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Rogue wave spectra of the Kundu-Eckhaus equation
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In this paper we analyze the rogue wave spectra of the Kundu-Eckhaus equation (KEE). We compare our
findings with their nonlinear Schrödinger equation (NLSE) analogs and show that the spectra of the individual
rogue waves significantly differ from their NLSE analogs. A remarkable difference is the one-sided development
of the triangular spectrum before the rogue wave becomes evident in time. Also we show that increasing the
skewness of the rogue wave results in increased asymmetry in the triangular Fourier spectra. Additionally, the
triangular spectra of the rogue waves of the KEE begin to develop at earlier stages of their development compared
to their NLSE analogs, especially for larger skew angles. This feature may be used to enhance the early warning
times of the rogue waves. However, we show that in a chaotic wave field with many spectral components the
triangular spectra remain as the main attribute as a universal feature of the typical wave fields produced through
modulation instability and characteristic features of the KEE’s analytical rogue wave spectra may be suppressed
in a realistic chaotic wave field.
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I. INTRODUCTION

Rogue (freak) waves may be detected by spectral analysis
before they become evident in time [1,2]. Although some
recent attempts have tried to measure the wave field directly in
the spatial domain using efficient signal processing techniques
[3], spectral analysis is still the main tool especially for
ultrafast optic studies [4,5].

Exact rogue wave solutions of the different integrable
systems differ significantly in shape [5]. Therefore, it is natural
to expect that their spectral features, possible early detection
mechanisms, and times may differ as well. In this work we
show that the spectra of the individual rogue wave solutions of
the Kundu-Eckhaus equation (KEE) differ significantly from
those of the nonlinear Schrödinger equation (NLSE). Although
the spectra of the individual rogue waves are significantly
different, the rogue wave spectra of the chaotic wave fields
have certain similarities to the NLSE case.

The KEE is one of the integrable extensions of the NLSE
[6,7]. It contains extensions of terms of the standard cubic
NLSE, namely, the quintic and Raman-effect nonlinear terms
[8–10]. One of the different versions of the KEE can be written
in the form

iψt + ψxx + 2|ψ |2ψ + β2|ψ |4ψ − 2βi(|ψ |2)xψ = 0, (1)

where ψ is the complex amplitude, x and t are the spatial
and temporal variables, respectively, and i is the imaginary
number [8]. The β parameter is a real constant and β2 is
the coefficient of the quintic nonlinear term. The last term of
the KEE represents the Raman effect, which accounts for the
self-frequency shift of the waves [8]. The KEE can adequately
model the propagation of the ultrashort pulses in nonlinear
and quantum optics, which can possibly be used to describe
the optical properties of the femtosecond lasers and can be
used in femtochemistry studies. Some extensions of the NLSE,
similar to the form of the KEE, where quintic nonlinearity is
not included but third-order dispersion and gain and loss terms
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are included, are also used as models in the soliton-similariton
laser studies [11].

Some analytical periodic and rational solutions of the KEE
given in Eq. (1) exist in the literature [8,10]. The first-order
rational solution of the KEE is given by

ψ1 = exp [i(−βx + (β2 + 2)t)]
L1 + iJ1

M1
exp

[
iβ

K1

M1

]
, (2)

where

L1 = −4x2 − 16βtx − 16(β2 + 1)t2 + 3, J1 = 16t,

M1 = 4x2 + 16βtx + 16(β2 + 1)t2 + 1,

K1 = 4x3 + 16(β2 + 1)t2x + 9x + 16β(x2 + 1)t.

(3)

This solution and some other analytical solutions are given
in [8–10]. This first-order rational rogue wave solution is
basically a skewed Peregrine soliton of the NLSE. Setting
the parameter β = 0, the KEE reduces to the cubic NLSE
for which the rogue wave solutions become obvious and
become the rational soliton solutions of the NLSE [12]. For the
cubic NLSE, the first- and higher-order rational rogue wave
solutions can be seen in [12]. Second- and higher-order rational
solutions of the KEE and a hierarchy of obtaining those rational
solutions based on Darboux transformations are presented in
[8]. They are basically skewed rogue waves obtained by gauge
transforming the rogue wave solutions of the cubic NLSE. For
the sake of brevity, we are not repeating their explicit formulas
here. For the details of their formulation the reader is referred
to [8].

