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Quantum synchronization in an optomechanical system based on Lyapunov control
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We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed
in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013), to more widespread quantum generalized synchronization.
Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete
synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As
examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike
the effort to construct a special coupling synchronization system, we purposefully design extra control fields based
on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives,
which is more suitable for generalized synchronization control, and the control fields can be achieved simply with
a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations
is also discussed.
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I. INTRODUCTION

Complete synchronization and phase synchronization be-
tween two continuous variable (CV) quantum systems were
first studied by Mari et al. in a mesoscopic optomechanical
system [1], and they also made the forward-looking prediction
that quantum synchronization has potential and important
applications in quantum-information processing (QIP). Subse-
quently, quantum synchronization has been explored at length
in a variety of quantum systems, such as cavity quantum
electrodynamics [2,3], atomic ensembles [4–6], van der Pol
(VdP) oscillators [3,7–10], Bose-Einstein condensation [11],
superconducting circuit systems [12,13], and so on. In those
works, quantum synchronization was extended from a CV
system to finite-dimensional Hilbert space corresponding to
better quantum properties, and quantum correlation was also
analyzed quantificationally in those synchronous quantum
systems [3,4,7,14]. In addition, quantum synchronization
criteria [4,9,15,16] and synchronization among nodes in a
quantum network [17,18] are still hot topics in the field of
quantum synchronization theory. In addition to the theoretical
research, a series of experiments have demonstrated the
existence of synchronization in mesoscopic optomechanical
and nanoelectromechanical systems in recent years, and this
has provided a reliable platform for the development of
quantum synchronization [19–22].

Generally, existing quantum synchronization schemes can
be attributed to the concept of coupling synchronization, i.e.,
one subsystem of the synchronous system plays the role of
a controller acting on the other subsystem [1–10,14,15]. A
significant advantage of this kind of direct linking is its
strong maneuverability. However, there remain some diffi-
culties in achieving better applications in QIP with quantum
synchronization. For weak coupling at the quantum level, it
is difficult to eliminate the difference between subsystems if
the difference is big enough, and in fact this is often the case.
Fundamentally, a driving or pump field that is too strong will
compel systems to take the form of forced synchronization, as
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occurs in previous works [1–4,14]. This deficiency of coupling
synchronization is a severe limitation that makes it difficult to
achieve other types of synchronization, including complete
and phase synchronization. In some previous investigations,
regulating the effective potential was a clever way to achieve a
multistable synchronization transition from 0-synchronization
to π -synchronization between identical subsystems [10,14].
However, the idea of achieving antiphase synchronization and
projective synchronization by controlling different subsystems
is rarely discussed in the context of quantum systems, even
though these synchronizations have been widely applied in
the classical field [23–25]. In addition, the effective potential
usually causes the synchronization to depend on the initial
conditions, and this may be invalid in an array or a network
[26]. These characteristics limit the application of multistable
coupling synchronization.

In traditional control theory, in addition to the coupling
terms, there exists an external controller that is imposed on the
response system in order to provide better control capability.
This implies that a designed controller can establish a more
flexible relationship between two controlled subsystems [27].
It is thought-provoking to consider such problems: can more
generalized synchronizations (such as the above-mentioned
antiphase and projective synchronizations) be extended and
obtained in the quantum domain? If the answer is yes, what
kinds of criteria and measures are needed in this quantum
generalized synchronization? Most importantly, how are the
controllers designed to satisfy various requirements corre-
sponding to different kinds of generalized synchronizations?

To answer the above questions, in this paper we study
the general properties of different synchronization forms, and
we expand them to quantum mechanics based on Mari’s
complete synchronization theory. The criteria and measures of
generalized synchronization are also proposed, and they will be
divided into two orders for the sake of convenient calculation
and analysis. Instead of directly establishing interaction
between two subsystems, here we utilize Lyapunov control
theory (which has exhibited comprehensive applications in
target quantum state preparation and suppressing decoherence)
to design the external controller [27–29]. The significance of
Lyapunov control is that it can be used both in open- and
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closed-loop control. Therefore, in quantum control one can
always avoid impossible or difficult measures by simulating
the control field in advance. Although the Lyapunov function
is constituted by expectation values, our results show that
the quantum fluctuations can also be effectively subdued by
the controller. In addition, classical and quantum correla-
tions are considered by calculating the Lyapunov exponent
and Gaussian negativity. In particular, we demonstrate that
CV entanglement can exist in generalized synchronization,
however it will disappear if generalized synchronization tends
to complete synchronization. This phenomenon is consistent
with Mari’s and Ameri’s conclusions about entanglement in
complete synchronization [1,3]. Therefore, we believe that
existing quantum complete synchronization can be included
in our generalized synchronization theory.

This paper is organized as follows: In Sec. II, we introduce
the definition and the properties, especially the method of
measurement, of quantum generalized synchronization. In
Sec. III, we analyze the dynamics of an optomechanical
system, and we realize two kinds of representative generalized
synchronization (constant error synchronization in Sec. III A
and time delay synchronization in Sec. III B) by designing
appropriate control fields based on Lyapunov function the-
ory. The correlation in generalized synchronization is also
discussed in Sec. IV, and a summary is given in Sec. V.

