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Precision of collective oscillations in complex dynamical systems with noise
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Two kinds of oscillation precision are investigated for complex oscillatory dynamical systems under action of
noise. The many-cycle precision determined by the variance of the times needed for a large number of cycles is
closely related to diffusion of the global oscillation phase and provides an invariant property of a system. The
single-cycle precision given by the variance in durations of single cycles is sensitive to the choice of an output
variable and output checkpoint; it can be improved by an appropriate selection of them. A general analysis of the
precision properties based on the Floquet perturbation theory is performed and analytical predictions are verified
in numerical simulations of a model oscillatory genetic network.
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I. INTRODUCTION

Complex dynamical systems with attractive limit cycles
generate stable periodic oscillations and can operate as clocks
[1,2]. When such systems are subject to noise, fluctuations
develop and the clocks become imprecise. The ability to
maintain high oscillation precision despite noise is an essential
property of biological systems [3–6] and much attention
is paid to understand how this property emerges. Recently,
the problem has been addressed for networks of coupled
phase oscillators under synchronization conditions [7]. It
has been found that, under given noise intensity, variability
of periods is determined by the architecture of a network
through its Laplacian spectrum. Thus, network architectures
leading to enhanced precision of collective oscillations could
be considered and analyzed [7]. When a pair of coupled phase
oscillators was investigated, it was furthermore found that the
period variability depends on how the measurement of periods
is performed [8].

There are, however, also important biological systems, such
as, e.g., genetic networks, where individual elements are not
oscillators, but collective oscillations are nonetheless taking
place [9–12]. Oscillation precision in nonoscillator systems
with noise depends on structural organization of such systems
and it should be clarified what structure is required for preci-
sion enhancement. Previously, without time-dependent noise,
investigations have shown that genetic clocks with largely
varying oscillation periods [13] and with high robustness
against structural perturbations [14] could be designed.

Generally, two kinds of oscillation precision are to be
distinguished. In some applications, it is important that the total
time needed to perform a given large number of oscillations
does not fluctuate much (many-cycle precision). For example,
some electric fish generate rapid oscillations of electric
discharge, where frequencies between 500 and 501 Hz can
be discriminated; i.e., the time for 500 oscillation cycles must
be precise [15]. On the other hand, clocks can also be used as
devices that set the rhythm and control some regularly repeated
events, as found, e.g., in the heartbeat. Then it is important
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that durations of individual cycles do not fluctuate much.
Therefore, minimizing variations in the times of individual
cycles is essential (single-cycle precision) in this latter case.

Thus, depending on the purpose, different precision prop-
erties need to be employed. The aim of the present study is
to analytically and numerically investigate what controls and
influences different kinds of oscillation precision in general
complex dynamical systems with attractive limit cycles under
the action of noise.

It should be noted that the effects of noise in systems
with translational invariance in time or space have been
previously discussed [1,16–20]. In bistable reaction-diffusion
systems with translational invariance in space, it has been
shown that, as a result of noise, the traveling front position
diffusively wanders [16]. In limit-cycle systems, translations
in time correspond to changes in the global, or collective,
oscillation phase [1,17]. The application of noise leads to
diffusion of such a phase and, generally, the mean oscillation
period also becomes modified [18]. The effects of colored and
non-Gaussian noises on global oscillation phase have also been
investigated [19,20]. However, a detailed analysis of temporal
precision aspects has not yet been performed.

In this paper, we derive general expressions for both
kinds of oscillation precision. Our analysis is valid for any
limit-cycle systems, including the networks and systems that
do not consist of the elements with individual oscillatory
dynamics. In the next section, definitions of different precision
properties are introduced. The theory of oscillation precision
in general oscillatory dynamical systems is constructed in
Sec. III. An example of the application of this theory to a
model oscillatory genetic system is given in Sec. IV. The
paper ends with conclusions and a discussion of the obtained
results.

II. DEFINITIONS AND EXAMPLES
OF OSCILLATION PRECISION

Different definitions of the oscillation period may be
applied. For instance, an interval between adjacent oscillation
peaks can be considered as a period. Moreover, isochrons of
the collective phase in limit-cycle systems can be employed
to determine the beginning or end points for a period. When
temporal precision is considered, a period should be defined
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FIG. 1. (a) Stochastic oscillations of the expression levels of three genes in a model genetic network (see Sec. IV for details). The expression
level of gene No. 3 is chosen as the output variable. To determine oscillation periods, two thresholds (x̄ = 0.2 or x̄ = 0.4) can be used. The
output variable can be checked to generate a spike for each cycle when it crosses a threshold in a certain direction (up or down). Thus, four
checkpoints (shown by circles) are possible for a given output variable. (b) Precision properties of oscillations in the same genetic network.
Along the horizontal axis, 12 different choices of checkpoints (outputs of three different genes with two choices of threshold levels for each
gene and two passage directions, up or down). Cross symbols show single-cycle precision obtained from the stochastic oscillation data and
boxes display the respective analytical predictions. Asterisks show 100-cycle precisions under the use of different checkpoints and the line
indicates the analytical prediction for the many-cycle precision in the model.

by signals relevant for the function. In biological clocks, a
series of spikes is typically produced and, in this case, the
period is simply the time interval between the subsequent
spikes. To generate spikes, a threshold mechanism is often
employed. The spike is generated when the underlying
continuous variable crosses a threshold for the first time in a
certain cycle. In the present study, the spike-based definition
for oscillation periods is chosen.

