

(17)
The first component z1(x) has an instantaneous wave number
k(x) = |(x)|/2π . After the EMD, one IMF mode C1(x) with
one residual r1(x) are obtained. Figure 3(a) shows the toy
model z(x), and Fig. 3(b) shows C1(x), r1(x) (thin lines),
z1(x), and z2(x), respectively. Visually, except for the range
−2 < x < 2, two components are well separated by the EMD
algorithm. The instantaneous wave number k(x) is retrieved by
applying Eqs. (12)∼(16). Note that the estimated k(x) agrees
with the theoretical one very well, showing the very local
capability of the EMD-HSA approach.
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FIG. 3. (a) Illustration of a toy model z(x) = z1(x) + z2(x), where z1(x) = sin(x2) and z2(x) = x2/20. (b) IMF mode C1(x) and residual
r1(x) obtained from EMD algorithm (thin lines). For comparison, the z1(x) and z2(x) are also shown (thick lines). (c) The measured instantaneous
wave number k(x) for C1(x) (thick line), where the theoretical value is shown as a thin line.
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C. Hilbert-based high-order statistics

One can construct pairs of the instantaneous wave number
and amplitude, i.e., [ki(x),Ai(x)] for all IMF modes. A joint
probability density function (pdf) p(k,A) is then extracted
from all IMF modes [12,57]. A k-condition qth-order statistics
is defined as

Lq(k) =
〈∑

i

Aq

i (x)|ki(x) = k

〉
x,t

, (18)

where 〈 · 〉x,t means an ensemble average over space and time.
In case of scale invariance, one has power-law behavior,

Lq(k) ∼ k−ζ (q), (19)

in which ζ (q) is the Hilbert-based scaling exponent. For a
simple scaling process, such as fractional Brownian motion,
the measured ζ (q) is equivalent to the one provided by
the structure function analysis [12,55,57]. For a real data
with energetic structures, this approach has a capability
to isolate those structures to reveal more accurate scaling
behavior [12,30,32,55]. For more details about the EMD-HSA
method, we refer to Refs. [12,56,58].

V. RESULTS

In the following the analysis is done along x direction by
dividing the Eulerian velocity u(x,y) into 84 lines. The EMD-
HSA approach is then performed to each slice and the statistics
are then averaged over these 84 lines and all snapshots.

Figure 4(a) shows the measured joint-pdf p(k,A), in which
the horizontal axis is normalized by the wave number kR

of the bacterial body length. For display convenience, the
measured p(k,A) has been represented in log scale. A DPL
trend is visible, respectively, on the range 0.15 < k/kR < 0.5
for the small-scale structures, and 0.03 < k/kR < 0.075 for
the large-scale structures. The scaling trend is characterized

by a skeleton, which is defined as

pmax(k) = p(k,AS(k)) = max
A

{p(k,A)|k}, (20)

The measured AS(k) is reproduced in Fig. 4(b). The DPL
behavior is identified,

AS(k) ∼ k−γ , (21)

in which γ is the scaling exponent. Figure 4(b) reproduces
the measured AS(k), showing the DPL behavior. The exper-
imental scaling exponents are respectively γS = 0.95 ± 0.02
for the small-scale structures, and γL = −0.95 ± 0.02 for the
large-scale structures. To emphasize the observed power-law
behavior, the compensated curve is shown as the inset in
Fig. 4(b). A clear plateau confirms the existence of the
power-law behavior. The peak location (the viscosity wave
number kν) in Fig. 4(b) is to be around kν/kR � 0.1, which
agrees very well with the observation of the Fourier power
spectrum [41]; see also Fig. 5(a).

