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in a variable-coefficient nonlinear Schrödinger equation with higher-order effects

Lei Wang,1,* Jian-Hui Zhang,2 Chong Liu,3 Min Li,1 and Feng-Hua Qi4
1Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, People’s Republic of China

2School of Energy Power and Mechanical Engneering, North China Electric Power University, Beijing 102206, People’s Republic of China
3School of Physics, Northwest University, Xi’an 710069, People’s Republic of China

4School of Information, Beijing Wuzi University, Beijing 101149, People’s Republic of China
(Received 11 March 2016; published 16 June 2016)

We study a variable-coefficient nonlinear Schrödinger (vc-NLS) equation with higher-order effects. We show
that the breather solution can be converted into four types of nonlinear waves on constant backgrounds including
the multipeak solitons, antidark soliton, periodic wave, and W-shaped soliton. In particular, the transition condition
requiring the group velocity dispersion (GVD) and third-order dispersion (TOD) to scale linearly is obtained
analytically. We display several kinds of elastic interactions between the transformed nonlinear waves. We
discuss the dispersion management of the multipeak soliton, which indicates that the GVD coefficient controls
the number of peaks of the wave while the TOD coefficient has compression effect. The gain or loss has influence
on the amplitudes of the multipeak soliton. We further derive the breather multiple births and Peregrine combs by
using multiple compression points of Akhmediev breathers and Peregrine rogue waves in optical fiber systems
with periodic GVD modulation. In particular, we demonstrate that the Peregrine comb can be converted into a
Peregrine wall by the proper choice of the amplitude of the periodic GVD modulation. The Peregrine wall can be
seen as an intermediate state between rogue waves and W-shaped solitons. We finally find that the modulational
stability regions with zero growth rate coincide with the transition condition using rogue wave eigenvalues. Our
results could be useful for the experimental control and manipulation of the formation of generalized Peregrine
rogue waves in diverse physical systems modeled by vc-NLS equation with higher-order effects.
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I. INTRODUCTION

Breathers have gotten a lot of attention due to their interac-
tions and energy exchange with a constant background [1,2].
Different from the usual soliton dynamics, their interactions
can generate unique behaviors. Breathers can be classified
into two kinds: Kuznetsov-Ma breathers (KMBs) [3] and
Akhmediev breathers (ABs) [4]. KMBs are periodic in space
and localized in time while ABs are periodic in time and
localized in space. Taking the period of both breather solutions
to infinity produces a Peregrine soliton (PS) solution [5], which
is localized both in space and time and serves as a prototype
of a rogue wave [6]. Rogue wave, which has a peak amplitude
generally more than twice the significant wave height, appears
from nowhere and disappears without a trace [2]. It appears as
a result of the modulation instability (MI) [7,8] of a weakly
modulated plane wave. And more specifically, rogue-wave for-
mation is related to a special kind of MI, namely, the baseband
MI whose bandwidth includes arbitrarily small frequencies [9].
Experimentally, rogue waves have been observed in optical
fibers [10], water-wave tanks [11], and plasmas [12]. Despite
that many integrable equations have been shown to admit
the rogue-wave solutions, in theory, the standard nonlinear
Schrödinger (NLS) equation is seen as a basic model for the
dynamics of rogue waves, both in water and optics.

In optical communications, there always exist some nonuni-
formities due to various factors, which include the imperfec-
tion of manufacture, variation in the lattice parameters of the
fiber media and fluctuation of the fiber diameters [13]. Those
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nonuniformities often lead to such effects as the fiber gain
or loss, phase modulation, and variable dispersion [14]. The
inclusion of the variable coefficients into the NLS equations
is currently an effective way to reflect the inhomogeneous
effects of the nonlinear optical pulses [15]. On the other
hand, if the dispersion and nonlinear effect in a mode-locked
fiber laser is very strong, the pulse parameters, such as the
width, chirp, phase, and position, will change significantly
from their initial values [16]. Thus, the concept of soliton
dispersion management and soliton control in a fiber, which
is used to address this problem, has been recently proposed.
The dispersion management of the soliton is often modeled
by the NLS equations with varying dispersion and nonlinear
coefficients along with a gain or loss coefficient [17]. Serkin
et al. reported for the first time the existence of a dispersion-
managed soliton for such a system [17], and then showed some
new results and predicted various applications of dispersion-
management solitons [18]. Compared with a conventional
soliton, this type of soliton can not only be accelerated but
also be amplified, preserving its shape and elastic character,
which makes it more suitable for diverse physical applica-
tions [16]. Different from the nonlinear evolution equations
with constant coefficients, the rogue waves and breathers in
variable-coefficient ones can show some novel features such
as the nonlinear tunneling effect, recurrence, annihilation,
and sustainment [19–21], to name a few. Recent studies
have also reported the breather evolution, amplification, and
compression, Talbot-like effects, and composite rogue-wave
structures in some variable-coefficient nonlinear evolution
equations [22]. Moreover, Tiofack et al. have demonstrated
a novel multiple compression points structure in periodically
modulated NLS equations, which is termed as a Peregrine
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comb [23]. Additionally, the studies of the control and
manipulation of the rogue waves in variable-coefficient models
may help to manage them experimentally in inhomogeneous
optical fibers [21,24] and Bose-Einstein condensates [19,25],
and also provide a good fit between the theoretical analysis and
real applications in future spatial observations and laboratory
plasma experiments [26].

The propagation of a picosecond optical pulse is usually
described by the standard NLS equation. However, for the
propagation of a subpicosecond or femtosecond pulse, the
higher-order effects such as the third-order dispersion, self-
steepening, and delayed nonlinear response should be taken
into account [27–31], which makes the modification of the
NLS equation as a more accurate prototype of the wave
evolution in the real world. These effects may add qualitatively
certain new properties to the wave propagation phenomena,
e.g., to breathers, rogue waves, and MI. Akhmediev et al. have
shown that a breather solution of the third- and fifth-order NLS
equations can be converted into a nonpulsating soliton solution
on a background, which does not exist in the standard NLS
equation [32,33]. Wang et al. have discovered that the breather
solutions in the NLS equation with fourth-order dispersion
and nonlinear terms can be transformed into different types
of nonlinear waves and the interactions between these waves
are elastic [34]. Such transitions have also been reported
in the higher-order coupled systems including the Hirota-
Maxwell-Bloch (HMB) system [35] and NLS-MB system with
fourth-order effects [36]. He et al. have found that the higher-
order terms control compression effects of the breather and
rogue waves [37]. With such higher-order perturbation terms
as the third-order dispersion (TOD) and delayed nonlinear
response term, Liu et al. have found that the MI growth
rate shows a nonuniform distribution characteristic in the
low perturbation frequency region, which opens up a stability
region as the background frequency changes [38]. They have
further exhibited an intriguing transition between bright-dark
rogue waves and W-shaped–anti-W-shaped solitons, which
occurs as a result of the attenuation of MI growth rate to
vanishing in the zero-frequency perturbation region [39].