Suppose that some observable variables are persistently
oscillating in a system. In genetic networks, for example,
each such variable may correspond to the concentration of
a protein expressed by a specific gene. We select one of the
variables as the output xl(t) and introduce a certain threshold
level x̄. The spike timing of the kth cycle, tk , is defined as
the time at which xl(t) passes x̄ (in a specified direction,
up or down) for the first time in this cycle; i.e., tk satisfies
the conditions xl(tk) = x̄ and dxl

dt
|
t=tk

> 0 (or dxl

dt
|
t=tk

< 0, if
the spike is generated when it crosses the threshold in the
down direction). Note that when this definition is applied, we
exclude the events when the output variable crosses within a
short time the threshold in both directions (see Appendix A).
Such fluctuation events should not be counted as oscillation
cycles.

The duration T1,k of the cycle k is given by T1,k ≡ tk+1 − tk .
We can also introduce the duration Tm,k of m consecutive
cycles starting at cycle mk that is given by Tm,k ≡ tm(k+1) −
tmk . The variance in durations of m cycles is defined as

Vm = E[(Tm,k − mT̄ )2]. (1)

Here and below, E[· · · ] always denotes both the average
over a sequence of durations k and the ensemble average
over the realizations of a stochastic process. Because we only
consider the regimes with steady oscillations and discard the
transients, the two averages coincide. Moreover, the average
single-oscillation period can be defined as T̄ = E[T1,k].

Through normalization of the variances, relative m-cycle
precision σm can be introduced as

σm = 1

T̄

√
Vm

m
. (2)

Specifically, single- and many-cycle precisions are

σ1 = 1

T̄

√
V1 (3)

and

σ∞ = lim
m→∞

1

T̄

√
Vm

m
. (4)

As an example, Fig. 1(a) shows oscillations in the ex-
pression levels of three genes in a model genetic network
introduced later in Sec. IV. The three genes forming the
network are not identical and the expression level xi(t) of
any of them (i = 1,2,3) can be chosen as the output variable
xl(t). Here the expression level of gene No. 3 (blue) is
chosen as the output variable. To determine oscillation periods,
thresholds at x̄ = 0.20 or 0.4 can be used. For each of the
thresholds, the output variable can be checked to generate
spikes when it crosses the threshold in either the up or the
down direction. Thus, for a given output variable, four different
choices of checkpoints exist. We also consider thresholds
x̄ = 0.02 or 0.70 for gene No. 1 and x̄ = 0.10 or 0.50 for gene
No. 2.

Using this example, we show some of the results in
Fig. 1(b). Cross-shaped symbols in this figure display single-
cycle precisions σ1, defined for different output variables
by using different checkpoints. It is seen that, by changing
the output checkpoints and the output variables, precision
properties may differ by up to around 30%.

Hence, the single-cycle precision depends sensitively on
the way signals or spikes are generated by oscillations. If,
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for example, our genetic circuit should work as a circadian
clock with the period T̄ = 24 h, the checkpoint-specific
variation of single-cycle precision from 0.0135 to 0.0175 in
Fig. 1(b) should correspond to an increase in the absolute
period variation from 19.4 to 25.2 min, which is an important
difference.

Note that the single-cycle precision can be enhanced when a
specific output variable and a particular checkpoint are selected
(for example, by choosing gene No. 1 and the upward check-
point at level x̄ = 0.02). For comparison, numerical values
of σ100, approximately yielding the many-cycle precision, are
also shown by asterisk symbols for different choices of output
variables and checkpoints in Fig. 1(b). It is clearly seen that
no significant variation of this property from one kind of
measurement to another is present. Hence, it can provide an
invariant characterization of oscillation precision. In the next
section, a general analytical theory of precision properties is
developed.

III. ANALYTICAL EXPRESSIONS FOR DIFFERENT
PRECISION PROPERTIES

We consider a general N -dimensional dynamical system
with noise described by

dx
dt

= f [x(t)] + εG[x(t)]ξ (t), (5)

where x(t) is a state vector with N components. The
components of the noise vector ξ (t) are independent and
identically distributed; they satisfy the conditions E[ξi] =
0 and E[ξi(t1)ξj (t2)] = δij δ(t1 − t2). The diagonal N × N

matrix G depends on the state x(t). The coefficient ε is a
small parameter (ε � 1). Equation (5) for ε = 0 is assumed
to have a limit-cycle solution x(t) = p(t) with a period τ .
The function p satisfies the equations d p(t)/dt = f [ p(t)]
and p(t) = p(t + τ ). We assume p(0) = x0.

