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Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures
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The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed
nature (regular and chaotic) of the phase space. We study these features by examining the synchronization
of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability
function approach is used to study the stability of the synchronous state and to identify the percentage of
synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power
law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times
as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the
synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase
differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic
orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the
nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution
of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular,
regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations
where the distributions show a power-law tail, indicating long synchronization times for at least some of the
synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically.
The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization
times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement
in the basin of synchronization. We discuss the implications of our results.
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I. INTRODUCTION

Hamiltonian and area-preserving systems show a variety
of intriguing features due to the mixed nature of their phase
space. Some of the unique features seen in the case of
Hamiltonian systems include the existence of anomalous
kinetics, Lévy processes and Lévy flights [1], power-law con-
tributions to recurrence and other statistics, and the existence
of dynamical traps [2,3]. Phenomena like synchronization
show different features in the case of Hamiltonian systems
compared to those seen in the case of dissipative systems.
In this paper we study the synchronization behavior of
area-preserving maps, as models of Hamiltonian systems,
where the maps are synchronized using the method of Pecora
and Carroll [4]. The synchronization of dissipative systems
using this method is well explored, both in theoretical and
experimental contexts [5–12]. However, synchronization in
Hamiltonian or area-preserving systems has not been explored
in many studies. One example of this is Ref. [13], where
Heagy and Carroll have demonstrated the existence of chaotic
synchronization in Hamiltonian systems as represented by
a standard map. They derive the synchronization conditions
analytically and verify them numerically. They have also
shown the phenomenon in an experimental realization of
the “piecewise linear standard map” in an analog electric
circuit. We note that two dynamical systems will be said to
be completely synchronized if the difference between any of
their quantifiable state properties converges to zero as t → ∞.
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Yet another form of coherent evolution is exhibited by a
coupled Hamiltonian system wherein the two orbits share
the same region of the individual phase space with identical
invariant measures. This form of synchronization, known as
measure synchronization, has been observed numerically in
globally coupled standard maps [14], coupled φ4 Hamiltonian
systems [15], and Duffing Hamiltonians [16]. More gener-
alized definitions of synchronization can be found in the
numerous reviews on the subject [17–19]. In the present work,
synchronization is considered in the strict sense of complete
synchronization alone, and phenomena like generalized syn-
chronization and measure synchronization will be dealt with
elsewhere.

In the context of the present paper, we examine the synchro-
nization behavior seen on the synchronization properties of
Hamiltonian systems, as represented by area-preserving maps.
We use the standard map [20], the prototypical area-preserving
map, as our example. Here, a pair of standard maps are
coupled unidirectionally using Pecora-Caroll coupling. This
system was first examined by Heagy and Caroll [13]. They
obtained the synchronization criterion for this system in
terms of the conditional Lyapunov exponent (also known
as the master stability function) and said that the system
should show synchronizing trajectories when the average
conditional Lyapunov exponent was negative. However, Heagy
and Caroll observed that synchronizing trajectories were seen
for the system considered for values of the nonlinearity
parameter which greatly exceeded the value of nonlinearity
at which the conditional Lyapunov exponent was positive.
Heagy and Caroll correctly attributed this phenomenon to
the nonuniformity of the measure in phase space, i.e., to
the effect of the mixed nature of the phase space, which
contains regular regions, chaotic trajectories, and sticky
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regions, but did not explore the consequences of this mixed
nature.

In this paper, we examine in detail the effects of the mixed
phase space on a variety of quantities of interest for the
synchronization problem. The effect of the nature of initial
conditions on the master stability functions, and on synchro-
nization properties such as distributions of synchronization
times, are explored. Here, we see intermittent synchronization
in the transient until synchronization is achieved. The laminar
lengths in this distribution obey power-law behavior. We
find that synchronization occurs in the neighborhood of the
invariant curves in the phase space. We confirm this via
finite-time analysis of the conditional Lyapunov exponent in
the angular direction of the coupled standard map considered.
The existence of such trapping or sticky regions in the phase
space of area-preserving systems has been noted earlier [2,3]
and is known to have important implications for transport [21].
We also identify the presence of stable periodic orbits in
the vicinity of these sticky neighborhoods. The presence of
stable periodic trajectories in these neighborhoods provides
local transverse stable directions, so trajectories which enter
these neighborhoods tend to converge in the time which they
spend in these neighborhoods, giving rise to laminar regions
in the time series of the separation between trajectories and
are interspersed by chaotic bursts which are seen when the
trajectories leave these neighborhoods. Similar effects are
seen due to unstable periodic trajectories in the studies of
Heagy, Pecora, and Carroll [22], but the effect is reversed,
as the unstable directions push away trajectories which are
synchronizing, leading to the chaotic burst intervals in the
intermittent time series.

