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Entropy and long-range memory in random symbolic additive Markov chains
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The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements
belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov
chain with long-range memory. Supposing that the correlations between random elements of the chain are weak,
we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We
also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that
the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results
are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The
developed theory opens the way for constructing a more consistent and sophisticated approach to describe the
systems with strong short-range and weak long-range memory.
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I. INTRODUCTION

Our world is complex, chaotic, and correlated. The most
peculiar manifestations of this concept are human and animal
communication, written texts of natural languages, DNA and
protein sequences, data flows in computer networks, stock in-
dexes, solar activity, weather, etc. For this reason, systems with
long-range interactions (and/or sequences with long-range
memory) and natural sequences with nontrivial information
content have been the focus of a large number of studies in
different fields of science for the past several decades. The
unflagging interest in the systems with correlated fluctuations
is also explained by the specific properties they demonstrate
and their prospective applications as a creative tool for
designing the devices and appliances with random components
in their structure (different wave filters, diffraction gratings,
artificial materials, antennas, converters, delay lines, etc. [1]).

Random sequences with a finite number of states exist as
natural sequences (DNA or natural language texts) or arise
as a result of coarse-grained mapping of the evolution of the
chaotic dynamical system into a string of symbols [2,3]. Such
random sequences are the subject of study of the algorith-
mic (Kolmogorov-Solomonoff-Chaitin) complexity, artificial
intellect, information theory, compressibility of digital data,
statistical inference problem, and computability, and have
many application aspects mentioned above.

There are many methods for describing complex dynamical
systems and random sequences connected with them: frac-
tal dimensions, multipoint probability distribution functions,
correlation functions, and many others. One of the most
convenient characteristics serving the purpose of studying
complex dynamics is entropy [4,5]. Being a measure of the
information content and redundancy in a sequence of data, it
is a powerful and popular tool in the examination of complexity
phenomena. Among fields of science where the notion of
entropy is of major significance, data compression [6], natural
language processing [7], and artificial intelligence [8] are the
most important. Recent advances in different fields of science
have hinted at a deep connection between intelligence and
entropy. The basic idea of compression is to exploit redun-
dancy in data, expressed in terms of correlations, and transform
this redundancy in a compression algorithm. The notion of

entropy is also fundamental in the communication field. Some
compression schemes are based on entropy (entropic coding),
others are more likely based on algorithmic complexity (such
as GZIP, based on the Lempel-Ziv complexity).

A standard method of understanding and describing statisti-
cal properties of a given random sequence of data requires the
estimation of the joint probability function of words occurring
for sufficiently large length L of words. For limited size
sequences, reliable estimations can be achieved only for very
small L because the number mL (where m is the finite-alphabet
length) of different words of the length L has to be much less
than the total number M − L of words in the whole sequence
of the length M ,

mL � M − L � M. (1)

This is the crucial point because usually the correlation lengths
Rc of natural sequences of interest are of the same order as
the length of sequence. Inequality (1) cannot be fulfilled. The
lengths of representative words that could correctly estimate
the probability of words occurring are 4–5 for a real natural
text of the length 106 (written on an alphabet containing 27–30
letters and symbols) or of the order of 20 for a coarse-grained
text represented through a binary sequence. So, long-range
memory that can exist in the sequences cannot be taken into
account in such theories.

Here we present a complementary approach, which takes
into account just the long-range memory. Specifically, we
use an additive form of the conditional probability function.
This function takes into account the weak long-range memory,
which can be expressed in terms of the pair correlation function
of symbols and can be found by numerical analysis of the
sequence nearly at the same distances as the total length of the
sequence.

We use the method developed earlier [9] for constructing the
conditional probability function presented by means of a pair
correlator, which makes it possible to calculate analytically the
entropy of the sequence. It should be stressed that we suppose
that the correlations are weak, but not short. Which kind of
memory, i.e., long or short range, is more important depends
on the intrinsic correlation properties of the sequence under
study.
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The scope of the paper is as follows. First, supposing that
the correlations between symbols in the sequence are weak, we
represent the conditional entropy in terms of the conditional
probability function of the Markov chain and express the
entropy as the sum of squares of the pair correlators. Then
we discuss some properties of the results obtained. Next, a
fluctuation contribution to the entropy due to finiteness of
random chains is examined. The application of the developed
theory to literary texts and DNA sequences of nucleotides
is considered. In conclusion, some remarks on directions in
which the research can progress are presented.

This work is a generalization of our previous paper [10]
devoted to the binary random sequences, which we highly
recommend to the reader before reading this paper.

II. ENTROPY OF THE ADDITIVE SYMBOLIC
MARKOV CHAINS

Consider a semi-infinite random stationary ergodic se-
quence,

A = a0,a1,a2, . . . , (2)

of symbols (letters) ai taken from the finite alphabet,

A = {α1,α2, . . . ,αm}, ai ∈ A, i ∈ N+ = {0,1,2, . . .}. (3)

We use the notation ai to indicate a position of the symbol
a in the chain and the notation αk to stress the value of the
symbol a ∈ A.

We suppose that the symbolic sequence A is the high-order
Markov chain [11–15]. Such sequences are also referred to as
the multi- or the N -step [16–18] Markov chains, or categorical
Markov chains [19]. The sequence A is the N -step Markov
chain if it possesses the following property: the probability of
symbol ai to have a certain value αk ∈ A under the condition
that all previous symbols given depend only on N previous
symbols,

P (ai = αk| . . . ,ai−2,ai−1) = P (ai = αk|ai−N, . . . ,ai−2,ai−1).

