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Historically, semiconductor superlattices, artificial periodic structures of different semiconductor materials,
were invented with the purpose of engineering or manipulating the electronic properties of semiconductor
devices. A key application lies in generating radiation sources, amplifiers, and detectors in the “unusual” spectral
range of subterahertz and terahertz (0.1–10 THz), which cannot be readily realized using conventional radiation
sources, the so-called THz gap. Efforts in the past three decades have demonstrated various nonlinear dynamical
behaviors including chaos, suggesting the potential to exploit chaos in semiconductor superlattices as random
signal sources (e.g., random number generators) in the THz frequency range. We consider a realistic model of hot
electrons in semiconductor superlattice, taking into account the induced space charge field. Through a systematic
exploration of the phase space we find that, when the system is subject to an external electrical driving of a
single frequency, chaos is typically associated with the occurrence of multistability. That is, for a given parameter
setting, while there are initial conditions that lead to chaotic trajectories, simultaneously there are other initial
conditions that lead to regular motions. Transition to multistability, i.e., the emergence of multistability with
chaos as a system parameter passes through a critical point, is found and argued to be abrupt. Multistability thus
presents an obstacle to utilizing the superlattice system as a reliable and robust random signal source. However,
we demonstrate that, when an additional driving field of incommensurate frequency is applied, multistability
can be eliminated, with chaos representing the only possible asymptotic behavior of the system. In such a case,
a random initial condition will lead to a trajectory landing in a chaotic attractor with probability 1, making
quasiperiodically driven semiconductor superlattices potentially as a reliable device for random signal generation
to fill the THz gap. The interplay among noise, multistability, and chaos is also investigated.

DOI: 10.1103/PhysRevE.93.062204

I. INTRODUCTION

A semiconductor superlattice consists of a periodic se-
quence of thin layers of different types of semiconductor
materials, which was conceived by Esaki and Tsu [1] with
the purpose of engineering the electronic properties of the
structure. Specifically, a superlattice is a periodic structure
of coupled quantum wells, where at least two types of
semiconductor materials with different band gaps are stacked
on top of each other along the so-called growth direction in
an alternating fashion [2,3]. For a structure consisting of two
materials, e.g., GaAs and AlAs, the regions of GaAs serve as
quantum wells while those of AlAs are effectively potential
barriers. As a result, the conduction band of the whole system
exhibits spatially periodic modulation with the period given by
the combined width of the quantum well and the barrier, which
is typically much larger than the atomic lattice constant. If the
widths of the barriers are sufficiently small, then the quantum
wells are strongly coupled through the mechanism of quantum
tunneling, effectively forming a one-dimensional energy band
in the growth direction. Because of the relatively large spatial
period of the superlattice as compared with the atomic lattice
spacing, the resulting Brillouin zones and the bandwidths are
much smaller than the inverse of the atomic lattice constant,
leading to a peculiar type of band structure: the miniband. For
larger barrier width, the quantum wells are weakly coupled
so resonant tunneling of electrons between adjacent wells
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occurs and becomes dominantly sequential. When an external
voltage (bias) is applied, electronic transport can occur, making
superlattice appealing to investigating and exploiting various
transport phenomena [4]. More generally, the unique perspec-
tive or freedom to design electronic properties makes semi-
conductor superlattices a paradigm to study many phenomena
in condensed matter physics and device engineering [5].

While electronic transport in semiconductor superlattices
should be treated quantum mechanically in principle, the
presence of an external field and the many-body effect through
the electron-electron Coulomb interaction make a full quantum
treatment practically impossible. An effective approach to
modeling transport dynamics in the superlattice system is
through the force-balance equation [6–15], which can be
derived either from the classical Boltzmann transport equa-
tion [9,10] or from the Heisenberg equation of motion [16,17].
In spite of a quantum system’s being fundamentally linear,
the self-consistent field caused by the combined effects of the
external bias and the intrinsic many-body mean field becomes
effectively nonlinear [18,19]. In the high field transport regime,
various nonlinear phenomena including chaos can arise [4]. In
the past two decades, there were a host of theoretical and
computational studies of chaotic dynamics in semiconductor
superlattices [4,18–32]. The effects of magnetic field on the
nonlinear dynamics in superlattices were also investigated
[33–35]. Experimentally, a number of nonlinear dynamical
behaviors were observed and characterized [3,36–39].