When ε �= 0, stochastic oscillations are generated. We con-
sider only statistically steady oscillations, which are realized
after transient time. The output variable is the component xl .

Our analysis will consist of three steps: linearization of
dynamical equations, calculation of spatial variability based
on the Floquet theory [21], and transformation from spatial to
temporal variance.

Within one oscillation cycle, the solution x(t) of Eq. (5)
can be written as

x(t) = p(t) + εz(t) + O(ε2), (6)

where ‖z(t)‖ � ε−1. The deviation z(t) obeys the linearized
equation,

d z
dt

= �(t)z(t) + G[ p(t)]ξ (t), (7)

where �(t) is the Jacobian matrix, whose elements are given
by

�ij (t) ≡ ∂fi

∂xj

|x(t)= p(t). (8)

It has the periodicity �(t + τ ) = �(t).

Here we focus on the unperturbed system

d z
dt

= �(t)z(t) (9)

and apply the Floquet theory to it. The solution z(t) of Eq. (9)
can be expressed as z(t) = U(t)U(0)−1 z(0), where U(t) is the
fundamental matrix solution, such that

U(t + τ ) = U(t)U(0)−1U(τ ). (10)

The matrix product U(0)−1U(τ ) is known as the monodromy
matrix. We introduce furthermore the constant matrix B
defined as

exp(τ B) ≡ U(0)−1U(τ ). (11)

Then z(t) can be rewritten as

z(t) = P(t) exp(t B)U(0)−1 z(0), (12)

where

P(t) ≡ U(t) exp (−t B). (13)

Because of Eq. (10), the periodicity P(t + τ ) = P(t)
holds.

The right and left eigenvectors of B are defined as

Bφi = λiφi , (14)

tψ i B = λi
tψ i , (15)

where the superscript t implies the transposition. Matrix B
always has a zero eigenvalue λ0 = 0. Moreover, the real
parts of all of its eigenvalues should be nonpositive since the
considered limit cycle is stable. We enumerate the eigenval-
ues in such a way that λ0 = 0 � Re(λ1) � · · · � Re(λN−1).
The eigenvectors generally satisfy the biorthogonality
relationship,

tψ iφj = δij , (16)

where the eigenvectors are normalized as tψ iφi = 1. It can
be easily verified that the right eigenvector corresponding to
λ0 = 0 is given by

φ0 = U(0)−1 ṗ(0). (17)

Next, using the matrix P , we introduce y(t) as

y(t) ≡ P(t)−1 z(t), (18)

so that Eq. (7) is transformed to

d y
dt

= B y(t) + P(t)−1G[ p(t)]ξ (t), (19)

because [�(t)P(t) − Ṗ(t)] y(t) = B y(t). Equation (19) is a
linear differential equation with constant coefficients and
can be straightforwardly solved. We expand y(t) over the
right eigenvectors of matrix B as y(t) = ∑N−1

j=0 cj (t)φj .

Decomposition coefficients cj (t) obey stochastic differential
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equations

dcj (t)

dt
= λjcj (t) +tψj P(t)−1G[ p(t)]ξ (t), (20)

which can be integrated, yielding

cj (t) = exp(λj t)
∫ t

0
exp(−λj t

′) tψ j P(t ′)−1G[ p(t ′)]ξ (t ′)dt ′

+ exp(λj t)cj (0), (21)

where cj (0) is determined by the initial condition x(0).
Returning to Eq. (6) and expressing x(t) as the decomposi-

tion over right eigenvectors, we obtain

x(t) = p(t) + εc0(t) ṗ(t) + ε P(t)

⎧⎨
⎩
∑
j �=0

cj (t)φj

⎫⎬
⎭+ O(ε2)

(22)

= p[t + εc0(t)] + ε
∑
j �=0

cj (t)P(t)φj + O(ε2). (23)

Equations (22) and (23) are valid as long as ‖z(t)‖ � ε−1.
According to them, the collective oscillation phase and the am-
plitude are 
(t) ≡ t + εc0(t) and h(t) ≡ ε

∑
j �=0 cj (t)P(t)φj ,

respectively.
Note that we express the threshold level x̄ for the output

variable xl in terms of the limit-cycle trajectory satisfying
p(0) = x0 and the parameter tcp,

x̄ = [ p(tcp)]l , (24)

where [x]l represents the lth element of the vector x. The
notation [x]l is used to avoid confusion with the subscript
representing eigenmodes. We emphasize that the nonstochastic
parameter tcp determines the threshold level x̄ when the output
variable l is fixed.

To calculate the precision properties defined at x̄, we
consider an ensemble of trajectories satisfying the conditions
that (i) xl passes (up or down) through checkpoint x̄ at
t = tcp for the first time in the interval 0 � tcp < τ and (ii)
for the amplitude we have E[|h(tcp)|2] = E[|h(tcp + τ )|2]
because oscillations are statistically steady. Condition (i) can
be rewritten as [x(tcp)]l = x̄; furthermore, we have

[εc0(tcp) ṗ(tcp)]l = −
⎡
⎣ε
∑
j �=0

cj (tcp)P(tcp)φj

⎤
⎦

l

+ O(ε2).