II. QUANTUM GENERALIZED SYNCHRONIZATION

We begin this section with a brief introduction about
generalized synchronization and its expansion in the quantum
domain. Consider two general classical dynamics systems
whose evolutions satisfy the following equations:

∂tx1(t) = F (x1(t)) + Uc1(x1,x2) + Ue1,

∂tx2(t) = F (x2(t)) + Uc2(x1,x2) + Ue2,
(1)

where x1,2(t) ∈ Rn are the state variables of two systems at
time t . Uc1,2 are the mutual couplings between systems, and
correspondingly Ue1,2 are the external controllers belonging
to their respective systems. If there are continuous mappings
h1,h2 : Rn → Rk , and if the synchronization condition in
Eq. (2) can be achieved when t → ∞, then two systems
depending on h1, h2, x1, and x2 will be of consistent evolution,

lim
t→∞

|h1(x1(t)) − h2(x2(t))| → 0. (2)

This controllable correlation is called generalized synchro-
nization, and it will degenerate to common complete synchro-
nization or phase synchronization upon selecting hi(xi) = xi

or hi(xi) = arg(xi), respectively. Similar to Mari’s measure,
Sc(t) := 〈q̂2

−(t) + p̂2
−(t)〉−1 [1], generalized synchronization

can be extended from the classical to the quantum regime
by considering conjugate quantities simultaneously, and the
corresponding measure can be defined as

Sg(t) := 〈
q̂2

g−(t) + p̂2
g−(t)

〉−1
, (3)

where q̂g− := [h1(q̂1) − h2(q̂2)]/
√

2 and p̂g− := [h1(p̂1) −
h2(p̂2)]/

√
2 are the quantized generalized error operators.

Nevertheless, it is not easy to use Eq. (3) directly in a
concrete model. In some cases, h1,2(q,p1,2) are not strict
physical descriptions because they are actually superoperators.

On the other hand, it could be difficult to calculate Sg(t) in CV
quantum systems. Therefore, in order to analyze quantum syn-
chronization in CV mesoscopic systems, we adopt the mean-
field approximation to simplify Eq. (3). The synchronization
measure can then be divided into two parts: the first-order
criterion describes the consistency of expectation values:

lim
t→∞ |h1(q1(t)) − h2(q2(t))| → 0,

lim
t→∞ |h1(p1(t)) − h2(p2(t))| → 0,

(4)

and the second-order measure determines quantum
fluctuations:

S ′
g(t) := 〈

δq2
g−(t) + δp2

g−(t)
〉−1

, (5)

where o refers to 〈o〉 and δo := ô − o for o ∈ {qg−,pg−}.
The physical meanings of Eqs. (4) and (5) are can better

explain quantum synchronization, i.e., the systems’ expecta-
tion values are required to satisfy the “classical” generalized
synchronization conditions, and the perturbation on synchro-
nization behavior caused by the quantum effect is squeezed as
much as possible. To verify this, Eq. (5) will be equivalent to
Eq. (3) if the first-order criterion is satisfied. Conversely, if a
designed external field can not only cause the evolutions of
the systems to realize “classical” generalized synchronization
conditions, but also increase the corresponding second-order
measure S ′

g , then it can be thought of as an appropriate control
field for realizing quantum synchronization. This is the basic
idea of designing the control field.

In some particular models, if h1 and h2 are selected as
flat mappings, Eq. (5) can be further simplified to measure
fluctuation,

S ′
g(t) :=〈δq2

−(t) + δp2
−(t)〉−1. (6)

Here q− := (q1 − q2)/
√

2 and p− := (p1 − p2)/
√

2.
Compared with Eq. (5), Eq. (6) is easier to obtain via the
covariance matrix of the system.

III. LYAPUNOV-BASED SYNCHRONIZATION
IN AN OPTOMECHANICAL SYSTEM

We analyze Lyapunov-based synchronization in an op-
tomechanical system in order to explain more intuitively the
theory of quantum generalized synchronization. Our model
consists of two oscillators that couple with a Fabry-Pérot
cavity together (see Fig. 1). The Hamiltonian corresponding
to this model can be divided into four parts: H = H0 + Hint +
Hdiv + Hc(t). Here H0 = ωla

†a + ∑
j=1,2(ωmj

2 p̂2
j + ωmj

2 q̂2
j ) is

a sum of free Hamiltonians corresponding to the optical field
and two oscillators. Moreover, Hint = −g1a

†aq̂1 − g2a
†aq̂2

and Hdiv = iE(a†e−iωd t − aeiωd t ) are the standard forms of
optomechanical interaction and driving field, respectively
[30,31]. Hc(t) is an external control Hamiltonian that rep-
resents the coupling with a designed time-dependent field.
Here we consider a form of the control field that can create a
deviation in the potential terms of two oscillators. This effect
can be regarded as a time-dependent rescaling of the mirror
frequency [32], i.e.,

ωmj

2
q̂2

j → ωmj

2
[1 + Cj (t)]q̂2

j . (7)
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FIG. 1. Diagram of an optomechanical system corresponding
to our model. Two oscillators are placed at the wave nodes of a
Fabry-Pérot cavity, and they couple with the cavity field via linear
optomechanical interactions. Their origins are set at the equilibrium
positions.