(4)

Sometimes the number N is also referred to as the order or the
memory length of the Markov chain. Note that definition (4) is
valid for i � N ; for i < N , we should use the well-known
conditions of compatibility for the conditional probability
functions (CPFs) of lower order [20].

The Markov chain with CPF of a general form, given
by Eq. (4), is not convenient (compliant) to solve concrete
problems. For this reason, we introduce a simplification
for the CPF. Specifically, we suppose that the symbolic
Markov chain under consideration is additive, i.e., its con-
ditional probability is a linear function of random variables
ak, k = i − N, . . . ,i − 1,

P
(
ai = α

∣∣ai−1
i−N

) = pα +
N∑

r=1

∑
β∈A

Fαβ(r)[δ(ai−r ,β) − pβ],

(5)
where pα is the relative number of symbols α in the chain, or
their probabilities of occurring,

pα = δ(ai,α). (6)

Here, δ(·) is the Kronecker delta symbol, playing the role
of the characteristic function of the random variable ai

and converting symbols to numbers. Hereafter, we use the
more concise notation ai−1

i−N for N -word ai−N, . . . ,ai−1, and
we often drop the superscript k from αk to simplify the
notations. It is evident that the memory function should satisfy
some inequality of the type

∑N
r=1

∑
β∈A |Fαβ(r)| < const to

provide the strict inequality (22), presented below, for arbitrary
word ai

i−N .
The additivity means that the previous symbols ai−1

i−N

exert an independent effect on the probability of the symbol
ai = α occurring. The first term in the right-hand side of
Eq. (5) is responsible for the correct reproduction of statistical
properties of uncorrelated sequences; the second one takes into
account, and produces under generation, correlations among
symbols of the random sequence. The conditional probability
function in form (5) can correctly reproduce the binary (pair,
two-point) correlations in the chain. Higher-order correlators
and all correlation properties of higher orders are no longer
independent. We cannot control them and correctly reproduce
by means of the memory function Fαβ(r) because the latter
is completely determined by the pair correlation function; see
Eq. (19) below.

The additive Markov chains are, in some sense, analogous
to the chains described by autoregressive models [11,21]. In
Appendix A, some suggestions on the form of Eq. (5) and its
properties are presented.

To estimate the conditional entropy of stationary sequence
A of symbols ai , one could use the Shannon definition [4] for
entropy per block of length L,

HL = −
∑

a1,...,aL∈A

P
(
aL

1

)
log2 P

(
aL

1

)
. (7)

Here, P (aL
1 ) = P (a1, . . . ,aL) is the probability to find L-word

aL
1 in the sequence. The conditional entropy, or the entropy per

symbol, is given by

hL = HL+1 − HL. (8)

This quantity specifies the degree of uncertainty of the
(L + 1)-th symbol occurring and measures the average infor-
mation per symbol if the correlations of (L + 1)-th symbol
with preceding L symbols are taken into account. The
conditional entropy hL can be represented in terms of the
conditional probability function P (aL+1|aL

1 ),

hL =
∑

a1,...,aL∈A

P
(
aL

1

)
h
(
aL+1

∣∣aL
1

) = h
(
aL+1

∣∣aL
1

)
, (9)

where h(aL+1|aL
1 ) is the amount of information contained

in the (L + 1)-th symbol of the sequence conditioned on L

previous symbols,

h
(
aL+1

∣∣aL
1

) = −
∑

aL+1∈A

P
(
aL+1

∣∣aL
1

)
log2 P

(
aL+1

∣∣aL
1

)
. (10)

The entropy rate (or Shannon entropy) is the conditional
entropy at the asymptotic limit, h = limL→∞ hL. This quantity
measures the average information per symbol if all corre-
lations, in the statistical sense, are taken into account; cf.
with [22], Eq. (3).
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Due to the supposed ergodicity of stationary sequence A,
the average value of any function f (ar1 ,ar1+r2 , . . . ,ar1+···+rs

)
of s arguments defined on the set A of symbols is the statistical
(arithmetic, Cesaro’s) average over the chain,

f (ar1 , . . . ,ar1+···+rs
) = lim

M→∞
1

M

M−1∑
i=0

f (ai+r1 , . . . ,ai+r1+···+rs
).

(11)

Stationarity together with decay of correlations, Cα,β(r →
∞) = 0 [see definition (13) below], leads, according to the
Slutsky sufficient conditions [23], to mean ergodicity. This
latter property is very useful in numerical calculations since
the averaging can be done over the length of the sequence
and the ensemble averaging can be avoided. Therefore, in our
numerical as well as analytical calculations, we always apply
averaging over the length of the sequence as implied in Eq. (9).