We also find that the distribution of synchronization
times has a power-law tail, for all combinations of initial
conditions (those which lead to regular or chaotic trajectories).
Synchronization can be seen even at parameter values where
the average Lyapunov exponents computed from the master
stability function are positive, this being due to the existence
of a finite fraction of synchronizing initial conditions, even
at these parameter values. The introduction of a coherent
structure in the phase space leads to a huge reduction
in synchronization times, and a corresponding exponential

distribution for the synchronization times, as well as a
substantial increase in the number of initial conditions which
synchronize. The introduction of a coherent structure is thus
an effective strategy to enhance synchronization and reduce
synchronization times.

This paper is organized as follows. In Sec. II, we describe
the simple unidirectional coupling scheme used to couple the
area-preserving maps under investigation and compute the
Lyapunov exponents from the master stability function for
the coupled system. Synchronization in the coupled standard
map is demonstrated and analyzed in Sec. III. Section IV
studies the distributions of synchronization times and the effect
of initial conditions in detail. This section also examines the
distributions of finite-time Lyapunov exponents and the role
of periodic orbits. In Sec. V, we introduce a coherent structure
in the coupled systems and study its effect of synchronization
and synchronization times. Our results and their implications
are discussed in Sec. VI.

II. THE COUPLED STANDARD MAP

The standard map is considered to be the prototypical
example of a two-dimensional area-preserving map and is
given by:

Pn+1 = Pn + K sin Qn

Qn+1 = Pn+1 + Qn

}
mod 2π. (1)

Here, the subscript n denotes the discrete time and K is
the nonlinearity parameter. These equations typically describe
the evolution of two canonical variables P and Q which
correspond to the momentum and coordinate in the Poincaré
section of a kicked rotator, a system which represents the
behavior of a variety of mechanical systems, as well as the
behavior of accelerator systems. Two-dimensional phase space
plots of the standard map for the parameter values K = 1.5
and K = 6 using 25 initial conditions are shown in Figs. 1(a)
and 1(b).

We now synchronize two standard maps, using the Pecora-
Carroll scheme of synchronization using drive-response cou-
pling [4]. This system was first devised to synchronize
dissipative chaotic dynamical systems, and first demonstrated
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FIG. 1. The phase space of the standard map for 25 random initial conditions from the uniform distribution on [0,2π ] plotted for 4500
iterations; 500 iterates are discarded as transients. The values are normalized, i.e., P

2π
and Q

2π
are plotted on the y and x axes for the parameter

values (a) K = 1.5 and (b) K = 6.0. Most of the phase space is covered by chaotic trajectories. However, small coherent structures can be seen
at the edge, and in the middle of the white regions.
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that even chaotic trajectories can be effectively synchronized.
Under this unidirectional coupling scheme, we duplicate the
given map and couple the original and the duplicated map
in a drive-response configuration. This means that the drive
map evolves freely but the evolution of the response map is
dependent on the drive. In this case, the P value of the response
system is set to the P value of the drive system at each iterate.
Therefore, the coupled system is described by the following
equations:

P d
n+1 = P d

n + K sin Qd
n

Qd
n+1 = P d

n+1 + Qd
n

}
mod 2π (Drive), (2)

P r
n+1 = P d

n + K sin Qr
n

Qr
n+1 = P r

n+1 + Qr
n

}
mod 2π (Response). (3)

The initial values of Q in the drive and response maps are
chosen arbitrarily, whereas the P values are identical. The
system is said to reach complete synchronization when both
the P and Q values of the drive and response systems evolve
to identical values. We analyze the synchronization of this
system using the master stability function [23].

Master stability function

A general drive-response system coupled unidirectionally
may be described by the following set of equations:

dXd

dt
= F (Xd ),

dXr

dt
= F (Xr ) + αE(Xd − Xr ).

Here Xd and Xr are drive and response variables; the matrix
E determines the linear combination of the X used in the
difference and α is the coupling strength. For the map case,
we have the following form

Xd
n+1 = F

(
Xd

n

)
, Xr

n+1 = F
(
Xr

n

) + αE
(
Xd

n − Xr
n

)
.

Therefore, in the case of a general unidirectional coupling of
two standard maps, we get

P d
n+1 = P d

n + K sin Qd
n

Qd
n+1 = P d

n+1 + Qd
n

P r
n+1 = P r

n + K sin Qr
n + α

(
P d

n − P r
n

)
Qr

n+1 = P r
n+1 + Qr

n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

mod 2π. (4)

We have chosen E to be the matrix [1 0
1 0].