(25)

Thus, the quantity c0(tcp) [or c0(0) in Eq. (21)] is deter-
mined by the left-hand side of Eq. (25). Condition (ii) leads to

E[cj (0)ck(0)]

= exp[(λj + λk)τ ]

1 − exp[(λj + λk)τ ]

∫ τ

0
exp[−(λj + λk)t]

× tψj P(t)−1 G[ p(t)]2 tP(t)−1ψkdt, (26)

for j,k = 1, . . . ,N − 1. Hence, the initial distribution of
cj (0) (j = 0, . . . ,N − 1) for the ensemble is determined by
Eqs. (25) and (26).

A. Single-cycle precision

Equation (22) leads to

x(tcp + τ ) − x(tcp)

= ε[c0(tcp + τ ) − c0(tcp)] ṗ(tcp)

+ ε
∑
j �=0

[cj (tcp + τ ) − cj (tcp)]P(tcp)φj + O(ε2)

= εδ
(tcp) ṗ(tcp) + εδh(tcp) + O(ε2), (27)

where εδ
(tcp) ≡ ε[c0(tcp + τ ) − c0(tcp)] and εδh ≡
ε
∑

j �=0[cj (tcp + τ ) − cj (tcp)]P(tcp)φj represent the collective
phase shift and the amplitude deviation after τ , respectively.

The following relationships are further employed to trans-
form from spatial to temporal variations:

E[T1,k − τ ] = E

{
− 1

[ ṗ(tcp)]l
[x(tcp + τ ) − x(tcp)]l

}
(28)

and

E[(T1,k − τ )2] = E

{
1

[ ṗ(tcp)]2
l

[x(tcp + τ ) − x(tcp)]2
l

}
. (29)

These relationships approximately hold under the condition
that the difference |x(tcp + τ ) − x(tcp)| is small. Similar
approximations employed for the transformation from the
phase space to time have been numerically verified for the
phase-oscillator systems [7,8].

Substitution of Eq. (27) into Eq. (28) yields E[T1,k] = τ +
O(ε2). Thus, the average period of the weak-noise system is
equal to that of the unperturbed system in our theory up to
the order of ε. This is consistent with the known fact that the
average period is shifted by the higher-order quadratic term of
about ε2 [18,19,22,23].

Substituting Eq. (27) and E[T1,k] = τ into Eq. (29), we
finally obtain the single-cycle precision, which is defined at
threshold level x̄ = [ p(tcp)]l for output variable xl , as

σ1(tcp,l) = 1

τ

√√√√E

({
εδ
(tcp) + ε[δh(tcp)]l

[ ṗ(tcp)]l
+ O(ε2)

}2
)

= ε

τ

[
E[δ
2] + E

({
[δh(tcp)]l
[ ṗ(tcp)]l

}2
)

+ 2E

{
δ
(tcp)

[δh(tcp)]l
[ ṗ(tcp)]l

}]1/2

+ O(ε3), (30)
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where

E[δ
2] =
∫ τ

0
dt tψ0 P(t)−1 G[ p(t)]2 tP(t)−1ψ0, (31)

E

({
[δh(tcp)]l
[ ṗ(tcp)]l

}2
)

=
N−1∑
j=1

N−1∑
k=1

[2 − exp(λjτ ) − exp(λkτ )]
[P(tcp)φj ]l[P(tcp)φk]l

[ ṗ(tcp)]2
l

× exp[(λj + λk)tcp]

{∫ tcp

0
exp[−(λj + λk)t] tψj P(t)−1 G[ p(t)]2 tP(t)−1ψkdt

+ exp[(λj + λk)τ ]

1 − exp[(λj + λk)τ ]

∫ τ

0
exp[−(λj + λk)t] tψj P(t)−1 G[ p(t)]2 tP(t)−1ψkdt

}
, (32)

and

E

{
δ
(tcp)

[δh(tcp)]l
[ ṗ(tcp)]l

}
=

N−1∑
j=1

exp(λjτ )
[P(tcp)φj ]l

[ ṗ(tcp)]l

∫ τ

0
exp(−λj t)

tψ0 P(tcp + t)−1 G[ p(tcp + t)]2 tP(tcp + t)−1ψ j dt. (33)

We have used the relationship Eq. (26) to calculate Eq. (32).
While Eq. (31) is independent of tcp and l, Eqs. (32) and (33)
are dependent on l and periodic functions of tcp.

Thus, the single-cycle precision Eq. (30) consists of three
terms of the order of ε. The first term, corresponding to
collective-phase diffusion, is independent of the choices of
the checkpoint tcp and the output variable l. The second term
corresponds to the autocorrelation of amplitude deviations.
Both these terms are positive. The third term in this expression
represents cross correlation between the collective-phase shift
and the amplitude deviation, and it is negative if these two
variables are anticorrelated.