A key application of semiconductor superlattices is to fill
the so-called “THz” gap, i.e., to develop radiation sources,
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amplifiers, and detectors [40–44] from 0.1 to 10 THz, the
frequency range in which convenient radiation sources are
not readily available [45–48]. In particular, below 0.1 THz
electron-transport-based devices are typical, and above 10 THz
devices based on optical transitions (e.g., solid-state lasers) are
commonly available. Since, in general, chaotic systems can be
used as random number generators [49–57], the ubiquity of
chaos in semiconductor superlattices implies that such systems
may be exploited for random signal generation in the frequency
range corresponding to the THz gap. Motivated by this, in this
paper we are led to investigate the dynamics of energetic or
“hot” electrons in semiconductor superlattices. Specifically,
we study the setting where the system is subject to strong dc
and ac fields so miniband conduction occurs effectively in a
quasi-one-dimensional superlattice. Due to the strong driving
field, a space charge field is induced, which contains two
nonlinear terms in the equation of motion. The main issue
we address is that of reliability and robustness, i.e., for a
given parameter setting, what is the probability to generate
chaos from a random initial condition? We find that, for the
common case of a single ac driving field, onset of chaos is
typically accompanied by the emergence of multistability in
the sense that there are coexisting attractors in the phase space
which are not chaotic. Using the ensemble method to calculate
the maximum Lyapunov exponent, we distinguish the regular
from the chaotic attractors. The probability for a random initial
condition to lead to chaos is finite but in general is not close
to unity. Due to the simultaneous creation of the basin of
attraction of the chaotic attractor, the transition to multistability
with chaos, as a system parameter passes through a critical
point, is necessarily abrupt. Likewise, the disappearance of
multistability is abrupt, as the typical scenario for a chaotic
attractor to be destroyed is through a boundary crisis [58],
which is sudden with respect to parameter variations. From
the point of view of random signal generation, multistability
is thus undesired. We find, however, that an additional driving
field, e.g., of an incommensurate frequency, can effectively
eliminate multistability to guarantee the existence of open
parameter regions in which the probability of generating chaos
from random initial conditions is unity. We also find that, due
to multistability, weak noise can suppress chaos but strong
noise can lead to chaos with probability 1.

We note that, in nonlinear dynamical systems, multistability
is a common phenomenon [59–69]. Earlier works focused
on low-dimensional nonlinear dynamical systems with a few
[59–63] and many coexisting attractors [64,65]. Recently mul-
tistability has been uncovered in nanosystems such as the elec-
trically driven silicon nanowire [56,67] described by nonlinear
partial differential equations, as well as in a coupled system
of a ferromagnet and a topological insulator [69]. The issue of
controlling multistability was also addressed [64,68,70–72].
Multistability was uncovered in semiconductor superlattices
as well [73–75]. The multistability phenomenon studied in the
present work, however, is associated with the dynamics of hot
electrons.

II. MODEL

In weakly coupled superlattices in which sequential res-
onant tunneling is the main transport mechanism, chaos can

arise and its potential use as a random number generator has
been proposed [3,5,22]. In our work, we focus on the strongly
coupled regime, in which miniband conduction is the primary
contribution to transport.

Using the force-balance equation [76] for an n-doped semi-
conductor quantum-dot superlattice, we write the dynamical
equation for the electron center-of-mass velocity Vc(t) as

dVc(t)

dt
= −[γ1 + �c sin (�ct)]Vc(t)

+ e

M(Ee)
[E0 + E1 cos (�1t)

+E′
1 cos (�′

1t) + Esc(t)], (1)

where γ1 is the momentum-relaxation rate constant; �c

comes from channel-conductance modulation with �c being
the modulation frequency; M(Ee) is the energy-dependent
averaged effective mass of an electron in the superlattice; Ee(t)
is the average energy per electron; E0 is the applied dc electric
field; E1 and E′

1 are the amplitudes of the two external ac
fields with frequencies �1 and �′

1, respectively; and Esc(t) is
the induced space-charge field due to the excitation of plasma
oscillation. Here, the statistical resistive force [76] has been
approximated by the momentum relaxation rate. Based on the
energy-balance equation, one can show [77] that Ee(t) satisfies
the following dynamical equation:

dEe(t)

dt
= −γ2[Ee(t) − E0]

+ eVc(t)[E0 + E1 cos(�1t)

+E′
1 cos(�′

1t) + Esc(t)], (2)

where γ2 is the energy-relaxation rate constant and E0 is the
average electron energy at the thermal equilibrium, and the
thermal energy exchange of the electrons with the crystal
lattice [77] is approximately described by the γ2 term.
Applying the Kirchoff’s theorem to a resistively shunted
quantum-dot superlattice [18], we obtain [78] the dynamical
equation for the induced space-charge field Esc(t) as

dEsc(t)

dt
= −γ3 Esc(t) −

(
en0

ε0εb

)
Vc(t), (3)

where γ3, which is inversely proportional to the product of
the system resistance and the quantum capacitance, is the
dielectric relaxation rate constant [78], n0 is the electron
concentration at the thermal equilibrium, and εb is the relative
dielectric constant of the host semiconductor material. The
exact microscopic calculations of γ1 and γ2 in the absence
of space-charge field were carried out previously [79] based
on the semiclassical Boltzmann transport equation and the
coupled force-energy balance equations [25], respectively.
Equivalent quantum calculations of γ1 and γ2 can also be
done through the coupled force balance and the Boltzmann
scattering equations [76]. The space charge field is the sole
source of nonlinearity.

Within the tight-binding model, the single-electron kinetic
energy εk in a semiconductor quantum-dot superlattice can be
written as

εk = �

2
[1 − cos(kd)], (4)
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where k (|k| � π/d) is the electron wave number along the
superlattice growth direction, � is the miniband width, and d

is the spatial period of the superlattice. This energy dispersion
relation gives [76]

1

M(Ee)
=

〈
1

�2

d2εk

dk2

〉
= 1

m∗

[
1 −

(
2

�

)
Ee(t)

]
, (5)

where m∗ = 2�
2/�d2 and |1/M(Ee)| � 1/m∗.