In this paper, we consider a variable-coefficient NLS
(vc-NLS) equation with higher-order effects as follows
[40–42]

i qz + d2(z)

2
qtt + R(z)|q|2q − i d3(z)qttt − i 6 γ (z)|q|2qt

− i

2
�(z)q = 0, (1)

with
γ (z)

d3(z)
= R(z)

d2(z)
, � = W [R(z),d2(z)]

d2(z)R(z)
,

(2)
W [R(z),d2(z)] = R d2z − d2 Rz,

where z is the propagation variable, t is the retarded time
in a moving frame with the group velocity, and q(z,t) is the
slowly varying envelope of the wave field. The coefficients
d2(z), R(z), d3(z), γ (z), and �(z) represent the group velocity
dispersion (GVD) effect, Kerr nonlinear effect, TOD effect,
the time-delay correlation to the cubic term, and the gain
or loss effect, respectively. Liu et al. have studied the two-
soliton interactions of Eq. (1) analytically and numerically,
and discussed the higher-order-effects management of soliton
interactions [41]. He et al. have investigated the control and
manipulation of the rogue waves of Eq. (1) [42]. Note that the
vector form of Eq. (1), i.e., the coupled Hirota equations, also
admits the rogue wave [29,30], W-shaped soliton [39], and
Peregrine comb solutions [43].

Our goals here are twofold: (i) the breather transition
dynamics and nonlinear wave management; (ii) the breather
multiple births and the Peregrine combs and walls. We first
present intriguing different kinds of nonlinear localized and
periodic waves, including the multipeak soliton, W-shaped
soliton, and periodic wave. With the multipeak soliton, for
example, we discuss the effects of GVD coefficient, TOD
coefficient, and gain or loss coefficient. We further reveal
the relation between such transition and MI characteristics.
On the other hand, considering periodic modulation, we
display three types of multiple compression points structures,
the breather multiple births, Peregrine combs, and Peregrine
walls, whose spatiotemporal characteristics are also analyzed
analytically.

The arrangement of the paper is as follows. In Sec. II, we
will present different types of transformed nonlinear waves
of Eq. (1), show their interactions, and analyze the effects of
variable coefficients. In addition, the transition condition will
be given analytically. The relation between the MI growth
rate and transition condition will be revealed in Sec. III.
The Peregrine comb and wall structures as well as their
spatiotemporal characteristics will be studied in Sec. IV.
Finally, Sec. V will present the conclusions of this paper.

II. BREATHER TRANSITION DYNAMICS

A. Breather-to-soliton transitions

In this section, we mainly study the breather transition
dynamics for Eq. (1). By virtue of the Darboux transformation
(see Appendix), the first-order breather solution of Eq. (1) can
be derived as

q
[1]
B = c(z)

(
1 + 2 β

G
[1]
B + i H

[1]
B

D
[1]
B

)
ei ρ, (3)

with

ρ = m(z) + n t, m(z) =
∫ (

− 1

2
(n2 − 2)d2(z) − n(n2 − 6)d3(z)

)
dz,

G
[1]
B = k1k2 cos(z VH + t hR) cosh(2 χI ) − cosh(z VT + t hI ) sin(2 χR),

H
[1]
B = cos(2 χR) sinh(z VT + t hI ) + k1k2 sin(z VH + t hR) sinh(2 χI ),
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D
[1]
B = cosh(z VT + t hI ) cosh(2 χI ) − k1k2 cos(z VH + t hR) sin(2 χR),

h = 2

√
1 +

(
λ + n

2

)2

= hR + i hI , k1 = 1, k2 = ±1,

� =
(

t − 1

2

∫
((n − 2 λ)d2(z) + 2(−2 + n2 − 2 n λ + 4 λ2)d3(z))dz

)
h

2

= [t + �R(z) + i �I (z)]
h

2
,

χ = 1

2
arccos

h

2
, c(z) =

√
d2(z)

R(z)
=

√
d3(z)

γ (z)
= exp

[
1

2
�(z)

]
, λ = α + β i,

VT = 2[�R(z) hI + �I (z) hR], VH = 2[�R(z) hR − �I (z) hI ].

From the above expression, one can find that the breather
solution (3) is composed of the hyperbolic functions
sinh(z VT + t hI ), cosh(z VT + t hI ), and trigonometric func-
tions sin(z VH + t hR), cos(z VH + t hR), where �R(z) +
�I (z)hR

hI
and �R(z) − �I (z)hI

hR
are the corresponding velocities.

The hyperbolic functions and trigonometric functions describe
the localization and periodicity of the transverse distribution
t of those waves, respectively. The nonlinear wave described
by the solution (3) could be seen as a nonlinear superposition
of a soliton and a periodic wave. The period of the breather
along t-coordinate axis is determined by π

hR
, which is related

to the eigenvalue λ = α + β i. Compared with the Hirota
equation with constant coefficients, the breather solution (3) of
the inhomogeneous Hirota equation (1) includes the variable
dispersion [d2(z)], nonlinearity [R(z)], higher-order effects
[d3(z) and γ (z)], and gain or loss [�(z)]. More specifically,

the intensity of the breather is controlled by c(z) =
√

d2(z)
R(z) =√

d3(z)
γ (z) = exp[ 1

2�(z)], which means that we can manipulate

the intensity by adjusting the gain or loss coefficient or the
ratio of dispersion and nonlinearity. In addition, it is observed
that VT and VH are associated with the GVD effect d2(z) and
TOD effect d3(z) that affect the velocity of the breather. Thus,
we will study the dynamics of the breather described by the
solution (3) depending on the above parameters.

First, we show that the breather solution (3) can be
converted into four types of nonlinear waves depending

on the values of the velocity difference �I (z)(h2
R+h2

I )
hRhI

. When

�I (z)( h2
R+h2

I

hRhI
) �= 0 [or �I (z) �= 0], the solution (3) character-

izes the localized waves with breathing behavior on constant
backgrounds (i.e., the breathers and rogue waves). Further,
if α = − n

2 , we have the ABs with |β| < 1, the KMBs with
|β| > 1, and the PS with |β| = 1. Those solutions have been
obtained via the similarity transformation [42].

Conversely, if �I (z) = 0, the soliton and periodic wave in
the solution (3) have the same velocity �R(z). Further, we find
that the case �I (z) = 0 is equivalent to the following condition

VT

hI

= VH

hR

, (4)

i.e.,

n = 4 α − d2(z)

2 d3(z)
. (5)

The condition (4) indicates that the extrema of trigonometric
and hyperbolic functions in the solution (3) is located along
the same straight lines in the (z,t) plane, which leads to the
transformation of the breather into different types of nonlinear
waves on constant backgrounds. The equivalent form of the
condition (4), namely Eq. (5), involves four parameters: the
frequency of plane wave n, the real part of the eigenvalue α,
and the GVD effect d2(z) and TOD effect d3(z). When d2(z)
is proportional to d3(z) [d2(z) = k d3(z), k �= 0], Eq. (5) has
solutions. However, if d2(z) = k(z) d3(z) [k(z) is a function
of z], Eq. (5) has no solution. This means that the constraint
d2(z) = k d3(z) is the necessary condition for the existence
of transformed nonlinear waves. For a fixed n, increasing the
value of d2(z)

d3(z) results in an decrease of α. This is plotted in
Fig. 1.