Because of this last term, the single-cycle precision can be
sometimes better than the many-cycle precision corresponding
to diffusion of the collective phase. We return to the discussion
of this result in Sec. IV, where a specific example is examined.

B. Many-cycle precision

Equations (22) and (23) cannot be applied for calculation of
x(t) at t → ∞ because c0(t) can be then larger than O(ε−1). To
consider the dynamics over many cycles, we apply iteratively
Eq. (23) for each next cycle, as explained below.

Starting points of consequent cycles are determined by the
moments when the collective phase satisfies 
(t) = kτ . Let
t = τ − �(1) be the moment when 
(t) = t + εc0(t) = τ for
the first time. Then the stochastic time shift �(1) is given by

�(1) = εc0(τ − �(1)) = εc0(τ ) + O(ε2). (34)

Next we employ the following initial condition for the second
cycle t (2) ≡ t − (τ − �(1)):

x(t (2) = 0) = p(0) + ε

N−1∑
j=1

cj (τ − �(1))P(0)φ0. (35)

Under this condition, we have

x(t (2)) = p
[
t (2) + εc

(2)
0 (t (2))

]+ ε

N−1∑
j=1

c
(2)
j (t (2))P(0)φ0. (36)

Because the collective phase for the second cycle is given by

(2) = t (2) + εc

(2)
0 (t (2)), we obtain �(2) = εc

(2)
0 (τ ) + O(ε2),

where τ − �(2) denotes the time moment satisfying 
(2) = τ .

Thus, x(t (3) = 0) expresses the initial condition for the third
cycle t (3) ≡ t (2) − (τ − �(2)). This operation can be iterated as

x(t (m+1)) = p[t (m+1) + εc
(m+1)
0 (t (m+1))]

+ ε

N−1∑
j=1

c
(m+1)
j (t (m+1))P(0)φ0, (37)

where

t (m+1) = t −
(

mτ −
m∑

k=1

�(k)

)
, (38)

�(k) = εc
(k)
0 (τ ) + O(ε2), (39)

c
(k)
0 (t (k)) =

∫ t (k)

0

tψ j P(t)−1G[ p(t)]ξ

(
t −

k−1∑
k′=1

�(k′)

)
dt,

(40)

c
(k)
j (�=0)(t

(k)) = exp(λj t
(k))
∫ t (k)

0
exp(−λj t)

tψ j

× P(t)−1G[ p(t)]ξ

(
t −

m−1∑
k=1

�(k)

)
dt

+ exp(λj t
(k))c(k−1)

j (τ − �(k−1)), (41)

and c
(1)
j (0) are determined by Eqs. (25) and (26).

Equation (37) determines x(t) for the duration of the
(m + 1)th cycle. Within that cycle, the output variable will
pass in the prescribed direction through the checkpoint x̄ at
t (m+1) = t (m+1)

cp . Therefore, the total time Tm between the first
and the (m + 1)th passage through the checkpoint is

Tm,1 − mτ = t (m+1)
cp − t (1)

cp −
m∑

k=1

�(k) (42)

= t (m+1)
cp − t (1)

cp −
m∑

k=1

[
εc

(k)
0 (τ ) + O(ε2)

]
. (43)

Note that t (m+1)
cp is independent of the course of the previous

m cycles and t (1)
cp is a nonstochastic parameter. Therefore, such
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terms disappear from the many-cycle precision in the limit of
an infinite number of cycles and we obtain

σ∞ = 1

τ
lim

m→∞

√√√√ 1

m

(
m∑

k=1

{
ε2E

[
c

(k)
0 (τ )2

]+ O(ε3)
})

= ε

τ

√
E[δ
2]. (44)

Thus, the many-cycle precision σ∞ corresponds to the
collective-phase diffusion and is the same as the first term in
Eq. (30). It is independent of the choices of the checkpoint and
the output variable. Consequently, it represents an invariant
property of the system.

IV. EXAMPLE: THE GENE EXPRESSION MODEL

A. Model

As an example of a complex dynamical system with noise,
we employ the gene expression model [24]. This model
describes a network of genes that regulate the operation of one
another. Each gene i expresses a certain protein. The genes are
connected into a network and, as we assume, can only inhibit
the expression of the genes to which they are connected.

The model is given by a set of stochastic differential
equations

dxi

dt
= 1

1 +
(
κ
∑N

j=1 Aijxj

)n − aixi

+ 1√
Umax

⎡
⎢⎣ 1 + 2b

1 +
(
κ
∑N

j=1 Aijxj

)n + aixi

⎤
⎥⎦

1
2

ξi(t).

(45)

Here xi represents dimensionless concentration of the protein
expressed by gene i. The first term on the right side describes
the process of protein generation (i.e., gene expression). This
process is regulated (inhibited) by other genes. If Aij = 1,
gene j inhibits expression of gene i; otherwise (if Aij = 0),
the regulation is absent. The parameter κ specifies the intensity
of gene regulation and n is the Hill coefficient. The second
term describes the process of protein degradation. We assume
that degradation takes place at rates ai , different for different
genes. The last term takes into account the internal noise
(see Ref. [24]). Such multiplicative noise arises because gene
expression is a stochastic process where individual protein
molecules are randomly produced (see Ref. [24] for detailed
explanation). The intensity of such noise becomes larger
when a smaller number Umax of proteins is produced by the
gene. Noises for different genes are statistically independent,
Gaussian, and δ correlated, so that we have E[ξi(t)] = 0 and
E[ξi(t)ξj (t ′)] = δij δ(t − t ′).