If the sequence, the statistical properties of which we would
like to analyze, is given, then the conditional probability
function of the N th order can be found by a standard method
(written below for subscript i = N + 1),

P (aN+1 = αk|a1, . . . ,aN ) = P (a1, . . . ,aN ,αk)

P (a1, . . . ,aN )
, (12)

where P (a1, . . . ,aN ,αk) and P (a1, . . . ,aN ) are the proba-
bilities of the (N + 1) subsequence a1, . . . ,aN ,αk and N

subsequence a1, . . . ,aN occurring, respectively.
There is a rather simple relation between the memory

function Fαβ(r) and the pair symbolic correlation function of
the additive Markov chain. The two-point symbolic correlation
function is defined as

Cαβ(r)= [δ(ai,α) − pα][δ(ai+r ,β) − pβ], α,β ∈A. (13)

This definition can also be rewritten in the form

Cαβ(r) = [δ(ai,α)δ(ai+r ,β)] − pαpβ

= P (ai = α,ai+r = β) − pαpβ. (14)

The stationarity of sequence and condition of marginaliza-
tion,

pα =
∑
β∈A

P (ai = α,ai+r = β),

imply that the function Cαβ(r) possesses the following sym-
metric properties:

Cαβ(r) = Cβα(−r),∑
α∈A

Cαβ(r) =
∑
β∈A

Cαβ(r) = 0. (15)

Let us suppose that there exists a one-to-one correspon-
dence ai ↔ εi between the letters of symbolic sequence A
and the numbers of the numeric sequence. Then, the ordinary
“numeric” correlation function

Cε(r) = (εi − ε̄)(εi+r − ε̄) (16)

of the sequence of εi can be expressed by means of symbolic
correlator

Cε(r) =
∑

α,β∈A

εαεβCαβ(r). (17)

Here, εα is the numeric value of the random variable ε

corresponding to the symbol α.
There were suggested two methods for finding Fαβ(r) of

a sequence with a known pair correlation function. The first
one [9] is based on the minimization of the “distance,”

Dist = [
δ(ai,α) − P

(
ai = α

∣∣ai−1
i−N

)]2
, (18)

between the conditional probability function, containing the
sought-for memory function, and the given sequence A of
symbols with a known correlation function. For any values of
α,β ∈ A and r � 1, the minimization equation with respect
to Fαβ(r) yields the relationship between the correlation and
memory functions (see Appendix B),

Cαβ(r) =
N∑

r ′=1

∑
γ∈A

Cαγ (r − r ′)Fβγ (r ′). (19)

The second method for deriving Eq. (19) given in Appendix B
is a completely probabilistic straightforward calculation anal-
ogous to that used in [17].

Equation (19), despite its simplicity, can be analytically
solved only in some particular cases: for one- or two-step
chains, the Markov chain with a stepwise memory function,
and so on. To avoid the various difficulties in solving it,
we suppose that correlations in the sequence are weak (in
amplitude, but not in length). We can obtain an approximate
solution for the memory function in the form of the series (see
Appendix C)

Fαβ(r) = Cβα(r)

pβ

− 1

pβ

∑
r ′ 	=r

∑
γ∈A

1

pγ

Cβγ (r−r ′)Cγα(r ′)+ · · · ,

(20)

if we suppose the all components of the correlation function
with r 	= 0 are small with respect to Cαβ(0).

Equation (5) for the conditional probability function in
the first approximation with respect to the small parameters
|Cαβ(r)| � |Cαβ(0)|, r 	= 0, after neglecting the second term
in Eq. (20), takes the form

P
(
ai = α

∣∣ai−1
i−N

) � pα +
N∑

r=1

∑
β∈A

Cβα(r)

pβ

[δ(ai−r ,β) − pβ].

(21)
This formula provides a tool for constructing weak cor-

related sequences with a given pair correlation function [9].
Note that the i independence of the function P (ai = α|ai−1

i−N )
provides homogeneity and stationarity of the sequence under
consideration; and the finiteness of N together with the strict
inequalities

0 <P
(
ai+N = α

∣∣ai+N−1
i

)
< 1, i ∈ N+ = {0,1,2, . . .}, (22)

provides, according to the Markov theorem (see, e.g.,
Ref. [20]), ergodicity of the sequence.

The conditional probability P (ai = α|ai−1
i−L) for a word of

length L < N can be obtained in the first approximation in the
weak correlation parameter �α(ai−1

i−L) from Eqs. (5) and (21)
by means of a routine probabilistic reasoning presented in
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Appendix D,

P
(
ai = α|ai−1

i−L

) = pα + �α

(
ai−1

i−L

)
,

�α

(
ai−1

i−L

) =
L∑

r=1

∑
β∈A

Cβα(r)

pβ

[δ(ai−r ,β) − pβ]. (23)

Taking into account the weakness of correlations,∣∣�α

(
ai−1

i−L

)∣∣ � pα, (24)

we expand Eq. (10) in Taylor series up to the sec-
ond order in �α(aL

1 ), h(aL+1|aL
1 ) = h0 + (∂h/∂pα)�α(aL

1 ) +
(1/2)(∂2h/∂p2

α)�2
α(aL

1 ), where the derivatives are taken at
the point P (ai = α|ai−1

i−L) = pα and h0 is the entropy of the
uncorrelated sequence,

h0 = −
∑
α∈A

pα log2(pα). (25)

Then, the conditional entropy of the sequence in line with
�α(aL

1 ) = 0 takes the form

hL =

⎧⎪⎨
⎪⎩

hL<N = h0 − 1

2 ln 2

∑
α∈A

�2
α

(
aL

1

)
pα

hL>N = hL=N.