Under the transition condition (5), we exhibit four kinds
of transformed nonlinear waves on constant backgrounds
including the multipeak solitons [Figs. 2(a) and 2(b)], antidark
soliton [Fig. 2(c)], periodic wave [Fig. 2(d)], and W-shaped
soliton [Fig. 2(e)]. These types of nonlinear waves have
been found not only in the scalar equations including Hirota
equation [32], fourth-order NLS equation [34], fifth-order
NLS equation [33], but also in the coupled systems such
as the NLS-MB system [44], HMB system [35], and AB
system [45]. The difference between Fig. 2(a) and Fig. 2(b)
is that the former shows the single main peak while the latter
displays double main peaks. In order to more clearly reveal
the regularity of transformation between these two waves,
we consider |q(0,0)|2zz as a control variable. The maximum
amplitude of |q(z,t)|2 at (0,0) can be presented analytically

FIG. 1. Solutions of Eq. (5) on a plane of (n,α).
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FIG. 2. Four types of transformed nonlinear waves with R(z) = d2(z) = d3(z) = 0.1. (a) Multipeak soliton (single main peak) with
k1 = 1, k2 = −1, λ1 = λ∗

2 = 0.2 + 0.6 i. (b) M-shaped soliton (double main peak) with k1 = 1, k2 = −1, λ1 = λ∗
2 = 0.2 − 0.6 i. (c) Antidark

soliton with k1 = k2 = 1, λ1 = λ∗
2 = 1

12 + 1.4 i. (d) Periodic wave with k1 = 1, k2 = −1, λ1 = λ∗
2 = 1

12 + 0.9 i. (e) W-shaped soliton with
k1 = 1, k2 = −1, λ1 = λ∗

2 = 1
12 + i.

[in Fig. 2(a)],

|q(0,0)|2 = exp[�(z)](2 β + 1)2, (6)

which is related to the imaginary part of eigenvalue β and gain
or loss �(z). Unfortunately, due to the complexity of |q(0,0)|2zz,
it is difficult to give its expression analytically. Thus, we
only demonstrate the effect of β on |q(0,0)|2zz numerically. As
shown in Fig. 3, the green line (−1.28 < β < 0) corresponds
to the case |q(0,0)|2zz > 0 that means the ordinate origin (0,0) is
a minimum and the soliton has two main peaks with identical
amplitude. Nevertheless, if the value of β exceeds a certain
range, i.e., β > 0 or β < −1.28, the value of |q(0,0)|2zz is less
than zero, which results in the formation of one main peak.
Consequently, the transition between these two kinds of waves
can be governed by the imaginary part of eigenvalue β.

FIG. 3. Effects of the imaginary part of eigenvalue β on |q(0,0)|2zz
with δ1 = δ2 = δ3 = 0.1, k1 = 1, k2 = −1, and α = 0.2. Two zeros
of the |q(0,0)|2zz are in (0,0) and (−1.28,0) respectively. The green line
corresponds to the double main peaks while the red line corresponds
to the single peaks.

Next, we display two special nonlinear wave structures
from the solution (3), i.e., the antidark soliton and periodic
wave. The former exists in isolation when hR vanishes,
while the latter independently exists when hI vanishes.
Therefore, the antidark soliton and periodic wave are shown in
forms of exponential and trigonometric functions respectively.
Specifically, the analytical expressions read as, for the soliton,

q
[1]
S = c(z)

(
1 + 2 β

G
[1]
S + i H

[1]
S

D
[1]
S

)
ei ρ, (7)

with

G
[1]
S = k1k2 cosh(2 χI ) − cosh(z VT + t hI ) sin(2 χR),

H
[1]
S = cos(2 χR) sinh(z VT + t hI ),

D
[1]
S = cosh(z VT + t hI ) cosh(2 χI ) − k1k2 sin(2 χR),

and for the periodic wave,

q
[1]
P = c(z)

(
1 + 2 β

G
[1]
P + i H

[1]
P

D
[1]
P

)
ei ρ, (8)

with

G
[1]
P = k1k2 cos(z VH + t hR) cosh(2 χI ) − sin(2 χR),

H
[1]
P = k1k2 sin(z VH + t hR) sinh(2 χI ),

D
[1]
P = cosh(2 χI ) − k1k2 cos(z VH + t hR) sin(2 χR).

The antidark soliton was first reported in the scalar NLS
system with the third-order dispersion [46]. Recently, the
similar structures have also been found in such coupled
models as NLS-MB system [44], HMB system [35], and
AB system [45]. The soliton depicted in Fig. 2(c) lies on a
plane-wave background with a peak c(z)2(1 + 2 β)2 and will
become a standard bright soliton as c(z) → 0. Figure 2(d)
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FIG. 4. The interactions between two nonlinear waves with δ1 = δ2 = δ3 = 0.1. (a) The collision between two multipeak solitons with
k1 = k2 = 1, λ1 = λ∗

2 = 0.5 + 1.2 i, λ3 = λ∗
4 = 0.5 + 0.8 i. (b) The collision between two M-shaped solitons with k1 = 1, k2 = −1, λ1 =

λ∗
2 = 0.5 + 1.2 i, λ3 = λ∗

4 = 0.5 + 0.6 i. (c) The collision between the antidark soliton and periodic wave with k1 = 1, k2 = −1, λ1 = λ∗
2 =

1
12 + 1.6 i, λ3 = λ∗

4 = 1
12 + 0.97 i.

shows the periodic wave with the period P = π
hR

. Interestingly,
in spite of the same expression, the wave in Fig. 2(d) looks
like a higher-order wave. When the period hR is close to zero,
namely, β → 1, the periodic wave will reduce to a W-shaped
soliton, as shown in Fig. 2(e). In this case, the solution (8) is
transformed into

q
[1]
RW = 144 d3(z)2

36 d3(z)2 + [12 d3(z) t + z d2(z)2 + 72 z d3(z)2]2

+ exp

[
1

2
�(z)

]
− 2, (9)

which is referred to as the W-shaped soliton or a long-lived
rogue wave.