In our example, we choose the repressilator network [9]
with three genes forming a ring: N = 3, A13 = A21 = A32 =
1, and Aij = 0 for the others. The parameters are fixed as
n = 3, κ = 100, Umax = 50 000, b = 10, a1,2 = 1.0, and a3 =
1.2. Note that because the degradation rates are different, the
symmetry is broken and the dynamics of the three genes in the
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FIG. 2. The unperturbed limit cycle in the considered genetic
network. Two small panels show Poincaré sections corresponding to
checkpoints A (x1 = 0.014 upward) and B (x1 = 0.688 downward),
as obtained from stochastic simulations. In the panels, the origin of
coordinates corresponds to the intersection point of the limit cycle.
Note that statistical dispersion is larger at Poincaré section A than at
Poincaré section B.

ring is not identical in the model. When noise is absent, the
repressilator generates limit-cycle oscillations (Fig. 2).

B. Simulation results

Numerical simulations of stochastic equations (45) have
been performed using the Heun method with a fixed time step
of 10−3. The initial conditions xi(0) were randomly distributed
in the interval 0 < xi(0) < 1. The observation of the times of
m cycles was started at t = 300 and continued until the number
of oscillations reached 106. Threshold levels were chosen as
x̄ = 0.02,0.70 for gene No. 1, x̄ = 0.10,0.50 for gene No. 2,
and x̄ = 0.20,0.40 for gene No. 3.

Because of the fluctuations near the checkpoint, it can
happen that the output variables crosses the threshold in
both directions within a short time (Appendix A). Such pure
fluctuation effects should not be treated as oscillation cycles. In
the analytical theory, that was automatically taken into account
because only cycle durations close to the oscillation period
of the unperturbed system were considered. In numerical
simulations, the following procedure was applied to exclude
them: We installed additional threshold levels x̄ = 0.72 and
x̄ = 0.015 for gene No. 1. If noise is absent, the output x1

crosses x̄ = 0.70 up, x̄ = 0.72 up, x̄ = 0.70 down, x̄ = 0.02
down, x̄ = 0.015 down, and x̄ = 0.02 up, in this order. We
have applied this order to count crossing events; i.e., after
passing a checkpoint, we do not check events that x1 passes
the checkpoint until x1 goes through all the other checkpoints
in this order. The thresholds x̄ = 0.52 and x̄ = 0.05 for gene
No. 2 and x̄ = 0.45 and x̄ = 0.15 for gene No. 3 also had been
employed for the same purpose.

An example of the oscillations observed in the repressilator
model and the four checkpoints employed for gene No. 3 are
shown in Fig. 1(a). Numerically determined values of single-
and many-cycle precisions for different choices of output vari-
ables and checkpoints are displayed in Fig. 1(b). In addition,
we show Poincaré sections corresponding to checkpoints A
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FIG. 3. Periodic properties predicted by the analytical theory for
the considered genetic network, plotted as functions of the common
parameter tcp. (a) Limit-cycle oscillations for each gene, [ p(tcp)]l ,
for one cycle in absence of noise. These oscillations are used as
the reference for the checkpoint threshold in panels (b)–(d) because
the parameter tcp fixes the threshold level through x̄ = [ p(tcp)]l .
(b) The single-cycle precision σ1 given by Eq. (30). The straight
line represents many-cycle precision σ∞ given by Eq. (44). (c) The
amplitude variance is given by ε2 × Eq. (32). (d) The cross correlation
between collective-phase shift and amplitude deviation given by
ε2 × Eq. (33). A and B are the checkpoints with the minimum values
of σ1 and the minimum amplitude variance for gene No. 1. Red (solid),
green (dashed) and blue (dotted) curves are for genes No. 1, No. 2,
and No. 3, respectively.

(x1 = 0.014 upward) and B (x1 = 0.688 downward) in Fig. 2
to visualize spatial fluctuations.

C. Analytical predictions

Both kinds of precision for the repressilator network
could be estimated using analytical results Eq. (30) and
(44). The limit-cycle trajectory p(t) was obtained through
numerical integration of Eq. (5) with ε = 0 (Fig. 2). We
assumed p(0) = x(0) =t (0.200,0.268,0.008). The limit-cycle
oscillations pi(t) for one cycle in absence of noise are plotted
as a function of time in Fig. 3(a). The unperturbed period

was τ = 9.413. Then we numerically solved Eq. (9) for a
few cycle periods, where the initial conditions were set to
za(0) =t (1,0,0), zb(0) =t (0,1,0), and zc(0) =t (0,0,1), i.e.,
U(0) = I . The fundamental solutions za(t), zb(t), and zc(t)
are shown in Appendix B. The fundamental matrix solution
was given by U(t) = [za(t), zb(t), zc(t)].