We will present a more detailed discussion about how to realize
this form of control field using specific experiments in Sec. V.
The Hamiltonian of the whole system is written as follows
after a frame rotating:

H =
∑
j=1,2

{
ωmj

2
p̂2

j + ωmj

2
[1 + Cj (t)]q̂2

j − gja
†aq̂j

}

−�a†a + iE(a† − a). (8)

In the above expression, a (a†) is the annihilation (creation)
operator for the optical field, and for j = 1,2, qj and pj

are dimensionless position and momentum operators of the
oscillator j , respectively. � = ωd − ωl refers to the detuning
between the frequencies of the laser drive and the cavity mode,
ωmj is the mechanical frequency, gj is the optomechanical
coupling constant, and E is the drive intensity. To solve the
dynamics of the system, we consider the dissipative effects in
the Heisenberg picture, and we write the quantum Langevin
equations as follows [32–34]:

∂ta = (−κ + i�)a + ig1aq̂1 + ig2aq̂2 + E +
√

2κain,

∂t q̂j = ωmj p̂j ,

∂t p̂j = −ωmj [1 + Cj (t)]q̂j − γj p̂j + gja
†a + ξ̂j .

(9)

Here κ is the decay rate of the optical cavity, and γj

is the mechanical damping rate of each oscillator. ain is
the radiation vacuum input noise with the autocorrelation
function 〈ain(t)ain,†(t ′)〉 = δ(t − t ′) under a zero-temperature
assumption [35]. Similarly, ξ̂j (t) is the Brownian noise
operator, which describes the dissipative friction force act-
ing on the j th mirror. In the Markovian approximation,
the autocorrelation function of ξ̂j (t) satisfies the following
relation: 〈ξ̂j (t)ξ̂j ′(t ′) + ξ̂j ′ (t ′)ξ̂j (t)〉/2 = γj (2n̄b + 1)δjj ′δ(t −
t ′), where n̄b = [exp(�ωj/kBT ) − 1]−1 is the mean phonon
number of the mechanical bath that gauges the temperature T

[36–38]. (In Figs. 2 and 4, since we only consider the situation
ωm1 	 ωm2, the parameter nb can be safely taken to be equal
for both oscillators.)

Solving directly a set of nonlinear differential operator
equations such as Eq. (9) is quite difficult, however a
mean-field approximation is acceptable in our mesoscopic
optomechanical model [31,39,41,42]. On the other hand, as
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FIG. 2. Evolution of the expectation values (blue dashed and red
solid lines), the control field, and the errors (the black solid and green
dashed lines indicate that the control field is imposed or removed,
respectively). Parts (a) and (b) correspond to the momentum and
position operators of each oscillator, respectively. Here we set � = 1
as a unit, and the other parameters are ωm1 = 1, ωm2 = 1.005, g1 =
0.008, g2 = 0.005, E = 10, κ = 0.15, γ = 0.005, and n̄b = 0.05. For
the control field, the parameters are taken as k = 2 and c− = 3. (c)
The limit cycles of two oscillators in phase space. (d) The robustness
of our controlled system. Here none of the simulations except for
R(σ ) contain any noise. The bottom inset in (d) is the contrast of
control fields without (red, dark) and with noise (yellow, pale), and
the upper inset in (d) is the synchronization errors p′

− (black solid)
and q ′

− (green dashed) when the control field has noise. The horizontal
axes of all the insets are the time t .

we discussed in Sec. II, the quantum synchronization measure
modified by the mean-field approximation can describe the
generalized synchronization effect more accurately. Therefore,
every operator in Eq. (9) can be rewritten, respectively, as a sum
of its expectation value and a small fluctuation near the expec-
tation value, that is, a(t) = A(t) + δa(t), ô(t) = o(t) + δo(t),
and o ∈ (q1,2,p1,2). Note that 〈δa〉 = 0 and 〈δo〉 = 0 under this
definition. After neglecting the high-order fluctuation terms,
the “classical” properties of our optomechanical system can
be described by the following nonlinear equations:

∂tA = (−κ + i�)A + ig1Aq1 + ig2Aq2 + E,

∂tqj = ωmjpj ,

∂tpj = −ωmj [1 + Cj (t)]qj − γipj + gj |A|2,
(10)

and the corresponding quantum fluctuations can also be
confirmed by

∂t δa = (−κ + i�)δa +
∑
j=1,2

igj (qj δa + Aδqj ) +
√

2κain,

∂t δqj = ωmjδpj ,

∂t δpj = −ωmj [1 + Cj (t)]δqj − γj δpj

+ gj (A∗δa + Aδa†) + ξ̂j , (11)
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transforming the annihilation operators to the forms of a =
(x̂ + iŷ)/

√
2 and ain = (x̂ in + iŷ in)/

√
2, respectively. Equa-

tion (11) can then be rewritten more concisely as ∂t û =
Sû + ζ̂ by setting the vectors û = (δx,δy,δq1,δp1,δq2,δp2)�
and ζ̂ = (x̂in,ŷin,0,ξ̂1,0,ξ̂2)�, and the corresponding S is a
time-dependent coefficient matrix (see Appendix for more
details). In this representation, the evolution of the correlation
matrix D, defined as

Dij (t) = Dji(t) = 1
2 〈ûi(t)ûj (t) + ûj (t)ûi(t)〉, (12)

can be derived directly by (see [15,39,41,42])