(26)

If the length of block exceeds the memory length, L > N ,
the conditional probability P (ai = α|ai−1

i−L) depends only on
N previous symbols; see Eq. (4). Then, it is easy to show
from (9) that the conditional entropy remains constant at
L � N . Thus, the second line in Eq. (26) is consistent with
the first line because, in the first approximation, in the weak
correlations the parameter �α(ai−1

i−L) is constant at L > N

while the correlation function vanishes. The final expression,
i.e., the main analytical result of the paper, for the conditional
entropy of an infinite stationary ergodic weakly correlated
random sequence of symbols is

hL = h0 − 1

2 ln 2

L∑
r=1

∑
α,β∈A

C2
αβ(r)

pαpβ

. (27)

In order to obtain this equation, we used Eq. (23) and
replaced the term Cαβ(r ′ − r) with Cαβ(0)δ(r,r ′) when cal-
culating the summation.

III. DISCUSSION

It follows from Eq. (27) that the additional correction to the
entropy h0 of the uncorrelated sequence is negative. This is
the anticipated result—the correlations decrease the entropy.
The conclusion is not sensitive to the sign of correlations:
persistent correlations, C > 0, describing an “attraction” of
the symbols of the same kind, and antipersistent correlations,
C < 0, corresponding to a “repulsion” between the same
symbols, provide the corrections of the same negative sign. If
the correlation function is constant at 1 � r � N , the entropy
is a linear decreasing function of the argument L up to the
point r = N .

Equation (27) takes a more simple form for a binary, m = 2,
chain of symbols, which can also be considered as a numeric
chain of random variables ai with the alphabet of symbols

or numbers A = {0; 1}. Let p1 = ā, p0 = 1 − ā. In order to
calculate hL, we should calculate four symbolic correlation
functions:

C11(r) = δ(ai,1)δ(ai+r ,1) − ā2,

C00(r) = δ(ai,0)δ(ai+r ,0) − (1 − ā)2,

C01(r) = δ(ai,0)δ(ai+r ,1) − (1 − ā)ā,

C10(r) = δ(ai,1)δ(ai+r ,0) − ā(1 − ā). (28)

Taking into account that δ(ai,1) = ai , δ(ai,0) = 1 − ai , we
obtain

C11(r) = C00(r) = C(r),

C01(r) = C10(r) = −C(r). (29)

Here, C(r) is the ordinary numeric correlator

C(r) = (ai − ā)(ai+r − ā). (30)

After simple algebra, we get

hL = h0 − 1

2 ln 2

L∑
r=1

K2(r), (31)

where K(r) is the normalized pair correlation function of
the binary sequence K(r) = C(r)/C(0), the result obtained
in Ref. [10]. A similar result containing only one term K2(L)
for the mutual information,

M(L) = −
∑

a1,aL+1∈A

P (a1,aL+1) log2
P (a1,aL+1)

pa1paL+1

,

of the binary chain was obtained earlier in Ref. [24].

IV. FINITE RANDOM SEQUENCES

The relative numbers pα of symbols in the chain, correlation
functions, and other statistical characteristics of random
sequences are deterministic quantities only in the limit of their
infinite lengths. It is a direct consequence of the law of large
numbers. If the sequence length M is finite, the set of numbers
aM

1 can no longer be considered as an ergodic sequence. In
order to restore its status, we have to introduce the ensemble
of finite sequences, {aM

1 }s , s ∈ N = 0,1,2, . . .. Yet, we would
like to retain the right to examine finite sequences by using
a single finite chain. So, for a finite chain, we should replace
definition (13) of the correlation function with the following
one:

CM,αβ(r) = 1

M − r

M−r−1∑
i=0

[δ(ai,α) − pM,α]

×[δ(ai+r ,β) − pM,β],

pM,α = 1

M

M−1∑
i=0

δ(ai,α), (32)

which coincides with Eq. (13) in the limit M → ∞. Now the
correlation functions and the single-site probabilities pM,α are
random quantities, which depend on the particular realization
of the sequence aM

1 . Fluctuations of these random quantities
can contribute to the entropy of finite random chains even if
the correlations in the random sequence are absent. It is well
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known that the order of relative fluctuations of additive random
quantity [as, e.g., the correlation function Eq. (32)] is 1/

√
M .

Below we give a more rigorous justification of this
explanation and show its applicability to our case. Let us
present the correlation function CM (r) as the sum of two
components,

CM,αβ(r) = Cαβ(r) + Cf,αβ (r), r � 1, (33)

where the first summand Cαβ(r) = limM→∞ CM,αβ(r) is the
correlation function determined by Eq. (32) (in the limit
M → ∞) obtained by averaging over the sequence with
respect to index i, enumerating the elements ai of sequence
A; and the second one, Cf,αβ (r), is a fluctuation-dependent
contribution. Function Cαβ(r) can also be presented as the
ensemble average Cαβ(r) = 〈CM,αβ(r)〉 due to the ergodicity
of the (infinite) sequence.

Now we can find a relationship between variances of
CM,αβ(r) and Cf,αβ (r). Taking into account Eq. (33) and the
properties 〈Cf,αβ (r)〉 = 0 at r 	= 0 and Cαβ(r) = 〈CM,αβ(r)〉,
we have 〈

C2
M,αβ(r)

〉 = C2
αβ(r) + 〈

C2
f,αβ (r)

〉
, r � 1. (34)

The correlation function Cαβ(r) vanishes when r exceeds
the correlation length Rc, r  Rc. This makes it possible to
find the asymptotical value of C2

f,αβ (r),
〈
C2

f,αβ (r)
〉
|rRc

∼= 〈
C2

M,αβ(r)
〉

= 1

(M − r)2

〈 M−r−1∑
i,j=0

[δ(ai,α) − pM,α]

×[δ(ai+r ,β) − pM,β]

×[δ(aj ,α) − pM,α][δ(aj+r ,β) − pM,β ]

〉
.