We further derive the second-order transformed nonlinear
waves. By means of the formulas (A7) with N = 2, the two-
breather solution of Eq. (1) is given by

q
[2]
B = q[0] − 2 i

√
d2(z)

R(z)

�
[2]
1

�[2]
, (10)

with

q[0] = c(z) ei ρ,

λ1 = λ∗
2 = α1 + β1 i, λ3 = λ∗

4 = α2 + β2 i,

ψ2 = −ϕ∗
1 , ϕ2 = ψ∗

1 ; ψ4 = −ϕ∗
3 , ϕ4 = ψ∗

3 ;

ϕj = k1
−i hj + 2 i λj + i n

2
ei (�j + ρ

2 ) + k2 e−i(�j − ρ

2 ),

ψj = k1 ei (�j − ρ

2 ) + k2
−i hj + 2 i λj + i n

2
e−i(�j + ρ

2 ),

j = 1,3, k1 = 1, k2 = ±1,

�
[2]
1 =

∣∣∣∣∣∣∣∣∣
λ1ϕ1 ϕ1 λ2

1ϕ1 ψ1

−λ2ϕ2 −ϕ2 −λ2
2ϕ2 ψ2

λ3ϕ3 ϕ3 λ2
3ϕ3 ψ3

−λ4ϕ4 −ϕ4 −λ2
4ϕ4 ψ4

∣∣∣∣∣∣∣∣∣,

�[2] =

∣∣∣∣∣∣∣∣∣
λ1ϕ1 ϕ1 λ1ψ1 ψ1

−λ2ϕ2 −ϕ2 λ2ψ2 ψ2

λ3ϕ3 ϕ3 λ3ψ3 ψ3

−λ4ϕ4 −ϕ4 λ4ψ4 ψ4

∣∣∣∣∣∣∣∣∣.
By using the solution (10) and transition condition (5), we

can obtain various nonlinear interactions among different types

of transformed nonlinear waves. For more detailed analysis of
these nonlinear interactions, one can refer to Refs. [34,35,39].
Here, we only exhibit a few typical examples. Figures 4(a)–
4(c) describe the interactions between two multipeak solitons,
and between the periodic wave and antidark soliton. We
note that the collisions are elastic, i.e., the waves restore the
original shapes, amplitudes, and velocities after each collision
with a small phase shift. On the other hand, employing
the semirational forms of the solution (10) and transition
condition (5), we have the interactions between the W-shaped
soliton and the antidark soliton, and between two W-shaped
solitons, which are depicted in Fig. 5.

B. Dispersion management and nonlinear management

We discuss the effects of the variable coefficients on
the nonlinear waves, i.e., the dispersion management and
nonlinear management. Here we will pay attention to the
multipeak soliton with single main peak. We omit the results on
other types of nonlinear waves, since the effects of the variable
coefficients on them are similar to the multipeak soliton with
the same initial physical parameters. From the constraints (2),
we note that five variable coefficients d2(z), d3(z), R(z), γ (z),
and �(z) are not independent of each other. The ratio of d2(z)
and R(z) must be equal to that of d3(z) and γ (z). Additionally,
�(z) should be expressed by d2(z) and R(z) [or d3(z) and
γ (z)]. Therefore, we will consider dispersion management
and nonlinear management of the multipeak soliton under the
integrability condition (2).

We first study the effect of TOD coefficient d3(z) and
time-delay correlation to the cubic term γ (z) on the multipeak
soliton. We fix the values of d2(z) and R(z) while changing

FIG. 5. The interactions between two nonlinear waves with
δ1 = δ2 = δ3 = 0.1. (a) The collision between W-shaped soliton
and antidark soliton with k1 = k2 = 1, λ1 = λ∗

2 = 1
12 + i, λ3 = λ∗

4 =
1
12 − 1.6 i. (b) The collision between two W-shaped solitons with
k1 = k2 = 1, λ1 = λ∗

2 = 1
12 + 1.2 i, λ3 = λ∗

4 = 1
12 + 1.4 i.
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FIG. 6. The compression effect of TOD coefficient on the
multipeak solitons with δ1 = δ2 = 0.1, k1 = 1, k2 = −1, λ1 = λ∗

2 =
0.2 + 0.6 i.

the values of d3(z) and γ (z). For simplicity, we set �(z) = 0.
As shown in Fig. 6, we observe a compressed effect of the
multipeak soliton by increasing the values of d3(z) and γ (z).
In other words, a further increase of the values of d3(z) and γ (z)
leads to stronger localization and a smaller oscillation period.
However, the amplitudes of the multipeak soliton including
the maximum and minimum ones do not change markedly,
especially for the main peak. It is worth pointing out that
we have to increase or decrease the values of d3(z) and γ (z)
simultaneously to ensure the integrability condition (2) to be
true.

Second, we investigate how the GVD coefficient d2(z) and
Kerr nonlinear coefficient R(z) influence on the multipeak
soliton. In this case, the values of d3(z) and γ (z) cannot be
changed and d2(z) and R(z) are various. From Fig. 7, we
discover that increasing the values of d2(z) and R(z) also
results in stronger localization and a smaller oscillation period
for the multipeak soliton. More interestingly, different from the
TOD effects, the GVD coefficient can affect the peak number
of the multipeak soliton. When d2(z) = R(z) = 1, the soliton
has seven humps (see the dotted line in Fig. 7). By raising
the values of d2(z) and R(z), we can observe that the humps
of the soliton increase from seven to thirteen (see the solid

FIG. 7. The effects of GVD coefficient on the peak number of
multipeak solitons with δ3 = 0.1, k1 = 1, k2 = −1, λ1 = λ∗

2 = 0.2 +
0.6 i.

line in Fig. 7). Further, by comparing with the main peak, the
amplitudes of secondary ones increase obviously.

Third, we discuss the effects of the gain or loss coefficient
�(z). It should be pointed out that the GVD coefficient d2(z)
and Kerr nonlinear coefficient R(z) need to meet in a nonlinear
relation [d2(z) = k(z) R(z), k(z) is a function of z] because
the case d2(z) = k R(z) will lead to the vanishing gain or
loss effect. Based on the fact that decreasing GVD in a fiber
has been realized, as an example, we consider an exponential
dispersion decreasing fiber system with

d2(z) = δ1 exp(ξ z), d3(z) = δ3 exp(ξ z), (11)

R(z) = δ1, γ (z) = δ3, (12)

�(z) = ξ, (13)

where δ1 (δ3) is the parameter related to the Kerr nonlin-
ear (TOD) and ξ denotes the constant net gain or loss.
Figure 8 describes the propagation of a multipeak soliton
whose amplitudes, background, and velocity vary due to the
nonvanishing gain or loss. From the expression (3), we see
that the amplitudes of the multipeak soliton are determined
by c(z) = exp( ξ

2 z), and the velocity is influenced by d2(z) =
δ1 exp(ξ z),d3(z) = δ3 exp(ξ z). If ξ > 0, the amplitude of this
wave will increase exponentially whereas it will decrease
exponentially. In addition, we observe that the multipeak
soliton is compressed during the propagation owing to the
exponential dispersion decreasing coefficients. The cases ξ <

0 and ξ > 0, respectively, correspond to the compression and
amplification.

Finally, we consider a soliton management system similar
to that of Refs. [40,47], i.e., the periodic distributed system

R(z) = δ1 sin(ξ z), d2(z) = δ2 sin(ξ z),

d3(z) = δ3 sin(ξ z), γ (z) = δ1δ3

δ2
sin(ξ z). (14)

Trigonometric functions are physically relevant because
they provide for alternating regions of positive and negative
dispersion and nonlinearity, indicated in the improved stability
of the solitons [10]. The periodically accelerating or decelerat-
ing multipeak soliton are shown in Fig. 9(a). The two solitons
in Fig. 9(b) propagate with periodic oscillation along the time
z, and the separated solitons collide periodically.