To find the stability of the synchronous state, we first
express Eq. (4) in terms of P ⊥ = P d − P r and Q⊥ = Qd −
Qr as follows:

P ⊥
n+1 = (1 − α)P ⊥

n + K sin
(
Qd

n

) − K sin
(
Qr

n

)
Q⊥

n+1 = (1 − α)P ⊥
n + Q⊥

n + K sin
(
Qd

n

) − K sin
(
Qr

n

)
. (5)

We now write the variational equation for Eq. (5) by
linearizing about (P d

n ,Qd
n)[

δP ⊥
n+1

δQ⊥
n+1

]
= M

[
δP ⊥

n

δQ⊥
n

]
, (6)

where the matrix M is given by

M =
[

1 − α K cos
(
Qd

n

)
1 − α 1 + K cos

(
Qd

n

)
]
, (7)

which is the Jacobian matrix for the variational equation (6),
the master stability equation for the coupled system under
investigation. The associated largest Lyapunov exponent (LE)
computed from the master stability equation is the master
stability function (MSF) of the system as follows. The Jacobian
matrix for n-times iterated map is given by

Mn = M(Xn−1).M(Xn−2) · · ·M(X0). (8)

If �k
i denotes the kth eigenvalue of the matrix Mn at the

ith iteration of the map, then the Lyapunov exponents (LE-s)
are given by

λk = lim
n→∞

1

n

n−1∑
i=0

ln
∣∣�k

i (n)
∣∣. (9)

A negative value of the MSF (the largest nonzero LE)
will ensure that (P ⊥,Q⊥) tends to zero, indicating that
the difference between P and Q will die out and the
system will synchronize. An analytic criterion for generalized
synchronization using a different approach has been derived
in Ref. [24].

Now, for the Pecora-Carroll approach, we set α = 1. This
substitution simplifies the matrix in Eq. (7), which now reads

M1 =
[

0 K cos
(
Qd

n

)
0 1 + K cos

(
Qd

n

)
]
. (10)

The MSF should then be computed from the eigenvalues
of the matrix M1. It is easy to see that, for α = 1, one of the
eigenvalues ofM1, �1, is zero. Therefore, we need to consider
only the nonzero eigenvalue which is �2 = 1 + K cos(Qd

n).
The corresponding LE is given by

λ = lim
n→∞

1

n

n−1∑
i=0

ln
∣∣1 + K cos

(
Qd

n

)∣∣. (11)

The superscript k has been dropped as we have only one
eigenvalue to compute. The variation of the LE λ is shown
in Fig. 2(a) wherein λ is calculated and averaged over 50 000
randomly chosen initial conditions for different values of K .
We note that the LE is negative up to K = 2, and crosses to
positive values thereafter. However, due to the mixed nature
of the phase space, synchronization can occur even for the
values of K where the average LE is not negative. The plot in
Fig. 2(a) also shows the LE exponents for synchronizing initial
conditions and nonsynchronizing initial conditions separately.
We plot the percentage of initial conditions which evolve to
the synchronized state in Fig. 2(b). Trajectories that have not
synchronized after 5000 iterations are counted as nonsynchro-
nized. The nature of the distribution of synchronization times
remains unchanged up to 10 000 iterations. It is clear that the
LE is negative for synchronizing initial conditions and positive
for nonsynchronizing ones, as it should be.

We find that more than 80% of the initial conditions
synchronize for K � 3 but, for higher values of K , the
synchronizing fraction drops to almost 1% of the whole. We
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FIG. 2. (a) The variation of the Lyapunov exponent as a function of K . The LEs have been calculated and averaged over 5000 initial
conditions randomly chosen from the interval [0,2π ] for 50 000 iterations in each case. It is seen that the LE values cross the zero line at
K = 2 and remain positive afterwards. The three curves show the variation of LEs with K for synchronizing and nonsynchronizing orbits.
(b) The percentage of the initial conditions that converge to synchronization for K = (0.5,1,1.5, . . . ,6). We have chosen 5000 initial conditions
randomly chosen over the interval [0,2π ]. The percentages are mentioned at the top of the bars. The synchronization accuracy used is 10−5.

also note that a sizable fraction of initial conditions lead to
synchronization at K = 2.5 and K = 3 where the average
value of the LE is positive [compare with Fig. 2(b)]. This
happens due to the fact that the LEs for nonsynchronizing
orbits having non-negative values are larger in magnitude,
and are also weighted by the fraction of nonsynchronizing
initial conditions, which contributes to the increase in the
average. Therefore, we obtain synchronization for some initial
conditions even if the average LE is non-negative. In addition,
we do not find any synchronization at K = 4.5, consistent with
the corresponding LE. It is clear that synchronization in this
system shows a strong dependence on the initial conditions. In
the next section, we investigate whether the synchronization
times also show this initial condition dependence.

III. SYNCHRONIZATION: THE BEHAVIOR
OF THE TRANSIENT AND INTERMITTENCY

Complete synchronization between the drive and response
maps in the case of the coupled standard map is said to be
achieved if �Q(=Qd

n − Qr
n) = 0. Such a case is shown in

FIG. 3. The synchronized drive and response systems of two
standard maps coupled via the “Pecora-Carroll coupling” scheme
at K = 1.5 after a transient of 500 iterates.

Fig. 3 for K = 1.5 for one set of initial conditions (drive,
response). Here, two trajectories are said to be synchronized
to numerical accuracy if the Euclidean distance between them
is less than δ = 10−5.