For numerical calculations, it is convenient to use di-
mensionless quantities. Specifically, we introduce v(τ ) =
(m∗d/�) Vc, w(τ ) = [(2/�) Ee − 1], f (τ ) = (ed/�ω0) Esc,
and τ = ω0t with ω0 = 1 THz being the frequency scale. In
terms of the dimensionless quantities, the dynamical equations
of the resonantly tunneling electrons in the superlattice
become

dv(τ )

dτ
= −b1v(τ )[1 + a2 sin(�̄τ )]

− [a0 + a1 cos(�τ ) + a′
1 cos(�′τ ) + f (τ )]w(τ ),

dw(τ )

dτ
= −b2[w(τ ) − w0]

+ [a0 + a1 cos(�τ ) + a′
1 cos(�′τ ) + f (τ )]v(τ ),

df (τ )

dτ
= −b3f (τ ) − a3v(τ ), (6)

where w0 = [(2/�) E0 − 1] = −1, b1 = γ1/ω0, b2 =
γ2/ω0, b3 = γ3/ω0, a0 = ωB/ω0, a1 = ωs/ω0, a

′
1 = ω′

s/ω0,
a2 = �c/γ1, and a3 = (�c/ω0)2 are all positive real constants.
The field related parameters are ωB = eE0d/�, ωs = eE1d/�,
ω′

s = eE′
1d/�, � = �1/ω0, �′ = �′

1/ω0, �̄ = �c/ω0, and
�c =

√
e2n0/m∗ε0εb, where the last quantity is the

bulk plasma frequency. The fields are assumed to be
turned on at t = 0. The initial conditions for Eq. (6) are
v(0) = v0,f (0) = f0, and w(0) = w0.

III. RESULTS

A. Evidence of multistability

In the absence of the space-charge field Esc(t) from the
plasmon excitation, Eqs. (1) and (2) become linearly coupled
equations. In such a case, the electron dynamics can be solved
exactly [79] by using the semiclassical Boltzmann transport
equation subject to a strong dc+ac field, where there is an
interplay between the phenomena of Bloch oscillations and
dynamical localization, which play an important role in the
transport dynamics. When the space charge field Esc(t) was
included, the motions of the hot electrons in the quantum-dot

superlattice can exhibit chaotic behaviors [18]. The relaxation
rates in Eqs. (1) and (2), γ1 and γ2, can be evaluated using
the coupled force-energy balance equations [25], where the
two-dimensional phase diagram of the driving amplitude and
frequency in the absence of the dc field, as well as their
dependence on the lattice temperature, were computed and
analyzed.

The dimensionless Eq. (6) represents a nonlinear dynamical
system with f (τ )w(τ ) and f (τ )v(τ ) as the specific nonlinear
terms. While, in principle, all system parameters can be
adjusted, experimentally, certain parameters are not readily
susceptible to changes, especially those characterizing the
material properties such as γ1,2,3. Adjustable are the parame-
ters associated with the driving dc or ac electric field such as
a0,a1,a

′
1 and the frequencies � and �′.

To search for multistability, we use the method of ensemble
simulations by which we choose a large number of random
initial conditions and determine the asymptotic state for
each initial condition. As shown schematically in Fig. 1(a),
under the same parameter setting, two initial conditions can
lead to two completely different attractors, one regular and
another chaotic. For better visualization of the basins of the
distinct attractors, we select a number of parallel planes in the
dynamical variables (v,w) for a set of systematically varying
values of the third variable f . Figure 1(b) shows, for a1 = 1.9
(E1 < E0), the basin structures of 11 such planes, where
we find two final states: one steady-state (blue) and another
chaotic (yellow) attractors. A general feature is that the basin
structures appear quite irregular, and there are approximately
equal numbers of initial conditions that lead to each of the
two distinct attractors. As the amplitude of the modulated
field is increased to a1 = 2.3 (E1 > E0), the number of initial
conditions that lead to the chaotic attractor is apparently more
than that to the steady-state attractor, as shown in Fig. 1(c).
In both Figs. 1(b) and 1(c), for f0 > 0 there is an open
area near (v0,w0) = (0,0) which belongs to the basin of the
chaotic attractor, indicating a high probability for the system
trajectory to land in this attractor and henceforth ubiquity of
chaos associated with hot electron motions in the superlattice.
Representative examples of the evolution towards a chaotic
attractor are shown in Figs. 2(a)–2(d).

B. Abrupt transition to multistability with chaos

To determine the nature of the distinct asymptotic attractors
of the system, we use the standard maximum (nontrivial)
Lyapunov exponent λm, where a positive and a negative value
indicates a chaotic and a regular attractor, respectively. The
time-dependent Jacobian matrix of Eq. (6) is

A(τ ) =

⎛
⎜⎝

−b1[1 + a2 sin(�̄τ )] −a0 + a1 cos(�τ ) + a′
1 cos(�′τ ) + f (τ ) −w(τ )

a0 + a1 cos(�τ ) + a′
1 cos(�′τ ) + f (τ ) −b2 v(τ )

−a3 0 −b3

⎞
⎟⎠. (7)

The maximum Lyapunov exponent can be calculated through
dx(τ )

dτ
= A(τ ) · x(τ ), (8)

where x is a unit tangent vector.