Figure 5(a) shows the measured energy spectrum provided
by the Fourier analysis (◦) and the Hilbert spectral analysis
(�). The DPL predicted by the Hilbert spectrum is indicated
by the horizontal dashed line, respectively, on the range
0.03 < k/kR < 0.075 and 0.15 < k/kR < 0.5. To emphasize
the observed DPL, the compensated curve, e.g., E(k)kβC−1,
using the fitted scaling exponent β and the prefactor C is
shown in Fig. 5(b). The fitted scaling exponents are βF

S =
2.68 ± 0.06, βF

L = −1.33 ± 0.20 provided by the Fourier
spectrum, and βH

S = 2.64 ± 0.05, βH
L = −0.41 ± 0.05 pro-

vided by the Hilbert spectrum, respectively. The observed
plateau in Fig. 5(b) confirms again the existence of the DPL
behavior at least for the second-order statistics. The statistics of
the small-scale fluctuations (the high wave-number part) by the
Fourier and Hilbert agree well with each other. However, the
ones of the large-scale fluctuations (low wave-number part)
do not agree. One possible reason might be the nonlinear
distortion embedded in the data [56]. Moreover, the DPL is
separated by a peak around kν/kR � 0.1, which corresponds to
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FIG. 4. (a) Measured joint-pdf p(k,A) of the wave number k and amplitude A. A skeleton defined by Eq. (20) is illustrated by ◦, showing a
scaling trend. The horizontal axis is normalized by the wave number of the bacterial length, i.e., kR . (b) Reproduce the measured skeleton AS(k)
of the joint-pdf p(k,A). A dual-power-law behavior AS(k) ∼ k−γ is visible with scaling exponents −0.95 ± 0.02 and 0.95 ± 0.02 on the range
0.15 < k/kR < 0.5 for the small-scale structures and 0.03 < k/kR < 0.075 for the large-scale structures. The inset shows the compensated
curve to emphasize the observed power-law behavior.
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FIG. 5. (a) Comparison of the experimental energy spectra E(k) provided by the Fourier analysis (◦) and Hilbert spectral analysis (�).
For display convenience, the curve has been vertically shifted. (b) The compensated curves using the fitted scaling exponents, respectively,
βF

S = 2.68 ± 0.06, βF
L = −1.33 ± 0.20, provided by the Fourier spectrum, and βH

S = 2.64 ± 0.04, βH
L = −0.41 ± 0.05, provided by the Hilbert

spectrum. The power-law range predicted by the Hilbert approach is indicated by the horizontal dashed line for the range 0.15 < k/kR < 0.5
of the small-scale structures and 0.03 < k/kR < 0.075 of the large-scale structures.

the scale of the fluid viscosity. The observed power-law range
is limited due to the constrain of this system, e.g., injection
scale R, the fluid viscosity kν , the measurement area L, etc.

Note that the power-law behavior of the measured spectrum
often indicates a cascade process. As an analogy to the
2D turbulence theory, we speculate that at least the energy
transfers from the injected scale R to larger-scale structures
via an inverse cascade. As mentioned above, due to the fluid
viscosity, the energy is then accumulated around k/kR � 0.1.
This postulation should be verified carefully via a scale-to-
scale energy or enstrophy flux [69]. Below we check the
high-order statistics to see potential intermittent correction.

Figure 6 shows the measured high-order Hilbert moments
Lq(k) for 0 � q � 4. The DPL behavior is observed for all
q considered here. The power-law ranges are the same as the
ones observed in Fig. 5. The corresponding scaling exponents
are then estimated using a least-square fitting algorithm.
The measured ζ (q) are shown in Fig. 7(a). The error bar
indicates the 95% confidence interval provided by the fitting
algorithm. Visually, the experimental scaling exponent curves

are convex, implying multifractal nature of this active system.
To characterize the intensity of multifractality quantitatively,
we introduce here a log-normal formula to fit the observed
scaling exponent,