It is interesting to ask whether there are regions in the
phase space where the trajectories have a greater tendency
to synchronize; i.e., Are there regions which function as
synchronization “traps”? In order to identify such regions, we
follow drive and response pairs of initial conditions via their
trajectories to the points where they get locked onto each other
and identify the location of such points in phase space.

If we follow the individual trajectories of the drive and
response maps in the phase space, then we find that the points
at which both the maps synchronize, i.e., the Q values of
the drive and the response maps become identical within
numerical accuracy, either lie on one of the invariant curves or
appear to be in the close neighborhood of the invariant curves.
The location of the synchronization points lies on, or in the
neighborhood of, the invariant curves, irrespective of whether
the initial conditions chosen for a drive or response system lie
in the regular or the chaotic region of the mixed phase space
of the map. Figure 4 demonstrates an example.

In Fig. 4, the evolution of the iterates of the drive and
response maps near synchronization is shown on the left
[Figs. 4(a), 4(c), 4(e), and 4(g)] and the corresponding variation
in �Q is shown on the right [in Figs. 4(b), 4(d), 4(f), and 4(h)].
The initial conditions for the drive and response maps have
been chosen from the chaotic region and are indicated by the
solid left triangle “�” (in blue) and the solid right triangle
“�” (in red), respectively, in the plots on the left. The iterates
belonging to the drive map (shown by the symbol “�” in
blue) appear to be distributed randomly in Fig. 4(a) as these
are a part of a chaotic trajectory due to the choice of initial
conditions. The response maps iterates (shown by the symbol
“�” in red) are determined by the drive in Eq. (2) and the
difference between the drive and response, viz. �Q, fluctuates
continuously as in Fig. 4(b). The drive iterates then appear
to approach an invariant curve in the phase space followed
by the response, and the difference �Q begins to approach
zero [Figs. 4(c) and 4(d)]. The locations of the drive and
response iterates right before synchronization are shown in
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FIG. 4. The figure shows a typical trajectory of the drive and the response map for an initial condition chosen from the chaotic regime at
K = 1.5. The iterates for the drive map are plotted using the left hollow triangle, “�” in blue, and for the response map using the right hollow
triangle, “�” in red, in plots on the left of the panel. The synchronized iterates are shown by the asterisk “∗” in black. Complete synchronization
is taken to be achieved if the iterates fall within a distance 10−5. For more details, see the text in Sec. III.

Fig. 4(e). Note that the location indicated by the plus sign
(+) is the point of synchronization. The fluctuation in �Q

is now an order of magnitude less than 10−4 [Fig. 4(f)]. At
the point of synchronization the response iterates lock onto
those of the drive and the synchronized trajectory (which
is the drive trajectory) evolves thereafter with �Q values
which are almost zero [Figs. 4(g) and 4(h), respectively]. Thus,
complete synchronization is achieved in the neighborhood of
an invariant curve for a drive which is chaotic.

Figure 4 has been plotted for the initial condition
(Qd,Qr,P )0 = (1.3,1.1,1). Synchronization occurs at τ =
4736 at the (P,Q) values indicated in Fig. 4(e) by the “+”
sign, in black. The phase-space plots [Figs. 4(a), 4(c), 4(e),
and 4(g)] show, respectively, the location of 72 iterates
(from τ − 190 to τ − 121), 71 iterates (from τ − 120
to τ − 50), 50 iterates (τ − 49 to τ ), and 61 iterates

(τ + 50 to τ + 110). The corresponding variations in �Qn

are shown in Figs. 4(b), 4(d), 4(f), and 4(h).
We further observe that the transient to synchronization

is seen to exhibit intermittent behavior in the quantity �Q

[Fig. 5(a)] or, equivalently, the phase difference of the two
maps in the transient. We find that the distribution of laminar
regions in Fig. 5(a) scales as a power law for the values in the
figure caption. The exponent is given by 0.9486 ± 0.013 for the
log-log plot of the reverse cumulative distribution of laminar
lengths in the given range. To explain the intermittent behavior
of (Qd − Qr ), we note that both the trajectories together pass
near invariant curves several times before actually collapsing
on to each other giving rise to laminar and burst regimes.
Thus, the laminar regimes indicate the time intervals during
which the drive and the response trajectories remain close to
one of the invariant curves.
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FIG. 5. (a) Intermittent behavior in the quantity �Q = Qd
n − Qr

n in the coupled standard map leading to identical synchronization at
K = 1.5 for 5000 iterations. (b) The log-log plot of the reverse cumulative distribution of the laminar lengths in the intermittent region at
K = 1.5 shows power-law scaling with an exponent given by 0.9486 ± 0.013 for 50 000 randomly chosen initial conditions from the uniform
distribution on the interval [0,2π ] for the relevant variables.

These observations suggest that once drive and response
trajectories evolve to the neighborhood of an invariant curve,
they coalesce onto each other, leading to the synchronization
of both trajectories. This is true for drive trajectories which are
chaotic as well as those which lie on invariant curves. If the
drive trajectory lies on an invariant curve, then the response
trajectory collapses onto it very quickly and synchronization
times are short. We discuss this in greater detail in the next
section.