Statistically, what is the route to chaos for hot electron
motion in the superlattice as a system (bifurcation) parameter is
changed, and how likely is multistability? From the standpoint
of relative basin volumes, the transition must be abrupt
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FIG. 1. Evidence of multistability: Multiple coexisting attractors and their basins of attraction. (a) Schematic diagram of multistability
resulting from different choices of the initial conditions v0, w0, and f0. Two distinct sets of initial conditions, (v0,w0,f0) and (v′

0,w
′
0,f

′
0),

chosen from a cube in the (v,w,f ) space, can result in a stable steady state and chaos, respectively. The dashed blue and yellow traces signify
that the asymptotic state is a regular steady-state (blue) and a chaotic attractor (yellow), respectively, as indicated by the distribution of the
maximum Lyapunov exponent calculated from a large number of initial conditions. [(b) and (c)] Basins of attraction of the steady-state and the
chaotic attractors in the (v0,w0) plane for a systematically varying set of values of f0 (for f0 ∈ [−1, 1] in increments of 0.2) for a1 = 1.9 and
a1 = 2.3, respectively. The ranges of v0 and w0 are |v0| � 1 and |w0| � 1. Other parameters for both (b) and (c) are a0 = 2.23,a′

1 = a2 = 0,
a3 = 7.48,b1 = 0.28,b2 = b3 = 2.85 × 10−2, and � = 1.34.
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FIG. 2. Examples of chaotic dynamics associated with multista-
bility. [(a)–(d)] Four representative trajectories evolving toward a
chaotic attractor in the three-dimensional phase space. The initial
conditions are (v0,w0,f0) = (−0.2, − 0.2, − 0.6) for panels (a) and
(c) and (0,0.2,0.4) for panels (b) and (d). The value of the bifurcation
parameter is a1 = 1.9 for (a) and (b) and a1 = 2.3 for (c) and (d).
Other parameters are a0 = 2.23,a′

1 = a2 = 0,a3 = 7.48,b1 = 0.28,
b2 = b3 = 2.85 × 10−2, and � = 1.34.

because, when a chaotic attractor emerges (e.g., through the
standard period doubling route [80]), its basin is created
simultaneously. Thus, if we calculate the probability for a
random trajectory to land in the chaotic attractor versus the
bifurcation parameter, we expect to see an abrupt increase in
the probability from zero to a finite value as the parameter
passes through a critical point. This has indeed been found
in the superlattice system, as shown in Figs. 3(a) and 3(c)
for fixed a0 = 2.23 and a1 increasing systematically from
1.0 to 3.0. Specifically, shown in Fig. 3(a) are the values
of the maximum Lyapunov exponent λm versus a1 from a
large number of random initial conditions chosen from a unit
cube |v0,w0,f0| < 1 in the phase space. Figure 3(b) shows
the probability of having λm > 0 versus a1. For a1 ≈ 1.65,
we observe an abrupt increase in the probability of having
chaos. Similarly, disappearance of chaos (e.g., through the
typical mechanism of boundary crisis [58]) must also be abrupt
because, as a chaotic attractor is destroyed, its basin disappears
simultaneously as it is absorbed into the basin of the coexisting
regular attractor. This behavior occurs for a1 ≈ 2.45, as shown
in Fig. 3(c). Since the probability of having chaos is never
unity, we see that multistability arises for 1.65 � a1 � 2.45
(except for the values of a1 corresponding to the occurrence of
periodic windows), in which a chaotic and a regular attractors
coexist.

Abrupt emergence and disappearance of multistability
associated with chaos also occur for fixed a1 = 2.13 and
varying a0, as shown in Figs. 3(b) and 3(d). We see that
the maximum probability of landing in a chaotic attractor is
relatively small as compared with that for Figs. 3(c). Even if the
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FIG. 3. Transition to chaos and multistability. (a) For fixed a0 =
2.23, the values of the maximum Lyapunov exponent λm calculated
from an ensemble of initial conditions versus a1 for 1.0 � a1 � 3.0.
(b) A similar plot but for fixed a1 = 2.13 and a0 varying in the
range [1.0,2.4]. (c) For a0 = 2.23, the probability versus a1 for a
random trajectory to land in a chaotic attractor. (d) A plot similar to
that in (c) but for fixed a1 = 2.13 and varying a0. Other parameters
are a′

1 = a2 = 0, a3 = 7.48, b1 = 0.28, b2 = b3 = 2.85 × 10−2, and
� = 1.34. From (a) and (c), abrupt emergence of chaos at a1 ≈ 1.65
and abrupt disappearance of chaos at a1 ≈ 2.45 can be seen (see text
for the reason of the “abruptness”). The dips in the probability curve of
chaos at a1 ≈ 2.0 and a1 ≈ 2.15 are due to periodic windows. Abrupt
emergence and disappearance of multistability associated with chaos
also occur for fixed a1 = 2.13 and varying a0, as shown in (b)
and (d).

system has settled into chaotic motion, due to multistability
external disturbances can “push” it out of chaos, which is
undesired for random signal generation.