Let us then discuss briefly the possible observation and
applicability of the analytic results of breather transition
dynamics above. As is well known, the integrable Hirota model
can be regarded as a special case for the femtosecond optical
pulse propagation in a fiber [48]. Therefore, our results could
be of importance to study different types of optical excitations
arising from the higher-order effects exactly. Recently, optical
rogue waves and breathers have been realized in a fiber by
the initial intensity and phase modulations extracting from
the exact solution of the standard NLS equation [10]. In this
regard, one can extract the ideal initial states from our analytic
results for different types of optical excitations. On the other
hand, in recent work [49] the stability of the multipeak solitons
and other nonlinear waves in the femtosecond regime has
been confirmed by numerical simulations. Thus, our results
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FIG. 8. The effect of gain and loss coefficient on the multipeak solitons with δ1 = δ3 = 0.1, ξ = 0.1, k1 = k2 = 1 , and λ1 = λ∗
2 = 0.2 +

0.6 i. (b) is the density plot of (a). (c) is the cross-sectional view of (a) at z = 10 and z = 20.

could offer the possibility to realize rich nonlinear structures
experimentally in the femtosecond regime of a fiber.

III. MI CHARACTERISTICS

In this section, we reveal the explicit relation between the
transition and the distribution characteristics of MI growth rate
for Eq. (1). Equation (1) admits the following continuous wave
solution,

q(z,t) = c(z) ei [m(z)+n t] =
√

d2(z)

R(z)
ei [m(z)+n t], (15)

where n are real parameters. A perturbed nonlinear background
can be expressed as

q(z,t) = [c(z) + ε q̂(z,t)] ei [m(z)+n t]. (16)

Taking Eq. (16) into Eq. (1) yields the evolution equation for
the perturbations as

−i R(z) q̂ d2(z)z + d2(z)2R(z)(2 q̂ + 2 q̂∗ + 2 i n q̂t + q̂t t )

+ d2(z)(2 d3(z)R(z)(6 n q̂ + 6 n q̂∗ − 6 i q̂t + 3 i n2q̂t

+3 n q̂tt − i q̂tt t ) + i [̂q R(z)z + 2R(z)̂qz]) = 0. (17)

Noting the linearity of Eq. (17) with respect to q̂, we
introduce

q̂(z,t) = u c(z) ei [Qt−ω(z)] + v c(z) e−i [Qt−ω∗(z)], (18)

which is characterized by the wave number ω and frequency
Q. Using Eq. (18) into Eq. (17) gives a linear homogeneous

FIG. 9. Periodic variable motion of the multipeak solitons with
δ1 = δ2 = δ3 = 0.1, ξ = 0.2, (a) The first-order multipeak soliton
with k1 = 1, k2 = −1, λ1 = λ∗

2 = 0.3 + 0.7 i. (b) The periodic col-
lision between two multipeak solitons with k1 = 1, k2 = −1, λ1 =
λ∗

2 = 0.3 + i, λ3 = λ∗
4 = 0.3 + 0.8 i.

system of equations for u and v:

d2(z) − nQd2(z) − 1
2Q2 d2(z) + 6 n d3(z) + 6 Q d3(z)

−3 n2 Qd3(z) − 3 nQ2 d3(z) − Q3 d3(z) + ωz(z) = 0,

(19)

d2(z) + 6 n d3(z) = 0. (20)

From the determinant of the coefficient matrix of
Eqs. (19)–(20), the dispersion relation for the linearized
disturbance can be determined as

nQd2(z)[d3(z)(Q3 − 6n2Q) + 2ωz(z)]

+ 2Qd3(z)(3n2 + Q2 − 6)ωz(z)

+ 1
4Q2d2(z)2(−4n2 + Q2 − 4) − Q2d3(z)2(9n4

−3n2Q2 + (Q2 − 6)2) − ωz(z)2 = 0. (21)

Solving the above equation, we have

ω(z) = Q (d2(z) n + d3(z)(−6 + 3 n2 + Q2))

± 1
2 |Q|

√
[d2(z) + 6 d3(z) n]2 (−4 + Q2). (22)

In this case, the wave number ω(z) becomes complex and the
disturbance will grow with time exponentially if and only if
Q < Qc = 2, and the growth rate of the instability is given by

�(z) = 1

2
Q2

√
[d2(z) + 6 d3(z) n]2

(
4

Q2
− 1

)
. (23)

To obtain the maximum growth rate of the instability, we take
the derivative of Eq. (23) with respect to Q, and set it to
zero. Then, we obtain Qmax = √

2 and the following maximum
growth rate of the instability:

�(z)max =
√

[d2(z) + 6 d3(z) n]2. (24)

The effects of the TOD coefficient on the growth rate of
instability is demonstrated in Fig. 10, from which we discover
that the value of �(z) increases with the value of d3(z).
Figure 11 shows the characteristics of MI on the (Q,n) plane. It
is found that the MI exists in the region −2 < Q < 2. Hereby,
we discover that the MI growth rate distribution is symmetric
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FIG. 10. The effects of d3 on the growth rate of instability with
n = 0.1, d2 = 1.

with respect to

n = − d2(z)

6 d3(z)
, (25)

i.e., The red dashed line in Fig. 11 corresponds to a
modulational stability (MS) region where the growth rate is
vanishing in the low perturbation frequency region. More
interestingly, using the rogue-wave eigenvalue, one can find
that the MS condition (25) is consistent with the condition (5),
which converts breathers into nonlinear waves on constant
backgrounds. Our finding suggests that the transition between
breathers and nonlinear waves can occur in the MS region
with the low-frequency perturbations. Further, by comparison
with Fig. 11(a), we discover that the lower value of d3(z)
corresponds to the lower value of n. Therefore, the MS region
moves down, which is displayed in Fig. 11(b).

IV. BREATHER MULTIPLE BIRTHS AND PEREGRINE
COMBS AND WALLS

In this section, we will study the breather solution (3)
in detail, and describe its main properties when the GVD
coefficient is of the form

d2(z) = c R(z) = −1 + dc cos(kc z), (26)

where dc denotes the amplitude of modulation and kc is
spatial frequency. Such periodic modulations have realized
experimentally in Ref. [50].

The spatiotemporal characteristics of the breather multiple
births described by the solution (3) are illustrated in Fig. 12,
i.e., the triplets structure with dc = 2.5 and the septuplets
structure with dc = 8.5. These structures show multiple
compression points, located at different values of z and t . The
number of the ABs in the breather multiple births depends on
the amplitude of the modulation but not on its wavelength,
which controls their separation distance. Increasing the value
of dc will lead to the formation of (3 + 4 k) births for
k = 2,3, . . .. With the similar modulation parameters selected,
these multiple births structures have been also reported in the
vc-NLS equation, the vc-DNLS equation, and the vc-NLS-MB
system. The difference is, however, that the phase shifts of
the ABs on the sides of the center occur along t direction
because of the TOD effect [for example, see Fig. 12(a)],
which don’t exist in the vc-NLS equation without higher-order
effect.

If λ = α + β i → − n
2 + i, we can obtain another type of

multiple compression point structure, namely the Peregrine
combs that are the limiting case of the breather multiple births.
The Peregrine comb solution can be given by

qcomb(z,t) = eiρ

(
c(z) − 2

(i + 2 Zc)2 + 4 M2

1 + 4 Z2
c + 4 M2

)
, (27)

with

Zc = −z + dc

kc

sin(kc z), M = t + 6 z d3(z).