∂tD = SD + DS� + N. (13)

N is a noise matrix that will be in diagonal form, i.e.,
diag(κ,κ,0,γ1(2n̄b + 1),0,γ2(2n̄b + 1)), if the noise correla-
tion is defined by 〈ζ̂i(t)ζ̂j (t) + ζ̂j (t)ζ̂i(t)〉/2 = Nij δ(t − t ′).
With the help of Eq. (13), the above-mentioned synchroniza-
tion measure S ′

g can be simply expressed as

S ′
g(t) = 〈δq2

−(t) + δp2
−(t)〉−1

= {
1
2 [D33(t) + D55(t) − 2D35(t)]

+ 1
2 [D44(t) + D66(t) − 2D46(t)]

}−1
, (14)

and its evolution can be obtained by solving Eqs. (10) and
Eq. (13) in order. At this point, all the dynamic properties
of our system, including synchronization and correlation, can
be learned by means of the solutions of Eqs. (10), (13), and
(14). In the following subsections, we introduce two common
forms of generalized synchronization, namely constant error
synchronization (Sec. III A) and time-delay synchronization
(Sec. III B), to exhibit our ability with regard to control
synchronization. We will also prove how the controller is
designed in order to realize these synchronizations. In a general
discussion of synchronization, controlled systems may be
arbitrary and have certain differences. These differences may
mean that the amplitudes of the two systems are not fixed
values but take on small oscillations with time evolution. For
definiteness and without loss of generality, we will impose
the control field at different stages for different generalized
synchronizations, that is, we start imposing the control field
when the system is unstable and is at the initial stage of
evolution of constant error synchronization. However, for
time-delay synchronization, we will impose the control field
after the system reaches its steady state without the control
field.

A. Constant error synchronization

Constant error synchronization can be regarded as a
translation in phase space between two systems. In Eq. (2), if
we let h1(x1) = x1 + c1 and h2(x2) = x2 + c2, the “classical”
synchronization criterion will be

lim
t→∞ |x1(t) − x2(t)| → c2 − c1 = c−, (15)

where c− is the so-called constant error. In view of the direct
influence of the controller on ∂tpj , at first we only consider the
evolutions of the momentum operators, and further construct
the following Lyapunov function by using their expectation

values:

Vp(t) = [p1(t) − p2(t)]2. (16)

One can easily verify that Vp(t) meets the conceptual require-
ments of a Lyapunov function, i.e., Vp � 0, and Vp = 0 is
valid only when p1(t) − p2(t) = 0. Substituting Eq. (10) into
Eq. (16), the time derivative of Vp can be calculated handily if
C1(t) = C2(t) = C(t),

V̇p(t) = 2[ṗ1(t) − ṗ2(t)][p1(t) − p2(t)]

= 2{[1 + C(t)](ωm2q2 − ωm1q1) − γ1p1

+ γ2p2 + (g1 − g2)|A|2}(p1 − p2). (17)

We find that V̇p(t) is always nonpositive by setting

ṗ1(t) − ṗ2(t) = −k[p1(t) − p2(t)], (18)

where k is a positive real number. With this choice, Vp simulta-
neously satisfies Vp � 0 and V̇p = −2k[p1(t) − p2(t)]2 � 0.
Under this condition, the system will gradually evolve to a
stable state that corresponds to the origin of the Lyapunov
function, i.e., p1(t) = p2(t) [27]. To satisfy the required form
of the Lyapunov function, the control field can be obtained
based on Eqs. (17) and (18),

C(t) = (γ − k)[p1 − p2] − (g1 − g2)|A|2
ωm2q2 − ωm1q1

− 1, (19)

where we have already set γ1 = γ2 = γ . To avoid confusion
in the following discussion on time-delay synchronization, it
must be emphasized that all mechanical quantities that are not
specifically marked in this equation represent the expectation
values at time t [e.g., p1 := p1(t)].

We notice, however, that the control field C(t) in Eq. (19)
could be infinite when the tracks of q1 and q2 are adjacent.
In particular, complete synchronization is not acceptable if
ωm1 	 ωm2. To avoid this singularity, it is necessary to add a
lower bound in the denominator of the control field. Therefore,
the control field is modified as follows:

C(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(γ − k)[p1 − p2] − (g1 − g2)|A|2
ωm2q2 − ωm1q1

− 1

(when |ωm2q2 − ωm1q1| > c−),

0

(when |ωm2q2 − ωm1q1| � c−).

(20)

The physical mechanism corresponding to Eq. (20) can be
interpreted as follows: Assuming that the gap between two
oscillators is small enough to satisfy |ωm2q2 − ωm1q1| � c−
at the initial moment, the control field will not work and the
difference between oscillators under different Hamiltonians
will increase; once such a difference crosses the boundary
|ωm2q2 − ωm1q1| > c−, a nonzero control field will drag their
orbits close to each other until a critical distance is reached,
which will cause the invalid control field to resume. As time
passes, the error evolution will be controlled in a stable limit
ellipse. Under a particular k and c−, it can be regarded as a fixed
point if the major axis of this ellipsoid is small enough. In this
case, two systems will finally realize such a synchronization:
p1 − p2 = 0 and q1 − q2 = c−. Therefore, we make sure that
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C(t) in Eq. (19) is able to control the system, thus generalized
synchronization is achieved.