A. Finite-time Lyapunov exponent
for the synchronizing subsystem

Dynamical traps in chaotic orbits are known to exist in
an area-preserving map due to the stickiness of trajectories
to some specific domains in phase space such as regular
islands in the phase spaces of the web map and the standard
map [2,3,25–27]. This means that close to those domains,
the trajectories can spend an arbitrary long but finite time. In
such trapping regions in the phase space, parts of a chaotic
trajectory are almost regular. It has been shown that such traps
in the web map and the standard map can be characterized
using the properties of the finite-time Lyapunov exponent—the
distribution of exponents is bimodal due to orbits sticking near
elliptic regions [27]. In our numerical simulations, we find
that the regular regions behave as traps for both drive and
response trajectories. We can therefore apply a similar finite
time Lyapunov exponent (FTLE) analysis to characterize those
traps.

Following Sec. II A, we define the largest nonzero time-n
Lyapunov exponent (FTLE λs) associated with an initial point
X0 = (P0,Q0) as

λs(X0; n) = 1

n

n−1∑
i=0

ln |�i(n)|. (12)

We extend this notion to the master stability function, i.e.,
the nonzero Lyapunov exponent defined in Eq. (11), given by
�2 = 1 + K cos(Qd

n). The finite-time version of this is

λs(X0; n) = 1

n

n−1∑
i=0

ln |1 + K cos Qi |. (13)

Next, we define the probability density of the FTLE
f (λs(X0; n)) for a randomly chosen initial condition X0 =
(P0,Q0) which leads to chaotic orbit. This means that
f (λs(X0; n))dλs is the probability that the FTLE value lies
between λs and λs + dλs . If F (λs(n); n) is any function of the
FTLE, then its average over the invariant chaotic measure is
given by

F [λs(n)] =
∫ +∞
−∞ F (λs(n)f (λs(n); n)dλs∫ +∞

−∞ f (λs(n); n)dλs

. (14)

We obtain the distribution f (λs(n)) numerically by choos-
ing 1000 initial conditions distributed randomly over the
phase-space regions covered by the chaotic sea and iterate
them for 10 000 times to compute the FTLE at every n = 8
step for K = 1.5. The distribution thus found is shown in
Fig. 6. The distribution is clearly bimodal. The large negative
values indicate the synchronized state of the subsystem which
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FIG. 6. The bimodal distribution of subsystem FTLEs, at K =
1.5, for 1000 randomly chosen initial conditions distributed uniformly
over chaotic regions of the phase space. The number of iterations in
each case is 10 000 and the average is computed for n = 8.
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TABLE I. The table gives values of the Lyapunov exponents (in the second row) computed for the periodic orbits (first row) at K = 1.5
using the Newton-Raphson search algorithm. Negative values indicate the local stability of the synchronization manifold for the orbits.

Orbit 13 25 30 35 40 44 50 60 70

λf −0.1273 −0.0277 −0.0234 −0.0203 −0.0198 −0.0159 −0.0148 −0.0268 −0.0999

occurs in the sticky regions in the neighborhood of invariant
curves. The comparatively small positive values close to
zero correspond to the initial expanding directions of the
trajectories. This is similar to the bimodal distribution found
in Ref. [27] for the standard map at K = 1.5 in which small
negative values of FTLE are due to the sticky regions and
large positive values exist for those parts of the trajectories that
lie in the chaotic bulk. Therefore, the FTLE analysis for the
subsystem indicates that synchronization occurs in one of the
sticky regions which traps the chaotic trajectories of the drive
and the response maps. There is a close connection between
the sticky regions and the periodic orbits of the system. We
discuss this in the next section.

B. Role of periodic orbits

We note that the behavior of the synchronization traps
can be analyzed in a more quantitative way by analyzing the
location and stability properties of the periodic orbits in the
vicinity of the locations where synchronization takes place.
We compute the Lyapunov exponents of the periodic orbits
themselves. First, a periodic orbit of the standard map is located
by using a Newton-Raphson search algorithm [28]. There are
infinitely many periodic orbits present in the regular regions of
the phase space of the standard map. An initial guess here will
lead to one of these periodic orbits. Next, the Floquet matrix
is constructed for the variational Eq. (6) on the orbit that is
located [28]. The Floquet matrix, F , relates an arbitrary initial
variation about the periodic orbit, say, δ(0), to its value δ(T )
after a complete period T , by the relation

δ(T ) = Fδ(0). (15)

The eigenvalues of F are then the “Floquet multipliers”
(α1,α2), for the located periodic orbit. Note that, for the case
at hand, one of the multipliers, say, α2, will always be zero,
indicting no change in the P direction. The other exponent
will then give the Lyapunov exponent for the periodic orbit

λf = ln |α1|
T

, (16)

where T is the period of the orbit.
We have computed the Lyapunov exponent λf for several

periodic orbits located using the Newton-Raphson method
at K = 1.5. The exponent comes out to be negative in all
the cases, indicating the local stability of the transverse
synchronization manifold of the periodic orbits. Some of the
computed values are listed in Table I.