C. Reliable and robust chaos with quasiperiodically driving
fields and the effect of noise

The simultaneous emergence of chaos and multistability
presents a difficulty in exploiting semiconductor superlattices
for applications in random signal generation, a task that
requires reliable, robust, and persistent chaotic behaviors.
However, due to the coexisting nonchaotic attractor, there is
a finite probability that a randomly chosen initial condition
would not lead to a chaotic trajectory. Even when the system
has settled into a chaotic attractor, random disturbances can
drive it out of chaos. Through extensive simulations, we find
that, if the system is under a single ac driving, then it is
unlikely that the probability of having chaos can reach unity
in any open interval. However, we find a relatively simple,
experimentally feasible way to eliminate multistability in such
a way that the only attractor in the system is chaotic. In
particular, when the system is subject to a second ac driving
field of incommensurate frequency, transition to chaos can be
achieved but without the occurrence of multistability.

Figures 4(a) and 4(b) demonstrate the occurrence of chaos
with probability 1 when the superlattice system is under
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P
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a
os

0

1

(b)

(a)

FIG. 4. Occurrence of reliable and robust chaos with probability
1 under quasiperiodic driving. When a second ac driving field of
amplitude a′

1 and frequency �′ = √
2 is applied to the superlattice

system, open parameter intervals emerge in which the probability
of generating chaos from a random initial condition is unity.
(a) Statistical counts of the maximum Lyapunov exponent and
(b) probability of generating chaos versus a′

1. Other parameters
are a0 = 2.23, a1 = 2.3, a2 = 0, a3 = 7.48, b1 = 0.28, b2 = b3 =
2.85 × 10−2, and � = 1.34.

quasiperiodic driving, i.e., when a second ac driving field,
a′

1 cos(�′τ ), is present for �′ = √
2. In particular, Fig. 4(a)

shows, for systematically varying amplitude a′
1, the possible

values of the maximum Lyapunov exponent where, for each
fixed value of a′

1, the distinct values of the exponent from a
large number of initial conditions are displayed. Figure 4(b)
shows the probability of generating chaos versus the driving
amplitude a′

1, where we see that there are open parameter
intervals in which the probability is 1. Thus, in spite of the pe-
riodic windows, in these open intervals the only attractor of the
system is chaotic, effectively eliminating multistability. Due
to the openness of the parameter intervals for chaos, generic
perturbation will not drive the system out of chaos, making it
suitable for random signal generation. Figure 5(a) presents an
example of the statistical distribution of the values associated
with a typical chaotic signal, which is approximately Gaussian.
Figure 5(b) shows the autocorrelation of the signal, which
exhibits a desired decaying behavior.

In weakly coupled systems [81,82], noise can induce chaos.
We find, however, that in strongly coupled systems, noise,
depending on its amplitude, can either suppress or enhance
chaos. In particular, due to multistability, weak noise tends
to “kick” a chaotic trajectory out of its basin of attraction
and drives the system to the coexisting regular attractor. If
noise is sufficiently strong, then the system can be driven
out of the basin of the regular attractor towards the chaotic
attractor. In either case, multistability is destroyed, as under
noise there is only a single attractor that can be either regular or
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FIG. 5. Statistical properties of chaos for random signal gen-
eration. Under quasiperiodic driving (� = 1.34 and �′ = √

2), (a)
distribution of the values of a chaotic time series f (τ ). The green
dashed curve is a fitted Gaussian with mean μ = −0.9 and variance
σ 2 = 0.1. (b) Autocorrelation of the chaotic time series, where �τ

is the time difference τ − τ ′ and dτ is the time step used in the
numerical integration of the equations of motion. Other parameters
are identical to those in Fig. 4.

chaotic depending on the noise amplitude. To demonstrate this
phenomenon, we apply uncorrelated noise a0 → a0 + ain(t)
with a Gaussian distribution to the voltage driving, where
〈ain(t)ain(t ′)〉 = σ 2δ(t − t ′). We find, for 0.06 � σ � 0.56
(the weak-noise regime for the particular parameter setting),
that the stable steady state is the only attractor in the
system as noise can drive a chaotic trajectory into the stable
steady-state attractor. In contrast, in the strong-noise regime
(σ � 0.56), the chaotic attractor is the only attractor in the
system. The phenomena can be intuitively illustrated using a
simple mechanical system in which a particle moves in an
asymmetrical double potential well system. As indicated in
Fig. 6(b), the stable steady-state and the chaotic attractors are
represented by the deep and shallow wells, respectively. Weak
noise can drive the particle from the shallow well and kick
it into the deep well with a lower energy, but the opposite
cannot occur due to the weakness of noise and the well
depth. However, for strong noise, the random energy can be
sufficient to excite particle out of the deep well. We remark
that noise-induced chaos is a well-documented phenomenon
in nonlinear dynamics (see, for example, Refs. [83–88]).