Then the matrices of B and P were defined by exp (τ B) =
U(τ ) and P(t) = U(t) exp (−t B). We have checked that the
periodicity P(t + τ ) = P(t) holds. Numerical diagonalization
of B provided two negative eigenvalues (λ1,2 < 0) and one
(approximately) zero eigenvalue (λ0 = 0). Moreover, the
eigenvectors ψ i and φi were obtained. There φi and ψ j were
normalized so that these satisfy tψ iφj = δij . We assumed
φ0 = ṗ(0). In Appendix B, the matrix B, the eigenvalues λi ,
eigenvectors ψ i and φi , and internal noise intensity G[ p(t)]
are given.

Putting these expressions into Eqs. (30)–(33) and (44), we
have obtained the predicted values for σ1 and σ∞. As shown
in Fig. 1(b), these values given by our analytical expressions
have agreed well with the numerical results for all choices of
the output variables and checkpoints.

To analyze the checkpoint dependence, single-cycle preci-
sions σ1(tcp,l) given by Eq. (30) for different output variables
l = 1,2,3 are plotted as functions of tcp determining the thresh-
old level x̄ = [ p(tcp)]l in Fig. 3(b). As we see by comparing
Figs. 3(a) and 3(b), σ1 is increased and precision becomes
poor when the checkpoint is chosen near the maximum of the
respective output variable. We do not show the dependence
very close to the maxima because, due to fluctuations, the ob-
servables often do not pass then through the threshold in the
next oscillation cycle.

There are, however, also time intervals where σ1 is small
and therefore the single-cycle precision is high. The minimum
value of σ1 is 0.0134 and it is reached at checkpoint
A{[ p(tcp/τ = 0.90)]1 = 0.014} if the expression of gene No.
1 is chosen as the output variable [Fig. 3(b)]. Hence, if our
model network needs to be used as a rhythm generator, the
best precision would be achieved if the output signal is sent
from gene No. 1 at checkpoint A.

Moreover, we can note that the output variable that yields
the smallest σ1 is dependent on the timing tcp. For example,
inside the time window 0 � tcp/τ � 0.2 in Fig. 3(b), gene No.
2 is the best one in the sense of the single-cycle precision. Thus,
by changing the output variables as gene No. 2 → No. 1 →
(No. 2 short interval) → No. 3 → No. 1, the clock can keep
sending precise signals for the whole period. This mechanism
might be employed in real circadian clocks because they have
multiple variables for each function.

Next we can discuss the factors affecting the single-cycle
precision. The standard deviation of amplitude observed at a

Poincaré section, E({ [δh(tcp)]l
[ ṗ(tcp)]l

}2
) given by Eq. (32), is shown

in Fig. 3(c) (see also Fig. 2). At checkpoint B {[ p(tcp/τ =
0.25)]1 = 0.688}, the amplitude variance is minimal, i.e., the
actual stochastic trajectories are close to the unperturbed limit
cycle. It should be stressed that this point is however different
from the best checkpoint (labeled A) for the single-cycle
precision. This is because the cross correlation between the
collective phase and the amplitude, E{δ
(tcp) [δh(tcp)]l

[ ṗ(tcp)]l
} given by

Eq. (33) plays an important role in determining the single-cycle

062206-7



FUMITO MORI AND ALEXANDER S. MIKHAILOV PHYSICAL REVIEW E 93, 062206 (2016)

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0  0.2  0.4  0.6  0.8  1  0  0.2  0.4  0.6  0.8  1

x x (upward) (downward)

(a) (b)

1
(x

 ,l
)

A

B

Gene no. 1
Gene no. 2
Gene no. 3

FIG. 4. Single-cycle precision as a function of threshold level x̄, which output variable xl passes (a) upward and (b) downward. This is a
rearrangement of Figs. 3(a) and 3(b). The straight line represents many-cycle precision. Checkpoints A and B correspond to those shown in
Figs. 2 and 3.

precision. In Fig. 3(d), we can see that the absolute value of
this correlation at checkpoint A is much larger than that at
checkpoint B. Thus, the negative cross correlation improves
the single-cycle precision at checkpoint A.

In Figs. 4(a) and 4(b), we also the show single-cycle
precision as a function of threshold level x̄, when xl crosses
up and down, respectively. While gene No. 1 is the best choice
for the single-cycle precision for the upward case (a), gene
No. 3 has the minimum σ1 in the wide range for the downward
case (b). Therefore, if the system generates spikes only when
the output variable crosses x̄ down, gene No. 3 should be
employed as the output variable yielding the best single-cycle
precision.