ζ (q) = qH − μ

2
(q2H 2 − qH ), (22)

where H is the Hurst number, and μ is the intermittency
parameter [20]. Note that the log-normal model was first
introduced by Kolmogorov [13] in 1962 for the Eulerian
velocity by assuming a log-normal distribution of the en-
ergy dissipation field. It yields for the turbulent velocity
ζ (q) = q/3 − μ/2(q2/9 − q/3) [1,12]. For a given H , the
intermittency parameter μ characterizes the deviation from
the linear relation qH . Or in other words, a larger value of
μ has, the more intermittent the field is. The measured Hurst
number and intermittency parameter are HS = 0.91 ± 0.02
and μS = 0.26 ± 0.01 for ζS(q), and HL = 0.73 ± 0.01 and
μL = 0.17 ± 0.01 for −ζL(q), respectively. It shows a more
intermittent small-scale fluctuations.
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FIG. 6. (a) Measured qth-order Hilbert moment Lq (k). (b) The corresponding compensated curve using the fitted scaling exponent and
prefactor. A double power-law behavior is observed on the range 0.03 < k/kR < 0.075 and 0.15 < k/kR < 0.5. The existence of the plateau
confirms the observed power-law behavior. The scaling exponent is then estimated on these ranges using a least-square fitting algorithm.
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FIG. 7. (a) Experimental scaling exponent ζ (q) for the small-scale scaling (◦) and large-scale scaling (�). A log-normal formula fitting is
also shown as solid and dashed lines, respectively, for the small and large scales. (b) The corresponding singularity spectrum f (α) versus α.
The error bar indicates the 95% confidence interval provided by the least-square fitting algorithm.

VI. DISCUSSIONS

There are two free parameters in Eq. (22). Therefore, a
different choice of H could lead to a different estimated inter-
mittent parameter μ. To avoid this difficulty, we consider below
the singularity spectrum f (α) via the Legendre transform,

α = dζ (q)

dq
, f (α) = min

q
{αq − ζ (q) + 1}, (23)

in which α is known as the generalized Hurst number
or intensity of multifractality [1]. Generally, the broader
measured α and f (α) are the more the experiment ζ (q)
deviates from a linear relation qH even the Hurst number
H cannot be accessed precisely. Thus, the analyzed field
is more intermittent [1]. Figure 7(b) shows the measured
f (α) versus α. A broad range of α and f (α) is observed,
suggesting that both small-scale and large-scale fluctuations
possessing intermittent correction, while the former one is
more intermittent than the latter one, which confirms the result
of the log-normal formula fitting.

We would like to provide some comments on the finite
scaling range detected by the Hilbert method. In this special
dynamic system, the scaling range is determined by several
parameters. They are, at least, the bacterial body length R �
5 μm, where the energy is injected into the system; the size of
the microfluidic device or the measurement area L × L with
L � 217 μm for the current data set; the fluid viscosity scale
�ν � 50 μm, below which a part of the kinetic energy might
be dissipated into heat; the Ekman-like friction provided by
interface between the fluid and the bottom of the microfluidic
device and other unknown mechanisms, in which the energy
is damped, etc. Note that the fluid viscosity could be also a
function of species and concentrations of bacteria [70–72].
The scaling range of such bacterial turbulence is thus limited
due to these length scales. For instance, the scaling ranges
identified in this work are, respectively, 0.03 < k/kR < 0.075
and 0.15 < k/kR < 0.5, corresponding to roughly � 0.4 and
� 0.5 decades. For the former scaling range, it could be limited
by the size of the microfluidic device and the fluid viscosity,
i.e., �ν � 10R or kν � 0.1kR . It thus could be extended by

increasing the measurement area. The latter one is constrained
not only by the fluid viscosity, but also by the bacterial
body length R and the depth of the fluid Hc. For the spatial
scale comparable with the fluid depth Hc, the motion could
exhibit 3D statistics. It seems that it is difficult to extend
this scaling range by simply increasing the measurement
resolution or reducing the bacterial body length R since the
fluid viscosity is a function of bacterial concentrations and
other conditions [70–72].