From the above expression, we see that the Peregrine comb
solution (27) includes the gain or loss �(z) that controls the
amplitude, and TOD coefficient d3(z) that affect the spatial-
temporal distribution. The Peregrine combs were first found in
the vc-NLS equation [23], and then were also found in the vc-
coupled Hirota equations [43]. These phenomena do not take
place in the standard AB or PS without variable dispersion,
which contain only one compression point. The maximum
value of this wave’s amplitude is obtained at t = −6 d3(z)z

FIG. 11. Characteristics of MI growth rate ω on (Q,n) plane with d2(z) = 1 and (a)d3(z) = 0.1; (b)d3(z) = 0.04. Here the dashed red lines
represent the stability region in the perturbation frequency region −2 < Q < 2, which is given as n = − d2(z)

6 d3(z) .
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FIG. 12. The breather multiple births with R(z) = d2(z), kc = 0.2, d3(z) = 0.1, n = 0, k1 = 1, k2 = −1, λ1 = λ∗
2 = 0.9 i , and (a) three

births with dc = 2.5, (b) seven births with dc = 8.5.

and is given as follows:

|qcomb|2max(z) = |qcomb[z, − 6 d3(z)z]|2

=
(
1 − 4 Z2

c

)
4 c(z)

1 + 4 Z2
c

+ c(z)2 + 4, (28)

with

Zc = −z

[
1 − dc

kc z
sin(kc z)

]
. (29)

The GVD coefficient d2(z) or TOD coefficient d3(z) has
no effect on the maximum intensity of the Peregrine comb,
which is related to the gain or loss coefficient �(z). From the
equation (28), we find that |qcomb|2max(z) reaches its maximal
value [c(z) + 2]2 at Zc = 0. This means that the compression
points of the Peregrine comb are located at z0 = 0, zi (i =
1,2, . . .), where zi satisfy the following equation

sin(kczi)

kczi

= 1

dc

. (30)

Equation (30) shows that the larger the value of dc is, the more
compression points will be. For example, Fig. 13(a) displays
a Peregrine comb with triple teeth of Eq. (1) with dc = 2.5,
and Fig. 13(c) is plotted for a Peregrine comb with seven teeth
with dc = 8.5. The detailed generation process of Peregrine

combs with seven teeth can refer to the explanations for the
vc-NLS equation in Ref. [23].

In order to explore the dynamics of the Peregrine comb,
we calculate some physical quantities of the Peregrine comb
analytically. The maximum points, intersection angle θ and
the distance between A and B can be presented as follows

(0,0),

(
−

arccos
(

1
dc

)
kc

,
6 d3(z) arccos

(
1
dc

)
kc

)
,

(
arccos

(
1
dc

)
kc

, −
6 d3(z) arccos

(
1
dc

)
kc

)
, (31)

θ = arctan

(
− 1

6 d3(z)

)
, (32)

DAB =
√

1 + 36 d2
3 (z)

arccos
(

1
dc

)
kc

. (33)

Bases on the above analytic expressions, we find that the
TOD effect d3(z) plays an important role in the spatiotemporal
characteristics of the Peregrine comb. Increasing the values
of d3(z) will increase the distance between A and B while
decrease the intersection angle θ , which is shown in Fig. 14.

FIG. 13. The Peregrine combs with R(z) = d2(z), kc = 0.2, d3(z) = 0.1, n = 0, k1 = 1, k2 = −1, λ1 = λ∗
2 = − n

2 + i , and (a) triple teeth
with dc = 2.5, (b) the cross-sectional view of (a) along t = −6 d3(z)z. (c) seven teeth with dc = 8.5.
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FIG. 14. The effect of d3 on the Peregrine comb with R(z) = d2(z), dc = 2.5, kc = 0.2, n = 0, k1 = k2 = 1, λ1 = λ∗
2 = − n

2 + i , and (a)
d3(z) = 0.15, (b) d3(z) = 0.25.

If d3(z) is equal to zero, the Peregrine comb in Fig. 14 will
degenerate into the case in Ref. [23].

In order to reveal further characteristics of the Peregrine
comb, we introduce the energy of light pulse against the plane-
wave background with the form [23,28,51]

�Ic(z,t) = |qPS(z,t)|2 − c(z)2

= 4
F+ F− − c(z) K+ K−

{1 + 4 Z2 + 4[t + 6 z d3(z)]2}2
, (34)

with

F− = 4 t2 + 4 Z2 + [1 − 12 z d3(z)]2 + t[−4 + 48 z d3(z)],

F+ = 4 t2 + 4 Z2 + [1 + 12 z d3(z)]2 + t[4 + 48 z d3(z)],

K− = −1 + 4 Z2 + 4 [t + 6 z d3(z)]2,

K+ = 1 + 4 Z2 + 4 [t + 6 z d3(z)]2. (35)

One can easily check∫ ∞

−∞
�Ic(z,t)dt = 0, (36)

FIG. 15. The distribution of the difference between the light
intensities of the PS and the CW background at t = 0 given by Eq. (34)
with kc = 0.2, d3 = 0.02, dc = 0 (dashed line), and dc = 2.5 (solid
line).

for all values of z. This implies that the energy of the pump
is preserved along the fiber, in spite of periodic modulation
characteristics and TOD effect added. In addition, Eq. (35)
also reflects the fact that the light intensity of the Peregrine
comb will be sometimes higher and sometimes lower than the
background intensity, as shown in Fig. 15. Moreover, we can
calculate the energy of the Peregrine pulse

Epluse(z) =
∫ ∞

−∞
|qcomb(t,z) − qcomb(±∞,z)|2dt

= 4 π√
1 + 4Z2

c

, (37)

which indicates that the energy of the pulse is maximal at the
compression points Zc = 0 (also see Fig. 16).

Next, we consider another special case of the generalized PS
solution, namely the Peregrine walls. From the equation (31),
we note that the amplitude of modulation dc and spatial
frequency kc also affect the positions of two of maximum

points, i.e., (∓ arccos( 1
dc

)

kc
, ± 6 d3(z) arccos( 1

dc
)

kc
). In particular, we

consider a special case in which the amplitude of modulation
dc is set to be 1. This will result in the case arccos( 1

dc
) = 0.

Thus, these two maximum points will be shifted to the origin
and these three PSs will be aggregated together. In this case,

FIG. 16. Pulse energy Epulse(z) with kc = 2, dc = 2.5.
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FIG. 17. The Peregrine wall with R(z) = d2(z), kc =
0.2, d3(z) = 0.1, n = 0, k1 = 1, k2 = −1, λ1 = λ∗

2 = − n

2 + i ,
and dc = 1. (b) is the density plot of (a).

the Peregrine comb solution (27) turns into the form of

|qwall(z,t)|2 = [c(z) − 2]2 + M (8 + 9 M)

W 2

+ 2 [−6 M + (4 + 3 M)c(z)]

W
, (38)

with

W = (1 + M + 4 z2) + 4
sin(kcz)

k2
c

[sin(kcz) − 2 kcz].