II. SPECTRA OF INDIVIDUAL ROGUE WAVES

In order to analyze the properties of the rogue wave spectra
in a chaotic wave field, first we should analyze the spectra of
the individual rogue wave solutions of the KEE. We obtain
the spectra by the Fourier transform operation. Throughout
this paper we denote by F the spectrum obtained by Fourier
transforming the wave field ψ(x,t) in the spatial variable x,
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FIG. 1. The top row shows, from left to right, the first-order rogue
wave of the KEE for β = 0, 1, and −1, respectively, and the bottom
row shows the corresponding spectra on a logarithmic scale.

i.e.,

F (k,t) =
∫ ∞

−∞
ψ(x,t) exp(−ikx)dx, (4)

where k denotes the wave-number parameter. The spectra
calculated this way are complex functions and we present
the energy spectral density |F (k,t)|2 in all of the spectra
calculations throughout this paper. The energy spectral density
is a parameter that can be measured directly in experimental
optics [5].

The first-order rational rogue wave solution of the KEE
and the corresponding spectra are shown in Fig. 1 for β =
0,1,−1, respectively. The first three-dimensional (3D) plot in
the bottom row of Fig. 1 shows the Fourier spectrum of the
Peregrine soliton. The analytical form of this spectrum is given
in [1] and for the sake of brevity it will not be repeated here. We
compute the Fourier transform of the first-order rogue wave
solution of the KEE given by Eq. (2) numerically by using fast
Fourier transform routines. Three-dimensional plots of spectra
of the first-order rational soliton solution of the KEE are also
presented in the middle and right plots in the bottom row of
Fig. 2 for β = 1 and −1, respectively. The results depicted in
Fig. 1 are also given as color contour plots in Fig. 2 for a better
visualization of the spectra properties.

As discussed in [6,8], we can see that quintic and Raman-
effect nonlinear terms produce an important skew angle
relative to the ridge of the rogue waves. The sign of the β

parameter determines the skewness direction relative to the
ridge of the rogue wave [6,8]. If β = 0, then there is no
skewness and the rogue wave solution of the KEE reduces
to the Peregrine soliton solution of the NLSE. For β > 0,
the skewness is in the counterclockwise direction, whereas
for β < 0 it is in the clockwise direction [6,8]. Checking
Figs. 2 and 3, the distinct feature of the rogue wave spectra of
the KEE compared to their NLSE analogs is that the spectra
are strongly asymmetric. For a skewness in the counterclock-
wise direction, which occurs due to the positive β parameter,
the triangular widening occurs in the positive wave numbers.

FIG. 2. The top row shows, from left to right, the color contour
plot of the first-order rogue wave of the KEE for β = 0, 1, and −1,
respectively, and the bottom row shows the color contour plot of the
corresponding spectra on a logarithmic scale.

For negative values of the β parameter, this situation is reversed
and triangular widening becomes apparent in the negative wave
numbers. For both of the cases triangular widening is clearly
distinguishable on only one side of the spectra.

Next we analyze the effect of increasing the skewness on
the spectral features of the rogue waves of the KEE. For this
purpose we set β = 0,1.75,−1.75 and depict the correspond-
ing spectra in Fig. 3. As can be seen from the contour plots
given in Fig. 3, as the skewness of the rogue wave increases due
to larger values of |β|, the triangular widening of the spectra
becomes more significant. Additionally, the asymmetry in the
spectra becomes more prominent as well. For larger skewness,
the higher absolute wave-number components begin to acquire
some energy and they deviate from zero at earlier times of the
rogue wave emergence compared to their NLSE analogs. For
example, for t ≈ −5, the first-order rational solution of the

FIG. 3. The top row shows, from left to right, the color contour
plot of the first-order rogue wave of the KEE for β = 0, 1.75, and
−1.75, respectively, and the bottom row shows the color contour plot
of the corresponding spectra on a logarithmic scale.
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FIG. 4. The top row shows, from left to right, the second-order
rogue wave of the KEE for β = 0, 1, and −1, respectively, and the
bottom row shows the corresponding spectra on a logarithmic scale.

KEE has significantly more widening due to energy acquired
by the higher absolute wave numbers compared to its NLSE
analog. Even for t ≈ −7, the widening of the spectra of the
KEE is larger than that of the NLSE. This feature of the KEE
spectra may be used to enhance the early detection times of
the rogue waves.