It is also useful to identify the location of periodic orbits in
the phase space. A periodic orbit of period 44 located using a
Newton-Raphson search is shown in Fig. 7 for K = 1.5. The
orbit is plotted on Fig. 4(e) to show its proximity with the
location of the point of synchronization of the trajectories of
Fig. 4 indicated by the cross in the figure.

Our analysis is similar to that of Ref. [22] wherein
the synchronous chaotic behavior in coupled Rőssler-like
oscillators, interrupted by bursts of desynchronized behavior,
was analyzed by investigating the role of unstable periodic
orbits during bursting events. It was found that periodic orbits
within a synchronous chaotic attractor are locally unstable,
thereby giving rise to intermittent burst regimes. In our case,
the reverse behavior is seen as the periodic orbits are locally
stable. The existence of these local stable directions accounts
for the observed laminar regimes �Q before the eventual
trapping of the chaotic trajectories of the drive and response
maps and the final synchronization of the maps. As expected,
the point at which the chaotic trajectories synchronize lies in
the vicinity of the periodic trajectories.

IV. THE DISTRIBUTION OF SYNCHRONIZATION TIMES

Since the phase space of the standard map is mixed, a given
initial condition may lead to a chaotic or a regular trajectory.
We group our (drive, response) initial conditions according to
the nature of the trajectory, which would have been obtained
had the initial condition been allowed to evolve freely. Thus,
the four possibilities for pairs of initial conditions for the
(drive, response) system are as follows: (chaotic, chaotic),
(chaotic, regular), (regular, regular), and (regular, chaotic). For
the simulations reported herein, the accuracy in computation
is 10−5. Figure 8 shows the distribution of synchronization
times and the location of initial conditions for each type of
drive-response pair at K = 1.5 [Fig. 9 shows the pairs in a
smaller region of Fig. 8(f)] and Fig. 10 shows those at K = 6.
We have considered 10 000 initial conditions for K = 1.5 and
50 000 initial conditions for K = 6 chosen randomly from

0 2 4 6
Q

0

1

2

3

4

5

6

P

FIG. 7. This plot shows Fig. 4(e) with a periodic orbit with
period 44 indicated by the black “∗.” The Lyapunov exponent of
the synchronization manifold for this periodic orbit at K = 1.5 is
found to be −0.0159.
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FIG. 8. The distribution of synchronization times and the location of initial conditions for the coupled standard map at K = 1.5 for (drive,
response) maps in the [(a) and (b)] (chaotic, chaotic), [(c) and (d)] (chaotic, regular), [(e) and (f)] (regular, regular), and [(g) and (h)] (regular,
chaotic) regimes. The initial conditions for the drive map are plotted using the left hollow triangle, “�” in blue, and for the response map using
the right hollow triangle, “�” in red. Complete synchronization is taken to be achieved if the iterates fall within a distance 10−5. For more
details, see the text in the Sec. III. The distributions plotted on the left of the panel have 25 bins each for synchronization times for 10 000
different initial conditions randomly chosen for the uniform distribution on the interval [0,2π ]. The locations of initial conditions in the plots
on the right of the panel indicate the regions from which these initial conditions are chosen.

the uniform distribution [0,2π ]. We did not find any (chaotic,
regular) pair which synchronizes at K = 6.

It is observed that with the increase of the nonlinearity
parameter K , the number of initial conditions that show
synchronization decreases. For instance, at K = 6, only about
0.7% of the chosen initial conditions lead to synchronized
behavior. The synchronization time distribution for all the
pairs collectively shows a very long tail as in Fig. 11(a) for
50 000 different initial conditions randomly chosen from the
uniform distribution on the interval [0,1]. Interestingly, the tail
in the distribution shows power-law scaling [Fig. 11(b)] with
the exponent of the cumulative distribution being given by
1.117 ± 0.030. In Table II, we have estimated the exponent

for the categories (chaotic, chaotic) and (chaotic, regular) at
K = (1.5,4.0,6.0) for 5000 and 10 000 iterations for randomly
chosen initial conditions in the interval [0,2π ]. The tail of
the distribution corresponds to long synchronization times,
and the power-law decay indicates that in addition to the fact
that a very small number of initial conditions synchronize
here, a significant fraction of these exhibit a very slow rate of
convergence.

We note that the phase-space structure seen here is fairly
homogeneous at this high value of the nonlinearity parameter
K , with most of the phase space being accessed by chaotic
trajectories, and the exponents settle down into more stable
values. On the other hand, for lower values of K , the phase
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FIG. 9. A part of Fig. 8(f) is blown up to show that the “P” are
taken to be identical for the drive [indicated by the plus sign (+) in
blue] and response maps (indicated by “∗” in red).

space is inhomogeneous, as many periodic orbits exist in the
space. This leads to a greater dependence of the power-law
exponent on the number of iterates. It is interesting to see
whether the introduction of a large inhomogeneity in the

phase space can contribute to an increase in the basin of
synchronization and to a reduction in the synchronization
times. A large inhomogeneity in the phase space can be
introduced by creating a coherent structure in the system. We
also find that the introduction of a coherent structure in the
system has a remarkable effect on the synchronization times,
as described in the next section.