The maximum value of this wave’s amplitude is obtained at
t = −6 d3(z)z and is given by

|qwall|2max(z) = |qwall[z, − 6 d3(z)z]|2 = [c(z) − 2]2 + 8 c(z)

W0
,

(39)

with

W0 = (1 + 4 z2) + 4
sin(kcz)

k2
c

[sin(kcz) − 2 kcz].

As depicted in Fig. 17, the Peregrine comb is converted into
a Peregrine wall when the three maximum points have the
same coordinate (0,0). Generally, the fusion of three PSs will
produce a second-order rogue wave with higher amplitude in
the nonlinear equation of evolutions with constant coefficients.
However, the variable coefficients provide much richer pat-
terns. The Peregrine wall can be seen as an intermediate state
between the rogue wave and W-shaped soliton because rogue

FIG. 18. The effect of d3(z) on the Peregrine wall with R(z) =
d2(z), kc = 0.2, d3(z) = 0.2, n = 0, k1 = 1, k2 = −1, λ1 = λ∗

2 =
− n

2 + i , and dc = 1. (b) is the density plot of (a).

FIG. 19. The breath-type wall with R(z) = d2(z), kc =
0.2, d3(z) = 0.1, n = 0, k1 = 1, k2 = −1, λ1 = λ∗

2 = − n

2 + 0.9 i ,
and dc = 1. (b) is a density plot of (a).

wave has a shorter life while W-shaped soliton has a long one.
Such structure looks like a quasitrapezoid in shape. The values
of the hump and valleys of the Peregrine wall, respectively,
are equal to [c(z) + 2]2 and 0. To illustrate the effect of TOD
coefficient on the Peregrine wall, we plot Fig. 18. It is observed
that the length of the wave increases with growing value of
d3(z), and the depth and angle decreases. In fact, similar to the
Peregrine comb, the Peregrine wall can also be viewed as the
limiting case of a breath-type wall that is described in Fig. 19.
On the other hand, to illustrate how to build a Peregrine wall
from a PS, we plot Fig. 20 with different values of dc. As dc

increases, the lifetime of the PS gets much longer. When dc is
equal to 1, the PS eventually becomes a Peregrine wall. When
dc is greater than 1, the PS will show multiple compression
points, i.e., it turns into the Peregrine comb [23].

The frequency spectrum of the Peregrine comb in Eq. (27)
can be given by

F (ω,z) = 1√
2π

∫ ∞

−∞
qcomb(z,t)ei ω tdt

=
√

2π

(
1 − 2 i Zc√

1 + 4 Z2
c

e− i |ω|
2 (12 d3(z) z+

√
−1−4Z2

c ) − δ(ω)

)
,

(40)

where the Dirac delta function δ(ω) originates from the
finite background level. The modulus of this spectrum is

FIG. 20. Graph of |qwall(z, − 6 d3(z)z)|2 for value of dc with kc =
0.2, d3 = 0.1 shows the evolution process from rogue wave to the
comb.
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FIG. 21. The spectrum of the Peregrine combs and Peregrine wall log scale, namely, log |F (w,z)| kc = 0.2, d3(z) = 0.1 and (a) for the
triple-tooth comb with dc = 2.5, (b) for the seven-tooth comb with dc = 8.5, and (c) for the Peregrine wall with dc = 1.

given by

|F (ω,z)| =
√

2πe− |ω|
2

√
1+4 Z2

c . (41)

It is well known that the Peregrine rogue-wave spectrum
features a triangular shape and gets dramatically broadened
at the maximally compressed peak. To end this section, we
consider the spectral property of the Peregrine combs and
Peregrine walls. From Fig. 21(a), we observe that the rogue
wave in Eq. (1) begins with narrow spectral components as
the constant-coefficient ones, but spreads and shrinks during
the evolution along the fiber, and eventually restores its initial
shape. Each nonlinear spreading in the spectrum is related to
a corresponding maximal compression point. Therefore, the
number of spectral components increases with the amplitude
of modulation, which is displayed in Fig. 21(b). Figure 21(c)
shows the spectrum of the Peregrine wall. It is observed that
the width of nonlinear spreading are obviously greater than
that of the Peregrine comb.

Finally, we discuss the possible applications of the Pere-
grine combs and Peregrine walls. As is well-known, the
vc-NLS equations provide more realistic models than their
constant coefficient counterparts, although they have analytical
solutions only if the integrability condition is satisfied. In par-
ticular, Tiofack et al. showed recently that the spatiotemporal
evolution of the generalized Peregrine solution in the nonin-
tegrable case and observed that there still are multiple com-
pression points [23], which agrees with theoretical prediction.
Further, they have chosen for SPM and Kerr nonlinear effect
values corresponding to those of an experimentally realizable
photonic crystal fiber with a GVD and nonlinear coefficients
that are periodically modulated along the physical propagation
axis z′ and the real time T . By using the corresponding charac-
teristics of the photonic crystal fiber, the periodic evolution of
the GVD and the nonlinear coefficient versus the longitudinal
z′ axis was calculated at the pump wavelength λp = 1700 nm
and pump power P0 = 1.7 W [23]. They thus use the above
results, and then integrate numerically a vc-NLS equation with
the initial condition given by the Peregrine comb solution
with z0 = 1.25, expressed in the original physical variables
given in Ref. [23]. Their result indicates that the solution still
produces multiple compression points. These studies show that
the generalized PS solution is a robust one that persists in cases
where the integrability condition is destroyed or the realizable
optical application is considered. As the RWs and breathers

reported experimentally, we expect that the Peregrine combs
and Peregrine walls could be observed in nonlinear fibers with
periodically modulated characteristics in the future.

V. CONCLUSIONS

We have carried out the analytical investigations on the
vc-NLS equation with higher-order effects. It has been shown
that the breather solution can be converted into the multipeak
solitons (single and double main peaks), antidark soliton,
periodic wave, and W-shaped soliton. The transition condition
depending on the eigenvalue, GVD coefficient, and TOD
coefficient has been given analytically. We have demonstrated
that different types of nonlinear waves can coexist and interact
with each other elastically. We have further revealed the effects
of the variable coefficients on the multipeak solitons: (i) The
GVD coefficient controls the number of peaks of the wave;
(ii) The TOD coefficient accounts for the compressed effects
of the wave (the location of the wave); (iii) The gain or loss
coefficient is responsible for the amplitude of the wave. The
transition between breathers and nonlinear waves occurs in
the MS region with the low-frequency perturbations. We have
shown that, under the suitable periodic modulations, the Pere-
grine combs (dc > 1) and Peregrine walls (dc = 1) are formed.
We have discovered that the TOD coefficient has influence on
the spatiotemporal characteristics of the Peregrine combs and
Peregrine walls. Our results could provide certain theoretical
assistance to the experimental control and manipulation of
generalized rogue wave dynamics in inhomogeneous fiber.
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APPENDIX

With the Ablowitz-Kaup-Newell-Segur formalism, the Lax
pair associated with Eq. (1) can be written as [40]

�t = U �, �z = V �, (A1)
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where U and V are