(35)

Neglecting the correlations between elements ai and taking
into account that the terms with i = j give the main contribu-
tion to the result,

〈 M−r−1∑
i,j=0

[δ(ai,α) − pM,α][δ(ai+r ,β) − pM,β]

×[δ(aj ,α) − pM,α][δ(aj+r ,β) − pM,β]

〉

∼=
M−r−1∑

i=0

〈[δ(ai,α) − pM,α]2〉〈[δ(ai+r ,β) − pM,β]2〉

= (M − r)Cf,αα(0)Cf,ββ (0), (36)

we obtain, after neglecting r in the term M − r , the averaged
fluctuation-dependent contribution to the squared correlation
function,

〈
C2

f,αβ(r)
〉 � 1

M
Cf,αα(0)Cf,ββ(0),

CM,αβ(0) = pM,αδ(α,β) − pM,αpM,β. (37)

Note that Eq. (37) is obtained by means of averaging over
the ensemble of chains. This is the shortest way to get the

desired result. At the same time, for numerical simulations,
we have only used the averaging over the chain as is seen from
Eq. (32), where the summation over sites i of the chain plays
the role of averaging.

Note also that the different symbols ai in Eq. (36) are cor-
related. It is possible to show by direct evaluation of C2

f,αβ (r)
with CPF (21) that the contribution of their correlations to
〈C2

f,αβ (r)〉 is of the order of �/M2 � 1/M .
Equation (27), containing Cαβ(r), is only valid for the

infinite chain. In reality, we always work with sequences of
finite length and can calculate CM,αβ (r), which contains the
fluctuating part. To improve result (27), we have to subtract
the fluctuating part of entropy, proportional to

∑L
r=1〈C2

f,αβ (r)〉,
from Eq. (27). Thus, Eqs. (34) and (37) yield the conditional
entropy of the finite weakly correlated (approximately ergodic,
Rc � M) random sequences,

hL = h0 − 1

2 ln 2

⎡
⎣ L∑

r=1

∑
α,β∈A

C2
M,αβ(r)

pM,αpM,β

− (m − 1)2 L

M

⎤
⎦.

(38)

This formula is the estimation of the conditional entropy
of the additive Markov chain with the bias correction. It is
clear that in the limit M → ∞, this function transforms into
Eq. (27). The last term in the right-hand side of Eq. (38) (the
bias) describes the linearly decreasing fluctuation correction
of the entropy.

For the binary chain, m = 2, we get the result obtained
earlier in [10]. See also [24] where the bias correction was
calculated for the mutual information of the binary random
sequence.

Ordinarily, the bias correction for additive statistical char-
acteristics of random finite continuous states data comes from
the Edgeworth expansion [25]. In the present work, with the
data being discrete states, such an approach is obviously not
possible without profound modifications.

The squared correlation function C2
M,αβ(r) is normally

a decreasing function of r , whereas the function C2
f,αβ (r)

is nearly constant [see Eq. (37) for r � M]. Hence, the
terms

∑L
r=1

∑
α,β∈A C2

M,αβ(r)/pM,αpM,β and (m − 1)2L/M ,
being concave and linear functions, respectively, describe the
competitive contributions to the entropy. It is not possible to
analyze all particular cases of their relationship. Therefore,
we indicate here the most interesting ones, keeping in mind
monotonically decreasing correlation functions. An example
of such a function is C(r) = a/rb, a > 0, b > 0.

If the correlations are extremely small and com-
pared with the inverse length M of the sequence,∑

α,β∈A C2
M,αβ(1)/pM,αpM,β ∼ 1/M , the fluctuating part of

the entropy exceeds the correlation part for almost all values
of L > 1.

When the correlations are stronger,∑
α,β∈A C2

M,αβ(1)/pM,αpM,β > 1/M , there is at least
one point where the contribution of the fluctuation and
correlation parts of the entropy are equal. For monotonically
decreasing function

∑
α,β∈A C2

M,αβ(r)/pM,αpM,β , there is
only one such point. Comparing the functions in square
brackets in Eq. (38), we find that they are equal at some
L = Rs , which hereafter will be referred to as a stationarity
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length. If L � Rs , the fluctuations of the correlation function
are negligibly small with respect to its magnitude, and hence
for these L-words the finite sequence may be considered as
the quasistationary one. At L ∼ Rs , the fluctuations are of the
same order as the genuine correlation function contribution,∑

α,β∈A C2
M,αβ(r)/pM,αpM,β . Here we have to take into

account the fluctuation correction due to the finiteness of
the random chain. At L > Rs , the fluctuation contribution
exceeds the correlation one and Eq. (38) loses its meaning.

The other important parameter of the random sequence is
the memory length N . If the length N is less than Rs , we have
no difficulties to calculate the entropy of the finite sequence,
which can be considered as quasistationary. If the memory
length exceeds the stationarity length, Rs � N , we should take
into account the fluctuation correction to the entropy.

V. APPLICATIONS TO NATURAL AND DNA TEXTS

The purpose of this section is to illustrate the applicability
of the developed theory to some concrete sequences naturally
arising in biology and linguistics.