V. THE EFFECT OF A COHERENT STRUCTURE
ON SYNCHRONIZATION

Many of the effects seen in the synchronization behavior
of the standard map are due to the mixed nature of the
phase space. It is therefore interesting to see whether the
existence of a coherent structure has a significant effect on
the synchronization behavior of the standard map. Coherent
structures are regular and localized structures in the phase
space of chaotic and turbulent dynamical systems. These
structures are stable and not affected by the chaotic nature
of the system. A coherent structure can be generated in the
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FIG. 10. The distribution of synchronization times and location of initial conditions for the coupled standard map at K = 6.0 for (drive,
response) maps in the [(a) and (b)] (chaotic, chaotic) regime, [(c) and (d)] (regular, regular) regime, and [(e) and (f)] (regular, chaotic) regime.
The initial conditions for the drive map are plotted using the left hollow triangle, “�” in blue, and for the response map using the right hollow
triangle, “�” in red, in the plots. Complete synchronization is taken to be achieved if the iterates fall within a distance 10−5. For more details,
see the text in Sec. III. The histograms on the left show synchronization times from 50 000 initial conditions randomly chosen from the uniform
distribution on the interval [0,2π ]. The data are binned into 25 bins. The locations of initial conditions in the plots on the right of the panel
indicate the regions from which these initial conditions are chosen (here, only 500 initial conditions are plotted). It may be noted that we did
not find any (chaotic, regular) pair that synchronizes.
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FIG. 11. The distribution of synchronization times for the coupled standard map at K = 6.0. (a) The distribution of synchronization times
for evolution from 50 000 initial conditions randomly chosen from the uniform distribution on the interval [0,1]. The data are binned into 25
bins. (b) The long tail in the distribution shows power-law behavior as seen in the log-log plot of the cumulative distribution. The exponent α

for the fit shown takes the value 1.117 ± 0.050.

area-preserving standard map using the method of parameter
perturbation [29]. The perturbation is applied in the local
neighborhood of the periodic points of the map. The area-
preserving nature of the map is to be kept intact. We describe
the method briefly.

We take the following form of the standard map:

Pn+1 = Pn + K
2π

sin(2πQn)

Qn+1 = Pn+1 + Qn

}
mod 1. (17)

Here −0.5 � Pn � 0.5,0 � Qn � 1, where n denotes the
discrete time, and K is the nonlinearity parameter as seen
previously. In the form above [30], the standard map is known
to have a hyperbolic fixed point at (0,0.5). We perturb the
parameter K to K − ε if |P − Pf | < δ, |Q − Qf | < δ. For P

and Q outside this δ strip, K does not change. It may be noted
that the Jacobian J of the original standard map is given by

J =
[

1 1 + K cos(2πQn)

1 K cos(2πQn)

]
.

The determinant of this matrix is 1 as the dynamics is area
preserving. This remains at unity for the perturbed map also
in which K is replaced by K − ε [31]. The coherent structure
thus obtained for K = 6, δ = 0.3, and ε = 2 about the fixed
point (Pf ,Qf ) = (0.0,0.5) is shown in Fig. 12(a).

We now examine the synchronization of the perturbed maps
above, when the maps are coupled using the Pecora-Carroll
method. With the introduction of a coherent structure in the

coupled system at K = 6 with the perturbation parameters as
above, the response map also develops an identical structure
in the phase space [see Fig. 12(b)] due to synchronization.
Here the perturbation is applied to both the drive and the
response maps. We find that synchronization times reduce
remarkably after the introduction of the coherent structure.
This indicates that the parameter perturbation forces the
trajectories of the drive and response maps to stick around the
coherent structure and therefore leads to considerably shorter
synchronization times. In addition to this, we observe that the
percentage of initial conditions which show synchronization
increases to about 7%, which is an increase by a factor of
10 as compared with the fraction of initial conditions which
synchronize seen in the case of the unperturbed map. Thus, the
basin of synchronization is greatly enhanced. In quantitative
terms, we find that the distribution of synchronization times
is now exponential as shown in Fig. 13 with the exponent
μ = 326.45 ± 10.89 for 50 000 different initial conditions
randomly chosen from the uniform distribution on the interval
[0,1]. Therefore, the heavily long-tailed distribution seen in
the unperturbed map (Fig. 11) turns into an exponential
distribution in the presence of the coherent structure induced
by the perturbation (Fig. 13).