D. Physical mechanism of chaos and multistability

The physical mechanism for the evolution of the basin
structure toward a more chaos dominated one [Fig. 1(c)] as
the ac driving amplitude is increased can be understood as
follows. From Eq. (1), we find that the quantity 1/M(Ee)
controls the switching between the in-phase (acceleration
with dVc/dt > 0) and the out-of phase (deceleration with
dVc/dt < 0) electron motions with respect to the driving
dc+ac field. Equation (2) also indicates that the in-phase and
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FIG. 6. Effect of noise on multistability and chaos. When noise
of zero mean is applied to the voltage driving, for weak noise chaos is
suppressed but it is enhanced for strong noise. In the latter case there
are open parameter intervals in which the probability of generating
chaos from a random initial condition is unity. (a) Statistical counts of
the maximum Lyapunov exponent and (b) probability of generating
chaos versus a′

1. Other parameters are the same as for Fig. 4 except
a′

1 = 0. A simple mechanical system illustrating the interplay among
noise, multistability, and chaos is included in (b); see text for details.

out-of phase motions are associated with the increase (field-
power absorption) and decrease (field-power amplification)
in the average electron energy Ee (� 0). A change in Ee

directly leads to M(Ee) > 0 for 0 � Ee < �/2 or M(Ee) < 0
for �/2 < Ee � �. This gives rise to an upper limit for the
velocity amplitude |Vc|.

In the absence of the ac field, by neglecting decays and the
space-charge field, we get from Eqs. (1) and (2)

d2Vc(t)

dt2
+ ω2

B Vc(t) = 0, (9)

where ωB = eE0d/� is the Bloch frequency. The dc field
can thus drive the electrons into periodic Bloch oscillations
with the frequency ω = ωB due to the periodic superlattice
band structure. In the presence of an external ac field, the
combination of the E1 cos(�1t)Ee(t) term in Eq. (1) and
the E1 cos(�1t)Vc(t) term in Eq. (2) will generate many
harmonic ac fields in the system. Specifically, including
the primary ac field but still neglecting decays and the
space-charge field in Eqs. (1) and (2), we obtain its nth
harmonics in the oscillating Vc(t) with the frequency ω = n�1

and the amplitude |Vc| ∼ (eE1d/��1)2n−1/(2n − 1)!!, where
n = 2, 3, . . . . These harmonic ac fields interact with the
electron Bloch oscillations by forming multiple resonances at
ω = ωB ± n�1. Note that, without any harmonics, the system
dynamics is similar to that of a forced pendulum, which can
typically have chaotic motion for large driving amplitude and
low frequency. For small values of E1, i.e., (eE1d/��1) < 1,
we anticipate only a few periodic oscillating modes associated
with the isolated multiresonances, which manifest themselves
as islands (or gaps) in the E1-�1 plane. As the driving force
is increased (E1 > E0) and the driving frequency is decreased

062204-6
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(�1 < �B), a large number of enhanced harmonic ac modes
emerge in the system for (eE1d/��1) > 1. In such a case,
the multiple resonance-induced islands in the E1-�1 phase
space are widened and become overlapped. As a result, the
electron motion switches from a periodic-dominant pattern to
a chaotic-dominant one.

Equation (3) contains a self-consistent oscillating space-
charge field Esc(t), whose amplitude |Esc| tends to grow
with the amplitude |Vc| of the electron velocity. From the
combination of the Esc(t)Ee(t) term in Eq. (1) and the
Esc(t)Vc(t) term in Eq. (2), we expect much higher harmonics
of the primary ac field to develop rapidly in the system insofar
as (eE1d/��1) � 1. In fact, a straightforward calculation
indicates |Esc| ∼ (eE1d/��1)αn , where the sequence αn =
2αn−1 + αn−2 with α1 = 1 and α2 = 3 diverges fast with n

[i.e., limn→∞(αn/αn−1) = 1 + √
2]. In short, by including the

self-consistent oscillating space-charge field, the superlattice
system will be driven quickly into a chaotic regime insofar as
�c/�1 is large and the condition eE1d/��1 > 1 is met.

We remark that, in the miniband approach, the balance
equation [Eq. (1)] is valid only if the electric field in the
superlattice is homogeneous. With such an electric field,
the system dynamics is generally unstable when the dc
differential conductivity is negative—the so-called NDC in-
stability [13,30]. The normalized dc current density j�

dc/jp

in the superlattice can be estimated using the Esaki-Tsu
characteristic and the Tucker relations [5,89–93]. For the
static case with only dc driving field a0, the parameters in
our simulation are located in the NDC instability regime.
However, with an ac driving, transport can be enhanced by
a quantized energy (“photon”) caused by the ac field. As
a result, the differential conductivity is not always negative
for large values of a0 [94,95]. The differential conductivity
becomes positive for a0 = n�, where n = 1,2, . . . . Using
the same parameter setting as in Figs. 3(b) and 3(d), we
find that, near a0 = 1� ≈ 1.34, the regime of chaos (gray
regime in Fig. 7) covers completely the positive differential
conductivity regime, indicating the existence of parameter
regimes of chaos but without the NDC instability and, as such,
the NDC instability may not be a contributing factor to chaos.
Indeed, since our model is based on a single miniband, it
pre-excludes any NDC effect. In addition, the field domain
effect is expected to be small if the period of the superlattice
is short and the number of periods is not too large. A complete
analysis of the NDC instability and its possible interplay with
chaotic dynamics is beyond the scope of the present work.