In order to evaluate the conditional entropy of literature
works, we calculate the probabilities pM,α of each letter
occurring in the simplified text and symbolic correlation
functions CM,αβ (r). The simplification (some sort of coarse
graining) consists of replacing all of the uppercase letters
with the lowercase ones and neglecting all punctuation marks
except blanks. Hence, we use the alphabet of 27 letters. The
result for calculating the conditional entropy with the use of
Eq. (38) is shown in Fig. 1. The entropy per one letter h(0)
(not shown in the picture) is 4 ± 0.1. It is evident that the
difference between the one-letter entropy, in the case of the
letters equipartition log2 27 ≈ 4.75, and 4 ± 0.1 is due to the
nonequipartition distribution of letters in the texts.

As we mentioned, the correlation length can be determined
as the length where the entropy takes on a constant value. At
first glance, the value of Rc is of the order of 9–11. But after

1 10 100 1000 104

2.2

2.4

2.6

2.8

3.0

3.2

L

h
L

The Count of Monte Cristo

Picture of Dorian Gray

Alice in Wonderland

Bible

FIG. 1. The conditional entropy of the literature works (indicated
in the legend near the curves) vs the length of words in the L-axis
log scale. The curves correspond to the direct evaluations of Eq. (27)
with fluctuation correction.
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FIG. 2. The conditional entropy of Homo sapiens chromosome Y,
locus NW 001842422 [26], of length M � 3.9 × 106 vs length L with
the fluctuation correction. The curve is constructed using Eq. (27).
The inset demonstrates the conditional entropy of Homo sapiens
chromosome Y, locus NW 001842451, of length M � 4.5 × 104.
The straight dashed line is fluctuation correction 9L/2 ln 2 M due to
finiteness of chain.

this point, we observe a nearly linear small decrease of entropy
extended over 2–3 decades. Probably, this phenomenon could
be explained by small power-low correlation, observed and
discussed in Ref. [17].

Application of the developed theory to nucleotide se-
quences of DNA molecules is shown in Fig. 2. In order to
evaluate the entropy of the Homo sapiens chromosome Y,
locus NW 001842422 [26], we calculate the probabilities pM,α

of each nucleotide occurring in the sequence and 9 different
symbolic correlation functions CM,αβ(r).

It is clearly seen that the entropy in the interval 7 × 103 <

L < 2 × 104 takes on the constant value, hL � 1.41. It means
that for L > 7 × 103, all binary correlations, in the statistical
sense, are taken into account. In other words, the correlation
length of the Homo sapiens chromosome Y is of the order of
104. This length Rc is much greater than correlation length
Rc ≈ 10 observed for natural written texts.

In the inset of Fig. 2, the conditional entropy of Homo
sapiens chromosome Y, locus NW 001842451, is shown. Here
we cannot see a constant asymptotical region, which would
be evidence for the existence of stationarity and finiteness
of the correlation length. We suppose that the locus is not
well described by our theory at long distances due to the
relatively short length of sequence. The dashed line in the
figure is the fluctuation correction of the conditional entropy.
This correction should be small with respect to the correlation
contribution in the region of reliability of the result. Thus, only
for L < 103, the result can be considered as plausible.

It is interesting to compare our results with those obtained
by estimation of block entropy (7) where the probabilities of
words occurring are calculated with the standard likelihood
estimate

P
(
aL

1

) = n
(
aL

1

)
M − L + 1

. (39)
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FIG. 3. Comparison of conditional entropies calculated by esti-
mation of block occurring, Eq. (39) (bottom curve), and the result
of Eq. (38) (top curve) for the Homo sapiens chromosome Y, locus
NW 001842422.

Here, n(aL
1 ) is the number of occurrences of the word aL

1 in the
sequence of the length M . In our paper [10], it was shown that
there is a good agreement between the two approaches for the
coarse-grained (binary) DNA sequence of R3 chromosome
of Drosophila melanogaster of length M � 2.7 × 107 for
L � 5–6 units. For the four-valued sequence (composed of
adenine, guanine, cytosine, and thymine), we cannot draw
a similar conclusion studying the conditional entropy of the
Homo sapiens chromosome Y, locus NW 001842422, shown
in Fig. 3. It is clear that at small L, strong short-range
correlations or the exact statistics of the short words are more
important than that which we took into account—the simple
pair correlations.

It is difficult to come to an unambiguous conclusion as to
which factor, i.e., the finiteness of the chain and violation of
Eq. (1) or the strength of correlations, is more important for
the discrepancy between the two theories and between the two
studied sequences. Probably this is due to the triplet structure of
the DNA molecules and strong correlations at short distances,
L � 2 ÷ 3.

VI. CONCLUSION AND PERSPECTIVES

(i) The main result of the paper, i.e., the conditional entropy
of the stationary ergodic weakly correlated random sequence
A with elements belonging to the finite alphabet, is given
by Eq. (27). The other important point of the work is the
calculation of the fluctuation contribution to the entropy due
to the finiteness of random chains, which is the last term
in Eq. (38).

(ii) In order to obtain Eq. (27), we used an assumption
that the random sequence of symbols is the high-order
Markov chain. Nevertheless, the final result contains only
the correlation function and does not contain the conditional
probability function of the Markov chain. This allows us to
suppose that result (27) and the region of its applicability is
wider than the assumptions under which it is obtained.