If the phase space of the unperturbed map is predominantly
chaotic (as at K = 6), the creation of a coherent structure leads
to a much larger enhancement in the fraction of synchronizing
initial conditions (a factor of 10 at K = 6.0) than for the case
where the mixed phase space has more regular regions in the

TABLE II. The tail of the distribution of synchronization times shows power-law behavior for the cases reported here. The table gives the
value of the exponent for various classes of initial conditions for all possible pairs at K = 1.5,4.0, and 6.0 for 5000 and 10 000 iterations
as indicated. The exponents have been estimated from the log-log plot of the corresponding cumulative probability distribution. A pair (C,R)
indicates the (Chaotic, Regular) class, etc. It is to be noted that no synchronizing (C,R) pair was found at K = 6.0.

(Chaotic, Chaotic) (Chaotic, Regular) All

K 5000 10 000 5000 10 000 5000 10 000

1.5 1.022 ± 0.044 0.820 ± 0.032 0.974 ± 0.035 0.792 ± 0.028 0.917 ± 0.030 0.729 ± 0.024
4.0 1.105 ± 0.045 1.055 ± 0.021 1.156 ± 0.045 1.039 ± 0.016 1.081 ± 0.030 1.031 ± 0.021
6.0 1.120 ± 0.033 1.175 ± 0.022 1.117 ± 0.034 1.175 ± 0.023
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FIG. 12. (a) The coherent structure in the phase space of the standard map for K = 6.0, δ = 0.3, and ε = 2.0 about the fixed point
(Pf ,Qf ) = (0.0,0.5). (b) Synchronization is seen in the phase space of the drive and response maps in the presence of the coherent structure.
This plot is for K = 6.0 and for perturbation values as given in the text. We evolve 25 initial conditions chosen randomly from the uniform
distribution on the interval [0,1] for 4500 iterations. The transient is 500 iterates.

first place, as at K = 1.5, where regular regions occupy about
half of the phase space. Here the creation of coherent structures
enhances the number of synchronizing initial conditions by
only about 20%. The size of the newly created structure also
has a role to play in this enhancement, as larger coherent
structures lead to shorter synchronization times.

VI. CONCLUSIONS

To summarize, we have explored different aspects of
the phase synchronization observed in area-preserving maps,
coupled by the Pecora-Caroll method. Coupled standard maps
show complete phase synchronization, with intermittent be-

FIG. 13. The probability distribution for the distribution of
synchronization times of the coupled standard map system with
a coherent structure created via perturbation shows exponential
behavior as shown in the figure. The perturbation is applied in the
neighborhood of the fixed point (Pf ,Qf ) = (0.0,0.5) with K = 6.0,
δ = 0.3, and ε = 2.0. The distribution of synchronization times
is obtained for for 50 000 different initial conditions randomly
chosen from the uniform distribution on the interval [0,1], divided
into 25 bins. The exponent of the distribution is found to be
μ = 326.45 ± 10.89. The mean synchronization time for this case
is 326.44.

havior in the presynchronized transient for the phase difference
for initial conditions that are uniformly distributed. This
intermittency shows power-law behavior. We have also shown
that synchronization occurs when the drive and response tra-
jectories are in the sticky regions close to the invariant curves
in the phase space. Stable periodic trajectories exist in these
neighborhoods and the existence of local transverse stable
directions encourages trajectories to synchronize, leading to
laminar regions in the time series of the separation between
trajectories, interspersed by chaotic bursts which are seen when
the trajectories leave these neighborhoods. This is similar but
opposite to the effect seen due to unstable periodic trajectories
in the studies of Heagy, Pecora, and Carroll [22].

The distribution of synchronized times depends crucially
both on the parameter value of the nonlinearity parameter K as
well as on the mixed nature of the phase space. Distributions of
synchronized times show long-tailed behavior with accompa-
nying power laws for initial conditions distributed uniformly in
the phase space, as well as for some combinations of drive and
response initial conditions in the regular and chaotic regimes.
The introduction of a coherent structure in the system drasti-
cally alters the distribution of synchronization times, which
crosses over to exponential behavior, and also drastically
enhances the size of the basin of synchronization. Thus, the
introduction of a coherent structure can be an effective strategy
in cases where short synchronization times are desirable.

We note that most of the novel aspects of synchronization
seen here come from the existence of a mixed phase space
and the consequent sensitivity to initial conditions. We note
that many of these effects are similar to those seen in the
case of coupled dissipative systems due to the presence of
riddled basins of attraction and attractor bubbling bifurca-
tions [12,32,33]. The precise correspondence between these
aspects, and the phenomena seen here due to the mixed nature
of the phase space, needs to be explored further. Additionally,
phenomena such as the phase slips seen in coupled rotating
Rayleigh-Benárd convection systems are also a consequence
of the mixed nature of the phase space and the effects of
local stable and unstable directions. Despite the genericity of
the standard map, we have not observed phase slip effects
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in our studies of the standard map. These effects, however,
are easily observed in other area-preserving maps such as the
Blinking Vortex map of Aref [34]. We plan to study these
effects elsewhere.
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