� =
(

ϕ

ψ

)
, U = −i λ J +

√
R(z)

d2(z)
� V = i 4 d3(z)λ3J − i λ2d2(z) J − 4λ2 d3(z)

√
R(z)

d2(z)
� + λ R + i

2
Q (A2)

with

J =
(

1 0
0 −1

)
, � =

(
0 q

−q∗ 0

)
,

R =
(

R11 R12

R21 R22

)
, R11 = −2 i d3(z)|q|2R(z)

d2(z)
, R12 =

√
R(z)

d2(z)

[
d2(z)q − 2 i d3(z)

∂q

∂t

]
,

R21 = −
√

R(z)

d2(z)

[
d2(z)q∗ + 2 i d3(z)

∂q∗

∂t

]
, R22 = 2 i d3(z)|q|2R(z)

d2(z)
,

Q =
(

Q11 Q12

Q21 Q22

)
, Q11 = R(z)|q|2 − i d3(z)R(z)

d2(z)

(
2 q∗ ∂q

∂t
− 2q

∂q∗

∂t

)
,

Q12 =
√

R(z)

d2(z)

[
d2(z)

∂q

∂t
− 2 i d3(z)

(
2 q |q|2R(z)

d2(z)
+ ∂2q

∂t2

)]
,

Q21 =
√

R(z)

d2(z)

[
d2(z)

∂q∗

∂t
+ 2 i d3(z)

(
2 q∗ |q|2R(z)

d2(z)
+ ∂2q∗

∂t2

)]
,

Q22 = −R(z)|q|2 + i d3(z)R(z)

d2(z)

(
2 q∗ ∂q

∂t
− 2q

∂q∗

∂t

)
,

λ is the spectral parameter and � is the eigenfunction. Through
direct computations, it can be verified that the equation Uz −
Vt + [U,V ] = 0 exactly yields Eq. (1).

By using the transformation �[n] = T �, we obtain the
new Lax pair �

[n]
t = U [n] �[n], U [n] = (Tt + T U )T −1, �[n]

z =
V [n] �[n], V [n] = (Tz + T V )T −1, where T is a 2 × 2 matrix
determined by the above relations U [n]

z − V
[n]
t + [U [n],V [n]] =

T (Uz − Vt + [U,V ])T −1.
This implies that, in order to keep the Lax pair (A1) invariant

under the transformation, it is crucial to seek a matrix T

such that U [n] and V [n] have the same forms as those of U

and V . In addition, the old potentials q are mapped into new
ones q[n].

Next, we shall construct the n-fold Darboux transformation
of Eq. (1). Hereby, we assume Matrix Tn be the form of

Tn = Tn(λ; λ1,λ2, . . . ,λ2n) =
n∑

l=0

Ml λ
n−l , (A3)

where Matrices Ml (l = 0,1,2, . . . ,n − 1) are solved by
Cramer’s rule, λk = αk + i β (k = 1,2, . . . ,2n) denote the
spectral parameters and Mn is an identity matrix.

Solving the linear system

�
[n]
k = Tn(λ; λ1,λ2, . . . ,λ2n−1,λ2n)|λ=λk

�k

=
n∑

l=0

Ml λ
n−l
k �k = 0 (k = 1,2, . . . ,2n), (A4)

where �k = (ϕk,ψk)T are the solutions of Lax pair (A1), we
can get the determinant representation of the Tn as follows:

Tn = Tn(λ; λ1,λ2, . . . ,λ2n) =
(

(�n)11
�n

(�n)12
�n

(�n)21
�n

(�n)22
�n

)
, (A5)

with

�n =

∣∣∣∣∣∣∣∣∣∣∣

ϕ1 ψ1 · · · λn−2
1 ϕ1 λn−2

1 ψ1 λn−1
1 ϕ1 λn−1

1 ψ1

ϕ2 ψ2 · · · λn−2
2 ϕ2 λn−2

2 ψ2 λn−1
2 ϕ2 λn−1

2 ψ2

...
...

...
...

...
...

...

ϕ2n ψ2n · · · λn−2
2n ϕ2n λn−2

2n ψ2n λn−1
2n ϕ2n λn−1

2n ψ2n

∣∣∣∣∣∣∣∣∣∣∣
,

(�n)11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ 0 · · · λn−1 0 λn

ϕ1 ψ1 λ1ϕ1 λ1ψ1 · · · λn−1
1 ϕ1 λn−1

1 ψ1 λn
1ϕ1

ϕ2 ψ2 λ2ϕ2 λ2ψ2 · · · λn−1
2 ϕ2 λn−1

2 ψ2 λn
2ϕ2

...
...

...
...

...
...

...
...

ϕ2n ψ2n λ2nϕ2n λ2nψ2n · · · λn−1
2n ϕ2n λn−1

2n ψ2n λn
2nϕ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

062217-13



WANG, ZHANG, LIU, LI, AND QI PHYSICAL REVIEW E 93, 062217 (2016)

(�n)12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 λ · · · 0 λn−1 0

ϕ1 ψ1 λ1ϕ1 λ1ψ1 · · · λn−1
1 ϕ1 λn−1

1 ψ1 λn
1ϕ1

ϕ2 ψ2 λ2ϕ2 λ2ψ2 · · · λn−1
2 ϕ2 λn−1

2 ψ2 λn
2ϕ2

...
...

...
...

...
...

...
...

ϕ2n ψ2n λ2nϕ2n λ2nψ2n · · · λn−1
2n ϕ2n λn−1

2n ψ2n λn
2nϕ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(�n)21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 λ 0 · · · λn−1 0 0

ϕ1 ψ1 λ1ϕ1 λ1ψ1 · · · λn−1
1 ϕ1 λn−1

1 ψ1 λn
1ψ1

ϕ2 ψ2 λ2ϕ2 λ2ψ2 · · · λn−1
2 ϕ2 λn−1

2 ψ2 λn
2ψ2

...
...

...
...

...
...

...
...

ϕ2n ψ2n λ2nϕ2n λ2nψ2n · · · λn−1
2n ϕ2n λn−1

2n ψ2n λn
2nψ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(�n)22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 λ · · · 0 λn−1 λn

ϕ1 ψ1 λ1ϕ1 λ1ψ1 · · · λn−1
1 ϕ1 λn−1

1 ψ1 λn
1ψ1

ϕ2 ψ2 λ2ϕ2 λ2ψ2 · · · λn−1
2 ϕ2 λn−1

2 ψ2 λn
2ψ2

...
...

...
...

...
...

...
...

ϕ2n ψ2n λ2nϕ2n λ2nψ2n · · · λn−1
2n ϕ2n λn−1

2n ψ2n λn
2nψ2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For the n-fold Darboux transformation, the transformed potentials are

�[n] = � + [J,Tn],
(A6)

which produce the following n-order solutions

q[n] = q[0] − 2 i
(M1)12√

R(z)/d2(z)
. (A7)

Note that

λ2k = −λ∗
2k−1, �2k =

(
ϕ2k

ψ2k

)
=

(
−ψ∗

2k−1

ϕ∗
2k−1

)
, (A8)

in order to hold the constraints of the n-fold Darboux transformation.
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