In Fig. 2, we provide simulation results of the two oscillators
to verify the synchronization phenomenon under the control
field. In Fig. 2(a), one can directly see that the momenta of
two oscillators will take on consistent evolution after t = 41.3,
which is exactly what happens with the time point at which the
control field is nonzero. Correspondingly, the momentum error
will stabilize at zero instead of generally enlarging along with
the control field. Figure 2(a) also shows quantitatively that the
control field is a slowly varying function of time. Such a slowly
varying control field can improve the stability of the system,
and at the same time it is easier to implement in experiments.
In Fig. 2(b), we plot the positions of two oscillators and the
corresponding error. It illustrates that, although two oscillators
are not consistent in their positions, the error can still maintain
a constant (c−). Taking Figs. 2(a) and 2(b) together, we can
determine that constant error synchronization between two
oscillators has been achieved. In Fig. 2(c), we show the
“tracks” of two oscillators in phase space. Two oscillators
will evolve to their respective limit cycles, and, as we
predicted above, constant error synchronization corresponds
to a translation between the limit cycles in phase space.
Figure 2(d) illustrates the robustness of our synchronization
system. Here we assume that each quantity in Eq. (20) has
had a Gaussian noise added whose standard deviation is σ ,
i.e., o(t) = N (o(t),σ ) (o ∈ {q1,2,p1,2,A}), and the final control
field also has a noise [C(t) = N (C(t),σ )] when it is imposed
on the system. The accuracy of the synchronization scheme in
this case is described by the following auxiliary quantity:

R(σ ) = 1 − [(q− − q ′
−)2 + (p− − p′

−)2]1/2

√
2r

. (21)

In this expression, p′
− and q ′

− (p− and q−) refer to the
synchronization errors when the control field has (does not
have) a Gaussian noise, and r is the average radius of the
limit cycle. One can find that R(σ ) will always remain above
96% even if σ = 0.02. Under the above parameters, even if
there are obvious fluctuations in the control field, the errors
between two oscillators are still stable upon approaching 0 and
c′
−. Therefore, we confirm that our control is stable enough for

some interferences.
In addition to the expectation value, Mari’s measure is

also calculated to prove that quantum fluctuation is similarly
squeezed by the control field. Figure 3(a) illustrates that an
increasing S ′

g substitutes the trend to 0, which significantly out-
performs the uncontrolled situation. Therefore, we recognize
that the control field can indeed achieve quantum control rather
than the synchronization of the classical level. To compare
our generalized synchronization with some other complete
synchronizations, in the inset in Fig. 3(a) we calculate Sg by
using classical errors and S ′

g because Sg is of the same physical
meaning as the synchronization measure in Ref. [1]. It can be
found that Sg � S ′

g because the classical error information is
also included in Sg . In Fig. 3(b), we also show how the bath
temperature will influence the synchronization phenomenon.
Here we calculate the time-averaged synchronization measure,
i.e., S̄g = [

∫ T

0 Sg(t)dt]/T , with varied bath temperature. It is
known that S ′

g(t) will remain almost unchanged if the bath
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FIG. 3. (a) Evolutions of the modified synchronization measure
S ′

g . The inset in (a) shows the evolutions of the synchronization
measure Sg . (b) Time-averaged synchronization measures with varied
bath temperature. Blue (solid) lines correspond to the imposed
control field, and red (dotted) lines denote that the case control field
disappears. In these simulations we set T = 200, and other parameters
are the same as those in Fig. 2.

temperature is limited within 1 mK (n̄b = 0.28 corresponding
to a MHz phonon frequency), and it is still larger than that
belonging to the uncontrolled system even though T goes up
to 10 mK (n̄b = 6.14). This range is quite broad compared to
other correlation control schemes in optomechanical systems
[43,44].

B. Time-delay synchronization

Time-delay synchronization can be regarded as a constant
phase deviation between two systems, and the “tracks” in
phase space are overlapping like complete synchronization.
In Eq. (2), if we set h1(x1) = x1(t) and h2(x2) = x2(t − τ ), the
“classical” synchronization criterion will be

lim
t→∞ |x1(t) − x2(t − τ )| → 0. (22)

Similar to the above discussions, we define the following
Lyapunov function:

Vp(t) = [p1(t) − p2(t − τ )]2, (23)

and its derivative can also be expressed as V̇p = 2[ṗ1 − ṗ2(t −
τ )][p1 − p2(t − τ )], where

ṗ1 − ṗ2(t − τ ) = −ωm1[1 + C1]q1 − γ1p1 + g1|A|2,
+ωm2q2(t − τ ) + γ2p2(t − τ )

+ g2|A(t − τ )|2. (24)

It must be emphasized again that, in the above expressions,
all the mechanical quantities not specifically marked represent
the expectation values at time t . Similarly, we set

ṗ1 − ṗ2(t − τ ) = −k[p1(t) − p2(t − τ )] (25)
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to satisfy Vp � 0 and V̇p = −2k[p1 − p2(t − τ )]2 � 0. Then the corresponding control field will become

C1(t) = (γ − k)[p1 − p2(t − τ )] − g1|A|2 + g2|A(t − τ )|2 − ωm2q2(t − τ )

−ωm1q1
− 1 (26)

by setting C2(t) = 0 and γ1 = γ2 = γ for simplicity.
Equation (26) is also of a singular point at q1(t) = 0, therefore an artificial boundary is necessary to avoid an infinite control

field, too. Unlike Eq. (20), our purpose here is to make two systems achieve complete synchronization after eliminating the time
delay. Therefore, this limitation works on the whole control field instead of the denominator. So the control field should be [40]

C1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(γ − k)[p1 − p2(t − τ )] − g1|A|2 + g2|A(t − τ )|2 − ωm2q2(t − τ )

−ωm1q1
− 1 (−CM � C1 � CM ),

CM (C1 > CM ),

−CM (C1 < −CM ).