We also analyze the second-order rogue wave spectra of the
KEE. For the sake of the brevity we do not repeat the exact
formulation of the second-order rational soliton solution of
the KEE. It is given by Eq. (30) of [8]. We confine ourselves
to a presentation of their numerical transforms. Corresponding
results are depicted in Figs. 4–6. The results are quite similar to
the results obtained for the first-order rogue wave of the KEE,
however there are more dips in the spectra due to increased
number of zeros in the absolute value of the wave function |ψ |.
Similar to the first-order case, the skewness in the second-order

FIG. 5. The top row shows, from left to right, the color contour
plot of the second-order rogue wave of the KEE for β = 0, 1, and
−1, respectively, and the bottom row shows the color contour plot of
the corresponding spectra on a logarithmic scale.

FIG. 6. The top row shows, from left to right, the color contour
plot of the second-order rogue wave of the KEE for β = 0, 1.75, and
−1.75, respectively, and the bottom row shows the color contour plot
of the corresponding spectra on a logarithmic scale.

rogue wave field causes a strong asymmetry in the spectra. The
triangular widening occurs distinctly on positive wave-number
side of the spectrum for the positive values of the β parameter
and on the negative wave-number side of the spectrum for the
negative values of the β parameter. Similar to the first-order
rogue wave case, increasing the skewness in the wave profile
results in more asymmetry in the rogue wave spectra, which
begin to develop at earlier times of rogue wave emergence
compared to their NLSE analogs.

For example, for t ≈ −5, there is a significant difference
in the widening of the triangular spectra of the second-order
rogue wave of the KEE compared to its NLSE analog shown in
Fig. 6. For t ≈ −7, the difference begins to become significant.
Using this feature, the individual rogue waves of the KEE may
possibly be detected at earlier stages of their development
compared to their NLSE analogs by spectral measurements
in practice. This may possibly be done for a wave field under
quintic and Raman-effect nonlinear effects. While in an optical
setup this may possibly be performed by adjusting the optical
properties of the medium, in hydrodynamics a realization
would be extremely difficult and only naturally emerging
skewed rogue waves may give some clue about the usability of
this feature. However, we cannot answer the questions about
details of the applicability of this feature in this study. Since a
realistic wave field would include many spectral components,
we turn our attention to analyze the chaotic wave fields with
many spectral components generated in the frame of the KEE
by the modulation instability.

III. SPECTRA OF THE CHAOTIC WAVE FIELD

The processes modeled in the frame of the partial differ-
ential equations such as the KEE can be very complicated.
However, they are still governed by a deterministic equation.
Therefore, their results can be predicted for a given initial con-
dition. Therefore, compared to the completely unpredictable
stochastic processes, the processes described in the frame of
the KEE can be described as chaotic [13]. The term “chaotic”
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is used in this setting throughout this paper. We use a numerical
framework in order to analyze chaotic wave fields in the
frame of the KEE. We start the wave-field simulations using a
constant amplitude sinusoid with an additive small-amplitude
white noise. Such a state is unstable and it evolves into
a full-scale chaotic wave field similar to the wave fields
discussed in [2,12,14]. The chaotic wave field modeled by
the KEE with this starter evolves into a wave field that exhibits
many amplitude peaks, with some of them becoming rogue
waves. This behavior is similar to the results obtained for the
NLSE and Sasa-Satsuma equation (SSE) [5]. In order to model
such a chaotic wave-field starter, we use the initial condition

ψ(x,t = 0) = ψ0(x,0) + μa(x), (5)

where ψ0 = exp(ik0x) is the initial plane-wave solution, k0

is the initial seed plane-wave number, which is selected as
k0 = 0.1, and a(x) is a uniformly distributed random complex
function with real and imaginary parts having random values
in the interval [−1,1]. Following [2,12,14], a value of μ = 0.2
is selected. The water surface fluctuation would be given by the
real part of |ψ | exp [iωt], where ω is a carrier wave frequency,
however the parameter we investigate is the envelope |ψ | of
the chaotic wave field. For the time integration of the KEE,
we use the split-step Fourier scheme described in [6]. Briefly,
in typical split-step Fourier schemes the spatial derivatives
are evaluated using spectral techniques that employ Fourier
transforms in periodic domains [15–27] and time stepping
is performed by an exponential function. For the sake of
brevity, we will not include the details of the split-step scheme
of the KEE here. The reader is referred to [6] for a more
comprehensive explanation.