IV. DISCUSSION

Semiconductor superlattices, due to their potential appli-
cations as radiation sources, amplifiers, and detectors in the
THz spectral range, have been extensively studied. There has
also been a great deal of effort in investigating nonlinear

a0
0 1 2 3
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j p

-0.4
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0.4

0.8

1.2
Parameter regime
in the paper
a

0

a
0
+a

1
cosΩτ

FIG. 7. IV curve for the superlattice system. The black thin and
blue thick curves are calculated based on the Esaki-Tsu characteristic
and the Tucker relation. The gray domain denotes the parameter
regime in our study.

dynamics in superlattice systems. Especially, chaos has been
demonstrated as a generic behavior, suggesting the possibility
of random signal generation in the THz range. For such
applications it is desired that chaos be reliable and robust in
the sense that disturbances to the system shall not drive it out
of chaos. In spite of the previous works in this field, the issues
have not been addressed of whether chaos in semiconductor
superlattice is reliable and robust and, if not, what can be done
to overcome the difficulty.

The main result of our work is demonstration that, for
energetic electrons in semiconductor superlattices subject to
an external periodic driving field, chaos and multistability go
side by side in the sense that they emerge and disappear
simultaneously as a system parameter is changed. Due to
the creation of the basin of attraction associated with the
birth of a chaotic attractor, the transition to multistability is
necessarily abrupt. As a result of multistability, for any given
parameter the probability of generating chaos from a random
initial condition will in general not be close to unity. We
develop a heuristic physical understanding for the emergence
of chaos and multistability. To eliminate multistability and
ensure that chaos is the only outcome for any random initial
condition, we find that the approach of applying quasiperiodic
ac driving can be effective. Experimentally, it may be feasible
to apply a second ac electric field to drive the superlattice
system. Our work demonstrates that robust chaos can emerge,
making semiconductor superlattice with quasiperiodic driving
a potential candidate for random signal generation in the THz
range.
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Phys. Rev. B 80, 205318 (2009).
[33] S. P. Stapleton, S. Bujkiewicz, T. M. Fromhold, P. B. Wilkin-
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E 63, 066207 (2001).
[76] D. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona,

Phys. Rev. B 71, 195205 (2005).
[77] D. Huang and P. M. Alsing, Phys. Rev. B 78, 035206 (2008).
[78] D. Huang and D. A. Cardimona, Phys. Rev. B 67, 245306 (2003).
[79] D. Huang, S. K. Lyo, and G. Gumbs, Phys. Rev. B 79, 155308

(2009).
[80] E. Ott, Chaos in Dynamical Systems, 2nd ed. (Cambridge

University Press, Cambridge, UK, 2002).
[81] Y. Bomze, R. Hey, H. T. Grahn, and S. W. Teitsworth, Phys.

Rev. Lett. 109, 026801 (2012).
[82] M. Alvaro, M. Carretero, and L. Bonilla, Europhys. Lett. 107,

37002 (2014).
[83] J. P. Crutchfield, J. D. Farmer, and B. A. Huberman, Phys. Rep.

92, 45 (1982).

[84] J. M. Deutsch, J. Phys. A Math. Gen. 18, 1457 (1985).
[85] L. Yu, E. Ott, and Q. Chen, Phys. Rev. Lett. 65, 2935

(1990).
[86] A. Hamm, T. Tél, and R. Graham, Phys. Lett. A 185, 313

(1994).
[87] Y.-C. Lai, Z. Liu, L. Billings, and I. B. Schwartz, Phys. Rev. E

67, 026210 (2003).
[88] T. Tél and Y.-C. Lai, Phys. Rev. E 81, 056208 (2010).
[89] F. Bass and A. Tetervov, Phys. Rep. 140, 237 (1986).
[90] A. A. Ignatov and Y. A. Romanov, Sov. Phys. Solid State 17,

2216 (1975).
[91] A. A. Ignatov and Y. A. Romanov, Phys. Status Solidi B 73, 327

(1976).
[92] V. V. Pavlovich and E. M. Epshtein, Sov. Phys. Semicond. 10,

1196 (1976).
[93] A. A. Ignatov, E. Schomburg, J. Grenzer, K. Renk, and

E. Dodin, Zeitschr. Phys. B Condens. Matter 98, 187
(1995).

[94] P. K. Tien and J. P. Gordon, Phys. Rev. 129, 647 (1963).
[95] G. Platero and R. Aguado, Phys. Rep. 395, 1 (2004).