(27)

In Figs. 4(a) and 4(b), we show that the evolutions of one
oscillator seem to be a time translation of the other oscillator,
and the errors tend to zero like complete synchronization after
eliminating the time delay. Figure 4 also exhibits a quickly
varying control field that is different with the performance in
constant error synchronization. In general, a quickly varying
control field can make the system achieve synchronization
faster. Figures 4(a) and 4(b) show that two oscillators will
achieve synchronization in a short period of time, t < 10, and
synchronization time is reduced fourfold compared with that
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FIG. 4. Evolutions of the expectation values (blue dashed and red
solid lines), the control field, and the errors (black solid and green
dashed lines indicate that the control field is imposed or removed,
respectively). Parts (a) and (b) correspond to the momentum and
position operators of each oscillator, respectively. (c) The limit cycles
of two oscillators in phase space. This phase diagram corresponds
to the curve segment within the black dotted box in (b). (d) The
robustness of the control system. Here we set τ = 5, CM = 1, and
the other parameters are the same as those in Fig. 2. The bottom inset
in (d) is the contrast of the control field without (red, dark) and with
noise (yellow, pale), and the upper inset in (d) is the synchronization
errors p′

− (black solid) and q ′
− (green dashed) when the control field

has noise. The horizontal axes of the insets in (a), (b), and (d) are
the time t . Here we define the moment imposing the control field as
t = 0.

in Figs. 2(a) and 2(b). Furthermore, Fig. 4(d) illustrates that
synchronization accuracy is 99%, which means robustness is
enhanced because we start the control field from a steady
state. We also plot the limit cycles of two oscillators in
Fig. 4(c). It is known that two limit cycles are almost coincident
most of the time except at short time intervals at the origin
and destination points at which both limit circles take on
inconsistent evolutions because of the time delay.

We also consider the evolutions of quantum fluctuation
and synchronization measure Sg . Figure 5(a) shows that
after adding the control field, Sg is significantly larger than
zero even though the control field is not imposed until the
system reaches steady state after a long time evolution.
Simultaneously considering Figs. 3 and 5, we think that our
control has no special requirements for the initial state of the
system, and the control field can be imposed at any time in
our model. Figure 5(b) also illustrates that the destruction
of the synchronization effect caused by the environment is
also weakened, and S̄ ′

g(t) will still remain at a high level
even at T = 10 mK. From this perspective, we believe that
quickly varying the control field is also an appropriate form of
synchronization control.

IV. CORRELATION IN GENERALIZED
SYNCHRONIZATION

The correlation between synchronized quantum systems is
an important topic of research in QIP. Intuitively, two different
systems can achieve consistency to some extent, meaning
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FIG. 5. (a) Evolutions of the modified synchronization measure.
(b) Time-averaged synchronization measures with varied bath tem-
perature. Blue (solid) lines correspond to the imposed control field,
and red (dotted) lines indicate that the control field disappears. Here
all parameters are the same as those in Fig. 3.
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and time delay synchronization, respectively. Here all the parameters
except c− and τ are the same as those in Fig. 2. The inset in (b) shows
the largest Lyapunov exponents of the errors with varied CM under
τ = 5.

that there inevitably exists a certain correlation between the
systems. To verify this, quantum mutual information, which
is a measure of total correlation, has been proved to have ho-
mology with synchronization measures in VdP oscillators [3].
However, it is very difficult to identify this type of correlation,
especially because the existence of quantum entanglement in
CV synchronization is controversial [1,3,8,14]. Therefore, we
pay more attention to the properties of entanglement when we
consider the quantum correlation in our model.

The mean-field approximation used above can make it
more convenient to analyze classical correlation and quantum
entanglement. The classical correlation can be verified by
calculating the largest Lyapunov exponent of the errors, i.e.,
Lmax

y = max{Ly(pg−),Ly(qg−)}, where

Ly(o) = lim
t→∞

1

t
ln

∣∣∣∣ δo(t)

δo(0)

∣∣∣∣ (o ∈ {pg−,qg−}). (28)

Using the stability criterion, one can determine whether the
system is stable by comparing Ly with 0 [41,47]. In particular,
as we discussed in Ref. [15], the largest Lyapunov exponent
of error can be regarded as a criterion of quantum synchro-
nization, i.e., a positive Ly indicates that two systems are
not synchronized, while a negative Ly means the “classical”
parts of two systems are synchronized. On the other hand, CV
quantum entanglement is measured by Gaussian negativity
En = max{0, − log2 ν−} [34,48,49], where

ν− =
√

�(�) −
√

�(�)2 − 4 det �

2
,

(29)