(iii) To obtain Eq. (27), we supposed that the correlations in
the random chain are weak. It is not a very severe restriction.

Many examples of such systems described by means of the
pair correlator are given in Ref. [1]. The randomly chosen
example of DNA sequences and the literary texts support
this conclusion. The strongly correlated systems, opposed to
weakly correlated chains, are nearly deterministic. For their
description, we need a completely different approach. Their
study is beyond the scope of this paper.

(iv) Equation (27) can be considered as an expansion of
the entropy in series with respect to the small parameter �,
where the entropy h0 of the noncorrelated sequence is the zero
approximation. Alternatively, for the zero approximation, we
can use the exactly solvable model of the N -step Markov chain
with the conditional probability function of words occurring
taken in the form of the stepwise function [18]. Another way
to choose the zero approximation can be based on the CPF
obtained from probability of the block occurring, Eq. (7).
Consequently, the developed theory opens the way to construct
a more consistent and sophisticated approach describing the
systems with strong short-range and weak long-range memory.

(v) Our consideration can be generalized to the Markov
chain with the infinite memory length N . In this case, we
should impose the condition of the decreasing rate of the
correlation function and the conditional probability function
at N → ∞.
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APPENDIX A

The conditional probability function of the binary additive
Markov chain of random variables ai ∈ {0,1}, i.e., the prob-
ability of symbol ai to have a value 1 under the condition
that N previous symbols ai−1

i−N are given, is of the following
form [9,16]:

P
(
ai = 1

∣∣ai−1
i−N

) = ā +
N∑

r=1

F (r)(ai−r − ā). (A1)

Analogously for P (0|.),
P

(
ai = 0

∣∣ai−1
i−N

) = 1 − P
(
1
∣∣ai−1

i−N

)

= 1 − ā −
N∑

r=1

F (r)(ai−r − ā). (A2)

These two expressions are not symmetric with respect to
the change 0 � 1 of generated symbol ai . Let us show that
Eqs. (A1) and (A2) can be presented in the symmetric form

P
(
ai = α|ai−1

i−N

)=pα +
N∑

r=1

∑
β∈{0,1}

Fαβ(r)[δ(ai−r ,β) − pβ].

(A3)
Taking into account the definitions p1 = ā, p0 = 1 − ā,

using the evident equalities δ(ai−r ,0) = 1 − ai−r , δ(ai−r ,1) =
ai−r , and putting F11(r) − F10(r) = F00(r) − F01(r) = F (r),
we easily obtain Eqs. (A1) and (A2). We should replace α,β ∈
{0,1} in Eq. (A3) by α,β ∈ A to obtain Eq. (5).
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Note that there is no one-to-one correspondence between
the memory function Fαβ(r) and the conditional probability
function P (ai = α|ai−1

i−N ). Indeed, it is easy to see that in
view of Eqs. (5) and (6), the renormalized memory function
F ′

αβ(r) = Fαβ(r) + ϕα(r) provides the same conditional prob-
ability as Fαβ(r).

Note that Eq. (5) can be considered as an approximate
model expression simplifying the general form of the condi-
tional probability function. As a matter of fact, the conditional
probability (12) of the symbolic sequence of random variables
ai ∈ A can be represented exactly as a finite polynomial series
containing N Kroneker delta symbols: a specific decomposed
form of the CPF, which expresses some “independence” of the
random variables a and spatial coordinates i,

P (.|.) = P (ai = α|ai−N, . . . ,ai−2,ai−1) = pα

+
∑

β1...βN∈A

∑
r1...rN

Fα;β1...βN
(r1, . . . ,rN )

×
N∏

s=1

δ(ai−rs
,βs). (A4)

Here, the arguments r1, . . . ,rN of the function
Fα;β1...βN

(r1, . . . ,rN ), supposed to be ordered r1 � r2 �
, . . . , � rN−1 � rN , indicate the distances between the
final “generated” symbol ai = α and symbols ai−1 =
β1, . . . ,ai−N = βN . It is clear that there is one-to-one
correspondence between P (ai = α|ai−1

i−N ) and the function
Fα;β1...βN

(r1, . . . ,rN ), which is referred to as the generalized
memory function.

Hosseinia et al. [19] proved rigorously that the conditional
probability can be written as a linear combination of the
monomials of past process responses for the Markov chain.
Earlier this idea was presented in Besag’s paper [27].

APPENDIX B

The method for finding the memory function Fαβ(r)
of a sequence with a known pair correlation function is
based on the minimization of the “distance” between the
conditional probability function, containing the sought-for
memory function, and the given sequence A of symbols with
a known correlation function,

Dist = [
δ(ai,α) − P

(
ai = α

∣∣ai−1
i−N

)]2
, (B1)

where the conditional probability P (ai = α|ai−1
i−N ) is defined

by Eq. (5).
Let us express the distance in terms of the correlation

functions (13). From Eqs. (5) and (B1), one obtains

Dist = [δ(ai,α) − pα]2

− 2
N∑

r=1

∑
β∈A

Fαβ(r)[δ(ai,α) − pα][δ(ai−r ,β) − pβ]

+
N∑

r,r ′=1

∑
β,γ∈A

Fαβ(r)Fαγ (r ′)

×[δ(ai−r ,β) − pβ][δ(ai−r ′ ,γ ) − pγ ],

or, replacing the averages by corresponding correlation func-
tions,

Dist = Cαα(0) − 2
N∑

r=1

∑
β∈A

Fαβ(r)Cβα(r)

+
N∑

r,r ′=1

∑
β,γ∈A

Fαβ(r)Fαγ (r ′)Cγβ(r ′ − r).