062204-9

http://dx.doi.org/10.1103/PhysRevE.64.046203
http://dx.doi.org/10.1103/PhysRevE.64.046203
http://dx.doi.org/10.1103/PhysRevE.64.046203
http://dx.doi.org/10.1103/PhysRevE.64.046203
http://dx.doi.org/10.1103/PhysRevB.50.1705
http://dx.doi.org/10.1103/PhysRevB.50.1705
http://dx.doi.org/10.1103/PhysRevB.50.1705
http://dx.doi.org/10.1103/PhysRevB.50.1705
http://dx.doi.org/10.1103/PhysRevB.51.11221
http://dx.doi.org/10.1103/PhysRevB.51.11221
http://dx.doi.org/10.1103/PhysRevB.51.11221
http://dx.doi.org/10.1103/PhysRevB.51.11221
http://dx.doi.org/10.1103/PhysRevE.63.066207
http://dx.doi.org/10.1103/PhysRevE.63.066207
http://dx.doi.org/10.1103/PhysRevE.63.066207
http://dx.doi.org/10.1103/PhysRevE.63.066207
http://dx.doi.org/10.1103/PhysRevB.71.195205
http://dx.doi.org/10.1103/PhysRevB.71.195205
http://dx.doi.org/10.1103/PhysRevB.71.195205
http://dx.doi.org/10.1103/PhysRevB.71.195205
http://dx.doi.org/10.1103/PhysRevB.78.035206
http://dx.doi.org/10.1103/PhysRevB.78.035206
http://dx.doi.org/10.1103/PhysRevB.78.035206
http://dx.doi.org/10.1103/PhysRevB.78.035206
http://dx.doi.org/10.1103/PhysRevB.67.245306
http://dx.doi.org/10.1103/PhysRevB.67.245306
http://dx.doi.org/10.1103/PhysRevB.67.245306
http://dx.doi.org/10.1103/PhysRevB.67.245306
http://dx.doi.org/10.1103/PhysRevB.79.155308
http://dx.doi.org/10.1103/PhysRevB.79.155308
http://dx.doi.org/10.1103/PhysRevB.79.155308
http://dx.doi.org/10.1103/PhysRevB.79.155308
http://dx.doi.org/10.1103/PhysRevLett.109.026801
http://dx.doi.org/10.1103/PhysRevLett.109.026801
http://dx.doi.org/10.1103/PhysRevLett.109.026801
http://dx.doi.org/10.1103/PhysRevLett.109.026801
http://dx.doi.org/10.1209/0295-5075/107/37002
http://dx.doi.org/10.1209/0295-5075/107/37002
http://dx.doi.org/10.1209/0295-5075/107/37002
http://dx.doi.org/10.1209/0295-5075/107/37002
http://dx.doi.org/10.1016/0370-1573(82)90089-8
http://dx.doi.org/10.1016/0370-1573(82)90089-8
http://dx.doi.org/10.1016/0370-1573(82)90089-8
http://dx.doi.org/10.1016/0370-1573(82)90089-8
http://dx.doi.org/10.1088/0305-4470/18/9/026
http://dx.doi.org/10.1088/0305-4470/18/9/026
http://dx.doi.org/10.1088/0305-4470/18/9/026
http://dx.doi.org/10.1088/0305-4470/18/9/026
http://dx.doi.org/10.1103/PhysRevLett.65.2935
http://dx.doi.org/10.1103/PhysRevLett.65.2935
http://dx.doi.org/10.1103/PhysRevLett.65.2935
http://dx.doi.org/10.1103/PhysRevLett.65.2935
http://dx.doi.org/10.1016/0375-9601(94)90621-1
http://dx.doi.org/10.1016/0375-9601(94)90621-1
http://dx.doi.org/10.1016/0375-9601(94)90621-1
http://dx.doi.org/10.1016/0375-9601(94)90621-1
http://dx.doi.org/10.1103/PhysRevE.67.026210
http://dx.doi.org/10.1103/PhysRevE.67.026210
http://dx.doi.org/10.1103/PhysRevE.67.026210
http://dx.doi.org/10.1103/PhysRevE.67.026210
http://dx.doi.org/10.1103/PhysRevE.81.056208
http://dx.doi.org/10.1103/PhysRevE.81.056208
http://dx.doi.org/10.1103/PhysRevE.81.056208
http://dx.doi.org/10.1103/PhysRevE.81.056208
http://dx.doi.org/10.1016/0370-1573(86)90083-9
http://dx.doi.org/10.1016/0370-1573(86)90083-9
http://dx.doi.org/10.1016/0370-1573(86)90083-9
http://dx.doi.org/10.1016/0370-1573(86)90083-9
http://dx.doi.org/10.1002/pssb.2220730132
http://dx.doi.org/10.1002/pssb.2220730132
http://dx.doi.org/10.1002/pssb.2220730132
http://dx.doi.org/10.1002/pssb.2220730132
http://dx.doi.org/10.1007/BF01324524
http://dx.doi.org/10.1007/BF01324524
http://dx.doi.org/10.1007/BF01324524
http://dx.doi.org/10.1007/BF01324524
http://dx.doi.org/10.1103/PhysRev.129.647
http://dx.doi.org/10.1103/PhysRev.129.647
http://dx.doi.org/10.1103/PhysRev.129.647
http://dx.doi.org/10.1103/PhysRev.129.647
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1016/j.physrep.2004.01.004
http://dx.doi.org/10.1016/j.physrep.2004.01.004