�(�) = det A + det B − 2 det C, and

� =

⎛
⎜⎝

D33 D34 D35 D36

D43 D44 D45 D46

D53 D54 D55 D56

D63 D64 D65 D66

⎞
⎟⎠ =

(
A C

C� B

)
. (30)

In Fig. 6, we plot the largest Lyapunov exponents under
different characteristic parameters (c−, τ , and CM ). The results
show that a negative Lyapunov exponent always emerges under
different control fields. This performance is superior to our
conclusion in Ref. [15], in which we found that the Lyapunov
exponent corresponding to coupling synchronization is not
always less than 0 under different parameters, but it depends
sensitively on varying the coupling intensity between two
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FIG. 7. (a) The maximum negativities of the errors with varied c−
(a) and τ and CM (b) corresponding to constant error synchronization
and time-delay synchronization, respectively. Here all parameters
except c−, τ , and CM are the same as those in Fig. 2. (b) Time-averaged
synchronization measures with varied bath temperature. Here the
black (dark) lines correspond to complete synchronization (solid line)
and phase synchronization (dotted line) in Ref. [1], respectively. The
yellow (pale) lines correspond to our constant error synchronization
(dotted line) and time-delay synchronization (solid line).

optomechanical systems. This means, compared to the direct
coupling between two systems, that the designed Lyapunov
function can more effectively help the systems to establish
correlation at the expected value level.

In Fig. 7(a), we plot the results of maximum negativity
under different characteristic parameters. It should be noted
that generalized synchronization is actually a necessary con-
dition for complete synchronization, and the characteristic
parameters can be regarded as a description of the gap between
generalized synchronization and complete synchronization.
Consequently, one can compare complete synchronization
with generalized synchronization by setting c− → 0, τ → 0,
and CM → ∞. Figure 7(a) shows that quantum entanglement
does not exist until c− = 2.65, at which point it takes on the
oscillating variation, and its maximum value is at c− = 3.13.
The evolution of maximum implies that when c− tends
to 0, the oscillators are equivalent to achieving complete
synchronization and they are always separable in this case.
In the range of generalized synchronization, however, the
entanglement appears at specific c−. The inset of Fig. 7(a)
shows that the entanglement will be hard to achieve if
we do not control our scheme until the system reaches
steady state. This conclusion suggests that, compared with
generating entanglement by a local control field, it is better
to achieve entangled synchronization by making the system
quickly reach synchronization before the environment destroys
entanglement.

In Fig. 7(b), we contrast Sg with Sc and Sp, which
are calculated and reported in Ref. [1], to measure com-
plete synchronization and phase synchronization between
two coupled optomechanical systems. We find that Sg in
our scheme is smaller than Sc and Sp because generalized
synchronization cannot ensure that the dynamical variables of
the two systems are completely equal. Quantitatively, the most
perfect synchronization effect we can achieve is equivalent
to the phase synchronization in Ref. [1] under T = 8 mK.
In other words, the compressing effect for the difference
between quantum fluctuations in complete synchronization
and phase synchronization is better than that in our generalized
synchronization. Nevertheless, as we discussed above, the
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generalized synchronization is a more flexible synchroniza-
tion. Even though the entanglement is hindered by complete
synchronization and phase synchronization in some models
or parameters [1,3], one can always relax some restrictions by
designing different generalized synchronizations to ensure that
entanglement can coexist with synchronization. Therefore, we
think that our generalized synchronization is also a suitable
resource for QIP.

V. DISCUSSION AND RESULTS

Here we present a brief discussion about the parameters of
our optomechanical system and the realization scheme of the
control field. The parameters selected in the simulations are
similar to those in Refs. [1,14,39,45,46]. However, in order
to highlight the roles of the coupling and the controller, we
appropriately reduce the value of the driving intensity [15].
Beyond that, the deviation in potential such as that in Eq. (7)
has been investigated by theoretical research [32], and recent
works reported that the deviation can be achieved by using
charged mechanical resonators [50–53]. For example, Zhang
considered a charged mechanical resonator (MR) that couples
to two identical electrodes via the Coulomb interaction. In
this model, the MR will have an effective frequency ωeff =
ωm

√
1 + ηf (t), where

η = C0U0QMR

πε0mω2
md3

(31)

is obtained in Ref. [52]. If the voltage is set as U (t) =
C(t)U0/η, the effective frequency will become ωeff =
ωm

√
1 + C(t) and Eq. (7) can be achieved. Therefore, the

control field can be realized by only regulating the bias gate
voltage, and we are sure that the control terms in Eqs. (20)
and (27) can be achieved easily in experiments. Using the
same circuit parameters as those in Ref. [52], we find that our
control field corresponds to U0 = 7.00 V and f (t) ∼ 10−5.
It has already been proven in Ref. [52] that the oscillator
noise is derived mainly from environmental noise in the range
f (t) ∈ [10−10,100]. Therefore, we think that the quantum
noise from the control field itself can be neglected in this
case.