V. DISCUSSION AND CONCLUSIONS

Approximate analytical expressions for single- and many-
cycle precisions in complex dynamical oscillatory systems
with noise have been derived. Their validity has been numer-
ically confirmed by using a genetic network model. Because
the many-cycle precision is invariant, it can universally
characterize the long-time behavior of the entire system. On the
other hand, the single-cycle precision is sensitively dependent
on the choice of a checkpoint and the output variable.
While amplitude variance worsens the single-cycle precision,
the cross correlation between the collective phase and the
amplitude can improve it if such correlation is negative. Thus,
statistical dispersion of stochastic trajectories and temporal
precision have to be clearly distinguished.

Our results furthermore suggest the design principles of
dynamical systems that should operate as clocks. Because the
many-cycle precision cannot be improved only by changing
the output method, the design of the dynamical system needs
to be modified if one wants to have a clock with a better
accuracy over a long time. On the other hand, an optimal
choice of the output variable and the output timing yields the
signals with high single-cycle precision, which should be taken
if the system is employed to generate a rhythm. Moreover,
by appropriately switching the output variables, it is possible
to keep sending a precise signal within the whole cycle, as
may be required for a circadian clock. It is an interesting

and open question whether real biological systems employ
such mechanisms of precision enhancement in their natural
evolutionary design.
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APPENDIX A

In this appendix, we analyze the statistics of threshold cross-
ing events for the output variable. The analysis is performed
using the example of the genetic network. We demonstrate that,
at the considered levels of noise, full oscillation cycles can be
always distinguished from the effects of rapid fluctuations in
the output variable near the checkpoint.

Figure 5 shows the histogram of time intervals between
next threshold crossing events for the genetic model [Eq. (45)]
with the output variable x1 and the threshold x̄ = 0.02, when
checking is performed if the variable crosses the threshold in
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FIG. 5. Distribution of time intervals between the next time
moments when the output variable x1(t) crosses the threshold level
x̄ = 0.02 in the upward direction for the model genetic system
Eq. (45).
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the upward direction. As can be seen, the histogram consists
of four distinct groups.

Full oscillation cycles, which should be used when oscil-
lation precision is estimated, are only in the group with the
largest time intervals. The shortest time intervals correspond
to the events when, due to noise, the output variable crosses the
threshold up, then down, and then again up within a short time.
Such fluctuation events should not be counted as oscillation
cycles. Additionally, there are two small groups with the
centers near 2.5 and 7. They are due to the events when the out-
put variable goes down, but, due to noise, also crosses the
threshold in the up direction, before continuing to go down.
Such events also do not correspond to oscillation cycles.
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FIG. 6. The fundamental solutions of Eq. (9)—za(t), zb(t), and
zc(t)—for the genetic repressilator model.

At sufficiently weak noise, the group of events correspond-
ing to oscillation cycles is always well separated from the other
three groups. We do not consider in this study the situation at
so high noise levels that the groups begin to overlap. If this
takes place, oscillations cannot be any longer distinguished
from pure fluctuation effects.

APPENDIX B

We present explicit expressions for the Floquet properties
in the considered genetic network model with three genes and
the Hill coefficient n = 3. The vector f [x(t)] and matrix G(t)
are

fi[x(t)] = 1

1 + κ3x3
mod(i+2,3)

− aixi, (B1)

Gii[x(t)] =
(

1 + 2b

1 + κ3x3
mod(i+2,3)

+ aixi

) 1
2

, (B2)

and Gij [x(t)] = 0 for i �= j , where mod(i,3) represents the
remainder of i divided by 3. Then the elements of the Jacobian
matrix �(t) are given by

�i,i(t) = −ai, (B3)

�i,mod(i+1,3)(t) = 0, (B4)

and

�i,mod(i+2,3)(t) = −3κ3pi+2(t)2

[1 + κ3pi+2(t)3]2
. (B5)

The fundamental solutions of Eq. (9)—za(t), zb(t), and zc(t)—
are shown in Fig. 6.

The matrix B for the system with the parameters and initial
conditions given in Sec. IV is

B =
⎛
⎝ −2.0244 −0.971 13 −59.624

0.018 852 0.095 496 −1.7454
−0.015 951 0.022 490 −1.2711

⎞
⎠. (B6)

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1
t /

G
ii
[p

(t
)]

G11[p(t)]

G22[p(t)]

G33[p(t)]

FIG. 7. The diagonal elements of the matrix G[ p(t)] yielding the
intensity of internal noise for each gene. We can see that the trough
of G11[ p(t)] corresponding to the minimum internal noise for gene
No. 1 clearly differs from checkpoint A, corresponding to the best
single-cycle precision.
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The eigenvalues of matrix B are λ0 = 0, λ1 = −0.5067,
and λ2 = −2.6932. The right eigenvectors are tφ0 =
(−0.8460,0.5328,0.0200), tφ1 = (−0.9947,0.0998,0.0237),
and tφ2 = (0.9999,0.0003,0.0112). The left

eigenvectors are tψ0 = (−0.0105,−0.3288,0.9443),
tψ1 = (0.0112,0.0553,−0.9984), and tψ2 =
(0.0238,0.0002,0.9997). The elements of the matrix
G[ p(t)] are displayed graphically in Fig. 7.
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