Modulation instability is one of the methods used to
generate a chaotic wave field [5]. Modulation instability started
by the noise formulated above creates a chaotic wave field
that starts from the initial plane wave. As recently discussed
in [6], the chaotic wave field of the KEE is skewed in the
counterclockwise direction for β > 0 and it is skewed in the
clockwise direction for β < 0, similar to the analytical results.
Therefore, the sign of the β parameter controls the skewness
direction of the wave field but it does not affect the probability
of rogue wave occurrence [6]. Filaments of the chaotic wave
field propagate approximately with the average group velocity
[6]. Additionally, as the values of the initial seed plane-wave
number k0 gets smaller, the probability of occurrence of
extreme waves in the chaotic wave field increases [6]. Similar
behavior is also observed for the NLSE and SSE [5], which
is possibly an indicator of universal property of the processes
started with modulation instability.

In order to demonstrate the possible usage and examine
the features of the spectra for the early detection of the rogue
waves of the KEE, we choose an area of the chaotic wave
field with significantly higher amplitude than other parts. An
example of a patch of the chaotic wave field with a rogue wave
exceeding amplitude 5 at t ≈ 10.8 is shown in Fig. 7 in a 3D
format. The same chaotic wave field is shown in a contour map
format in Fig. 8. A value of β = 1.75 is used in this simulation
and the wave field shown in Fig. 8 is skewed to the left due to
positive value of the β parameter, as discussed in [6].
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FIG. 7. Example of a rogue wave in the chaotic wave field. The
amplitude of this wave exceeds 5.

The spectrum of the chaotic wave field containing the rogue
wave is shown in Fig. 9. In order to isolate the features due to
the rogue wave in the presence of many spectral components,
the spectrum is obtained after a super-Gaussian (Flat-top) mask
centered at the location of the peak amplitude is applied to the
chaotic wave field. That is, the mask is applied by simple
multiplication of the super-Gaussian function with the chaotic
wave field that includes the above-mentioned rogue wave in
the physical domain. If all of the rogue wave is within the
masked zone, then centering of this super-Gaussian function
does not affect the spectral results significantly [5].

The spectrum of the patch of the wave field shown in
Fig. 9 has a visible widening due to appearance of the rogue
wave. A point-by-point comparison of this spectrum with the
spectra of the analytical solutions of the KEE presented in
the previous sections is extremely difficult. Although some
asymmetry in the triangular spectrum with more energy in the
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FIG. 8. Contour plot of the rogue wave shown in Fig. 7.
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FIG. 9. Spectrum of the chaotic wave field shown in Fig. 7.
The apparent widening of the spectrum at t ≈ 10.8 is due to the
appearance of a rogue wave.

positive wave numbers due to the counterclockwise skewness
of the wave field that is due to the positive β parameter
can be observed, this is not the prominent feature of the
spectrum. The prominent feature of the spectrum displayed
in Fig. 9 is the considerable widening of the spectrum due to
the emergence of the rogue wave. This feature can be used
to reveal rogue wave emergence from spectral measurements

[5]. In reality it is only possible to measure a part of the
wave field. However, similar to the NLSE and the SSE
cases, the spectrum remains triangular even if it is calculated
for all or part of the chaotic wave field [5]. This is the
main attribute and a universal feature of the typical chaotic
wave fields produced through modulation instability [5,28]
and characteristic features of the KEE’s analytical rogue
wave spectra may be suppressed in a realistic chaotic wave
field.

IV. CONCLUSION

In this paper we have studied the spectral features of
the first- and second-order rational rogue wave solutions of
the Kundu-Eckhaus equation. Individual spectra of the rogue
waves of the Kundu-Eckhaus equation significantly differ from
their NLSE analogs. They exhibit strong asymmetry due to
one-sided development of the triangular spectra before the
rogue waves become evident in time. As the skewness of the
wave field, which is controlled by the β parameter, increases,
so does the asymmetry in the triangular spectra. Additionally,
the development of the triangular spectra of the rogue waves
of the Kundu-Eckhaus equation occurs before their NLSE
analogs, which may be used to enhance the early warning
times. However, the rogue wave spectra of a chaotic wave
field studied in the frame of Kundu-Eckhaus equation have
a triangular widening signature similar to the NLSE case as
a universal feature of the fields resulting from modulation
instability. Therefore, characteristic features of the analytical
rogue wave spectra of the Kundu-Eckhaus equation may be
suppressed in a realistic chaotic wave field.
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