Moreover, the observed DPL is on the left side of the
injection scale. It is therefore then inverse cascade, at least
in the sense of the kinetic energy. In the view of the traditional
2D turbulence, the inverse energy cascade is found to be
nonintermittent [27]. The corresponding forward enstrophy
cascade is intermittent if the Ekman friction is present [33],
which has been confirmed for both the vorticity field [30] and
the velocity field [31]. The Ekman-Navier-Stokes equation for
the classical 2D turbulence is written as

∂tu + u · ∇u = −∇p + ν∇2u − ξu + fu, (24)

in which ξ stands for the Enkman friction coefficient, and fu
is the external forcing, where the energy and enstrophy are
injected into the system. Note that the Ekman friction is a
linear drag to model the three-dimension of no-slip boundary
condition or the effect of the boundary layer itself in the two-
dimensional description. The dual-cascade theory proposed by
Kraichnan has been proved partially by the experiments and
numerical simulations [27]. A continuum model has been put
forward to model the bacterial turbulence, which is written as

∂tu + λ0u · ∇u = −∇p + �0∇2u + λ1∇u2

− (� + χ |u|2)u − �2(∇2)2u, (25)

where p denotes pressure, and λ0 > 1; λ1 > 0 for the pusher-
swimmers as used in this study; (�,χ ) corresponds to a
quartic Landau-type velocity potential; (�0,�2) provides the
description of the self-sustained mesoscale turbulence in
incompressible active flow, e.g., �0 < 0 and �2 > 0, the model
results in a turbulent state [41]. Comparing the righthand side
of Eqs. (25) and (24), one can find that in the continuum
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theory several additional nonlinear interaction terms are
introduced. We speculate here that these additional nonlinear
interactions trigger the intermittency effect into the inverse
cascade of the bacterial turbulence, which is different with the
traditional two-dimensional turbulence and deserves a further
careful investigation by checking the scale-to-scale energy and
enstrophy flux of this active system.

VII. CONCLUSION

In summary, in this paper the experimental Eulerian
velocity of the bacterial turbulence provided by Professor
Goldstein at Cambridge University (UK) was analyzed to
emphasize on the multiscaling property. A kind of bacteria
B. subtilis with a body size of 5 μm is used in this experiment
with a volume filling fraction 84% and a finite depth of �5 μm.
With these parameters, the active flow is in the turbulent phase.
Due to the scale mixture problem, the conventional structure
function analysis fails to detect the power-law behavior. A
Hilbert-based method was then performed in this work to
identify the scaling behavior. A dual-power-law behavior
separated by the viscosity wave number kν is observed with a
limit scaling range, which is the result of this special system.
This DPL belongs to the inverse cascade since it is on the left
side of the injection scale, i.e., k < kR , kR is the body size
wave number. As mentioned above for the traditional two-
dimensional turbulence, there is no intermittent correction in
the inverses cascade. On the contrary, due to several additional
nonlinear interactions in this bacterial turbulence, the DPL is
found experimentally to be intermittent. The intensity of the
intermittency or multifractality is then characterized by a log-
normal formula with measured HS = 0.91 and μS = 0.26 for
the small-scale (high wave-number part 0.15 < k/kR < 0.5)

fluctuations, and HL = 0.73 and μL = 0.17 for the large-scale
(low wave-number part 0.03 < k/kR < 0.075) fluctuations,
showing that the former cascade is more intermittent than the
latter one. This is also confirmed by the calculated singularity
spectrum f (α). When comparing a continuum model of
this active fluid system with the traditional two-dimensional
Ekman-Navier-Stokes equation, there exist several additional
nonlinear interactions that trigger the intermittency in the
inverse cascade. A less intermittent large-scale fluctuation
could be an effect of the fluid viscosity since it plays an
important role when k/kR � 0.1. We emphasize here that
the observed DPL could not be universal since the bacterial
turbulence depends on many different parameters, such as
the species of the bacteria, the concentration, etc. It should
be studied systematically by applying this Hilbert-based
approach.
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