Here we analyze how strongly the neglected quantum
effects can influence the dynamics discussed above. For the
strict solution of Eq. (8), the mechanical equations of the
system are open due to the nonlinear term gja

†aq̂ in the
Hamiltonian. Let us reexamine the derivation process from
Eq. (9) to Eqs. (10) and (11). Equation (10) can be obtained
after neglecting the terms igj 〈δaδqj 〉 and gj 〈δa†δa〉 because
we assume 〈δo1δo2〉 = 〈δo1〉〈δo2〉 (o1,o2 ∈ {a,a†,qj }). To
obtain Eq. (11), the terms gj δaδqj and gj δa

†δa have also
been ignored since they are high-order small quantities if
there are a large number of phonons in the oscillators. It is
worth noting that all the ignored terms impact the dynamics
of the system with interaction factor gj , and the quantum
correlation may disappear with large κ . Therefore, in addition
to the phonon number and the bath temperature, the accuracy of
the approximation is also related to the “quantum parameter”
gj/κ , which is defined in Refs. [54,55]. It has been proven
in Ref. [54] that the system will correspond to the classical
limit even if the phonon number is not very large, and
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FIG. 8. Comparison of two computation methods corresponding
to the linear mean-field approximation and the nonlinear quantum
master equation. (a) Evolutions of expectation values q1. (b) Evolu-
tions of S ′

g . (c) Relative error as a function of κ under g1 = 0.008.
The inset in (c) shows the relative error as a function of g1 under
κ = 0.15. The other parameters are the same as those in Fig. 2.

the bath temperature is low when the quantum parameter
vanishes. Correspondingly, increasing the quantum parameter
will enhance the quantum effects on the motion of the system.
In the simulations of two kinds of synchronizations, the
quantum parameters are set as g1/κ ∼ 0.05 and g2/κ ∼ 0.03.
We think that the expected values and the first-order fluctuation
of the system can be described accurately by Eqs. (10), (11),
and (13).

To verify the above discussion, we utilize the quantum
master equation to calculate the expected values and S ′

g .
Using the quantum master equation, we calculate all the
first-order nonlinear terms strictly, and we only ignore the
correlation between second-order nonlinear terms [56]. We
find that the constant error synchronization has a minimum
phonon number. Therefore, we focus here on the damage
inflicted by the high-order nonlinear terms on the mean-field
approximation corresponding to Fig. 2. In Fig. 8, we plot
a comparison of these two methods, and we show that the
influence of the first-order nonlinear terms is quite small
under our parameters. Considering the fact that first-order
nonlinear terms have almost no impact on the system, the
higher-order nonlinear terms should also have no effect on the
system. A similar conclusion is also verified in Fig. 8(b), which
shows an almost unchanged synchronization measure S ′

g . To
quantitatively illustrate this problem, we also calculate the
relative deviation between expected values, which is defined as
Er = [

∫ T

0 |q1(t) − q1(t)′|dt]/T r ′. Here q1 and q ′
1 correspond

to the expected values of q̂1 calculated by the mean-field
approximation and the master equation, respectively, and r ′
is the average radius of the limit cycle [the same definition as
in Eq. (21)] calculated by the master equation. In Fig. 8(c),
we find that the first-order nonlinear terms neglected by the
mean-field approximation can only produce a deviation of
less than 5%, but this deviation will increase significantly
when g1 increases or κ decreases. Generally speaking, the
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mean-field approximation will become more applicable in high
bath temperature. Because all the above results are calculated
in low temperature (n̄b = 0.05), we think that the mean-field
approximation is available in our simulations due to small
gj/κ . Moreover, it can be seen from Figs. 3(b) and 5(b) that
the synchronization performance will be disturbed by high
bath temperature. To sum up, one necessary condition of our
scheme is that gj/κ should be small enough to ensure that the
mean-field approximation works in low temperature.

In summary, we have extended Mari’s theories about
quantum complete synchronization and phase synchronization
to a more general situation, defined as quantum generalized
synchronization in this paper. The corresponding control meth-
ods, criteria, and measures are also proposed quantificationally
based on the Lyapunov function, the Lyapunov exponent, and
a modified Mari measure. This generalized synchronization
can be regarded as a prerequisite of traditional quantum
synchronization, and it can establish a more flexible relation
between two controlled systems. To verify this, we have
demonstrated that some important properties in our model,
such as entanglement in synchronization, are consistent with

previous works if the generalized synchronization tends to
complete synchronization. Therefore, designers can complete
different synchronizations according to their requirements
based on our theory. To make our theory more intuitive, we
have considered two common generalized synchronizations,
that is, the so-called constant error synchronization and time-
delay synchronization in an optomechanical system. With the
help of control fields designed by the Lyapunov function,
we have proved that two oscillators can satisfy the require-
ments of various synchronizations. We believe that our work
brings a certain application value in quantum-information
transmission, quantum control, and quantum logical
processing.
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APPENDIX: PARAMETERS IN QUANTUM LANGEVIN EQUATIONS

The concrete form of the coefficient matrix S in Eq. (13) is

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κ −(� + g1q1 + g2q2) −√
2g1Im(A) 0 −√

2g2Im(A) 0
� + g1q1 + g2q2 −κ

√
2g1Re(A) 0

√
2g2Re(A) 0

0 0 0 ωm1 0 0√
2g1Re(A)

√
2g1Im(A) −ωm1[1 + c1(t)] −γ1 0 0

0 0 0 0 0 ωm2√
2g2Re(A)

√
2g2Im(A) 0 0 −ωm2[1 + c2(t)] −γ2

⎞
⎟⎟⎟⎟⎟⎟⎠
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