The minimization equation

∂Dist

∂Fαβ(r)
= −2Cβα(r) + 2

N∑
r ′=1

∑
γ∈A

Fαγ (r ′)Cγβ(r ′ − r) = 0

(B2)

yields the relationship (19) between the correlation and
memory functions.

Another way to derive Eq. (19) is a completely probabilistic
straightforward calculation. Let us rewrite the correlation
function (14) in terms of conditional probability fβα(r) ≡
P (ai = α|ai−r = β),

Cβα(r) = P (ai = α,ai−r = β) − pαpβ

= pβ[fβα(r) − pα]. (B3)

Obviously, the conditional probability can be expressed via
the summation over all the variants of previous N -word
W = ai−1

i−N+1,

fβα(r) =
∑
W

P (ai = α|W )P (W |ai−r = β). (B4)

Taking into account the additive form of the first multiplier (5),
one can reverse the order of summations,

fβα(r) =
∑
W

{
pα +

N∑
r ′=1

∑
γ∈A

Fαγ (r ′)[δ(ai−r ′ ,γ ) − pγ ]

}

×P (W |ai−r = β)

= pα +
N∑

r ′=1

∑
γ∈A

Fαγ (r ′)
∑
W

[δ(ai−r ′ ,γ ) − pγ ]

×P (W |ai−r = β).

Noting that ai−r ′ is one of the symbols of the word W , we
conclude that the sum

∑
W δ(ai−r ′ ,γ )P (W |ai−r = β) is the

conditional probability P (ai−r ′ = γ |ai−r = β) = fβγ (r − r ′).
Thus we obtain an equation for the values of f ,

fβα(r) − pα =
N∑

r ′=1

∑
γ∈A

Fαγ (r ′)[fβγ (r − r ′) − pγ ]. (B5)

Multiplying it by pβ and expressing the fβα(r) via Cβα(r)
using (B3), we derive the desired relation (19).

APPENDIX C

Using definition (13) of the correlation function and its
property,

Cαβ(0) = pαδαβ − pαpβ, (C1)
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it is convenient to separate the term with r ′ = r in Eq. (19),

Cαβ(r)=
∑
γ∈A

Cαγ (0)Fβγ (r)+
∑
r ′ 	=r

∑
γ∈A

Cαγ (r − r ′)Fβγ (r ′).

(C2)
After using the symmetric properties of matrices Cαγ (0) and
Fβγ (r), we simplify the first term of the previous equation,

Cαβ(r) = pαFβα(r) +
∑
r ′ 	=r

∑
γ∈A

Cαγ (r − r ′)Fβγ (r ′), (C3)

and obtain the recurrent relation for the memory function,

Fαβ(r) = Cβα(r)

pβ

− 1

pβ

∑
r ′ 	=r

∑
γ∈A

Cβγ (r − r ′)Fαγ (r ′). (C4)

In the case of weak correlations, the second term in the
right-hand side of the equation is much smaller then the first
one; then the first approximation for the memory function is

Fαβ(r) = Cβα(r)

pβ

. (C5)

Substituting this result into the recurrent equation (C4), we
obtain the second approximation for the Fαβ(r),

Fαβ(r) = Cβα(r)

pβ

− 1

pβ

∑
r ′ 	=r

∑
γ∈A

1

pγ

Cβγ (r − r ′)Cγα(r ′).

(C6)

APPENDIX D

Here we prove Eq. (23) using Eqs. (5) and (21) as a
starting point. It follows from definition (12) of the conditional
probability function,

P (ai = a|W ) = P (W,a)

P (W )
, W = ai−1

i−N+1. (D1)

Adding symbol ai−N = b to the string (W,a), we have

P (ai = a|W ) =
∑

b∈A P (b,W,a)

P (W )
. (D2)

Replacing here the probabilities P (b,W,a) by the CPF
P (ai = a|b,W ) from the equation similar to that of Eq. (D1),

P (ai = a|b,W ) = P (b,W,a)

P (b,W )
, (D3)

we obtain, after some algebraic manipulations,

P (ai = a|W ) = pa+
N−1∑
r=1

∑
b∈A

Fab(r)[δ(ai−r ,b)−pb]+ 1

P (W )

×
∑
c∈A

Fac(N )
∑
b∈A

P (b,W )[δ(b,c) − pc].

(D4)

The third term containing summation over b is of the form

P (c,W )(1 − pc) − P [not(c),W ]pc, (D5)

where the symbol not(c) stands for a complementary event
to c. It is intuitively clear that in the zero approximation in
� (i.e., for uncorrelated sequence), this term equals zero.
In the next approximation, this term is of the order of �.
These two statements can be verified by using the condition
of compatibility for the Chapman-Kolmogorov equation (see,
for example, Ref. [28]),

P
(
ai

i−N+1

) =
∑

ai−N ∈A

P
(
ai−1

i−N

)
PN

(
ai

∣∣ai−1
i−N

)
. (D6)

Hence, we have to neglect the third term in the right-hand side
of Eq. (D4) because it is of the second order in �. So, Eq. (23)
is proven for L = N − 1. By induction, the equation can be
written for arbitrary L.
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