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Relaxation rate of a stochastic spreading process in a closed ring
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The relaxation process of a diffusive ring becomes underdamped if the bias (so-called affinity) exceeds a
critical threshold value, also known as the delocalization transition. This is related to the spectral properties of
the pertinent stochastic kernel. We find the dependence of the relaxation rate on the affinity and on the length of
the ring. Additionally we study the implications of introducing a weak link into the circuit and illuminate some
subtleties that arise while taking the continuum limit of the discrete model.
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I. INTRODUCTION

In the absence of topology the relaxation time of a
stochastic sample is determined either by the diffusion or by
the drift, depending on whether the bias is small or large,
respectively. In contrast, in a topologically closed circuit, as
the bias is increased, the relaxation becomes underdamped
with relaxation rate that is determined by the diffusion and not
by the drift. In related applications the “circuit” might be a
chemical cycle, and the “bias” is the so-called affinity of the
cycle.

In the present work we consider a minimal model for
a topologically closed circuit, namely, an N -site ring with
nearest-neighbor hopping. The dynamics can be regarded as a
stochastic process in which a particle hops from site to site. The
rate equation for the site occupation probabilities p = {pn} can
be written in matrix notation as

d p
dt

= W p (1)

If the ring were opened, then the N → ∞ limit would
correspond to Sinai’s spreading problem [1–4], also known as
a random walk in a random environment, where the transition
rates are allowed to be asymmetric. Such models have diverse
applications, notably in biophysical contexts of populations
biology [5,6], pulling pinned polymers and DNA unzipping
[7,8], and in particular with regard to molecular motors [9–12].

In the absence of topology, W is similar to a real symmetric
matrix, and the relaxation spectrum is real (i.e., damped
relaxation). Alas, for a ring the affinity is a topological invariant
that cannot be gauged away, analogous to the Aharonov-Bohm
flux, and the relaxation spectrum might become complex (i.e.,
underdamped relaxation). Thus the theme that we address here
is related to the study of non-Hermitian quantum Hamiltonians
[13–15]. In a previous work [16] we illuminated the relation
between the sliding transition and the complexity threshold,
i.e., the “delocalization transition,” as the affinity is increased.

The outline is as follows: In Sec. II we discuss the relaxation
in the case of a homogeneously disordered diffusive sample,
contrasting nontrivial topology (ring) with simple geometry
(box). The effect of disorder is demonstrated in Sec. III,
where heuristic considerations are used in order to explain
the dependence of the relaxation rate on the affinity and on
the length of the ring. In Sec. IV we discuss the delocalization
transition. Namely, we find the threshold value of the affinity
beyond which the relaxation becomes underdamped. Then we

extract the relaxation rate from the characteristic equation
using an “electrostatic picture.” As explained in Sec. V the
same picture can be used to address sparse disorder. This
motivates the analysis in Secs. VI and VII of the relaxation
in a ring that has an additional weak link that forms a
bottleneck for diffusion, though not blocking it completely.
Several appendices are provided to make the presentation
self-contained.

II. DIFFUSIVE SAMPLE: RING VERSUS BOX

The rate equation, Eq. (1), involves a matrix W whose
off-diagonal elements are the transition rates wnm, and whose
diagonal elements are −γn such that each column sums to
zero. Via diagonalization one can find the eigenvalues {−λν}.
Irrespective of the model’s details there always exists an eigen-
value λ0 = 0 that corresponds to the nonequilibrium steady
state (NESS). The other eigenvalues reflect the relaxation
modes of the system: they have positive Re[λν] and might
be complex. Complexity of the low eigenvalues implies an
underdamped relaxation.

For a clean ring and with nearest-neighbor hopping, the
rates are uniform but asymmetric and are equal to −→w = wes/2

for forward hopping, and ←−w = we−s/2 for backward hopping.
The W matrix takes the form

W =

⎡
⎢⎢⎢⎢⎣

−γ ←−w 0 · · · −→w−→w −γ ←−w · · · · · ·
0 −→w −γ · · · · · ·

· · · · · · · · · · · · · · ·←−w · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ (2)

with γ = −2w cosh(s/2). Due to translational invariance, this
matrix can be written in terms of the momentum operator:

W = wes/2+i P + we−s/2−i P − 2w cosh

(
s

2

)
. (3)

From here it is easy to see that the eigenvalues are

λν = 2w

[
cosh

(
s

2

)
− cos

(
2π

N
ν + i

s

2

)]
. (4)

The complexity of the ν �= 0 eigenvalues implies that the
relaxation process is not overdamped. A straightforward
analysis of the time-dependent spreading process (see, e.g.,
[17]) shows that the drift velocity and the diffusion coefficient
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are given by the following expressions:

v0 = (−→w − ←−w )a = 2wa sinh(s/2), (5)

D0 = 1
2 (−→w + ←−w )a2 = wa2 cosh(s/2), (6)

where a is the lattice constant. Note that in Eq. (3) we used the
lattice constant as a unit of length (a = 1) else the following
replacement is required: P �→ a P .

It is convenient to consider the continuum limit of the rate
equation, Eq. (1). In this limit we define D(x) = wa2 and
v(x) = swa, and the continuity equation for the probability
density ρ(xn) = (1/a)pn becomes the Fokker-Planck diffusion
equation:

dρ

dt
= − d

dx

[
−D(x)

dρ

dx
+ v(x)ρ(x)

]
. (7)

One can easily find the spectrum of the relaxation modes
(Re[λν] > 0) for either ring or box geometry. The length
of the segment is L = Na, and the boundary conditions are
respectively either of Neumann type or periodic. The result is

λν[ring] =
(

2π

L

)2

Dν2 + i
2πv

L
ν, (8)

λν[box] =
(π

L

)2
Dν2 + v2

4D
, (9)

where ν = ±1, ± 2, . . . for the ring, while ν = 1,2,3, . . .

for the box. Clearly Eq. (8) is consistent with Eq. (4). The
relaxation rate � is determined by the lowest eigenvalue,

� ≡ Re[λ1]. (10)

For the ring it is determined solely by the diffusion coefficient:

�[ring] =
(

2π

L

)2

D, (11)

while for the box, if the bias is large, it is predominantly
determined by the drift:

�[box] =
[(π

L

)2
+
( v

2D

)2
]
D. (12)

It is important to realize that in the latter case we have a “gap”
in the spectrum, meaning that λ1 does not diminish in the
L → ∞ limit; hence the relaxation time is finite.

III. DISORDERED RING

In the presence of disorder, the forward and backward
rates across the nth bond are random numbers −→w n and ←−w n.
Accordingly the diagonal elements of W are random too,
namely, γn = ←−w n + −→w n+1. By considering the long time limit
of the time-dependent spreading process it is still possible to
define the drift velocity v and diffusion coefficient D. The
results depend in an essential way on the affinity of the cycle,

S� ≡ Ns, (13)

where s is defined via the sample average

1

N

N∑
n=1

ln

(←−w n−→w n

)
≡ −s. (14)

Additionally it is useful to define threshold values sμ, whose
significance is clarified in the next section, via the following
expression:

1

N

N∑
n=1

(←−w n−→w n

)μ

≡ e−(s−sμ)μ. (15)

Here, as in [16,17], we assume that the rates are

−→w n = we+En/2, (16)

←−w n = we−En/2, (17)

where the activation energies En are box distributed within
[s − σ,s + σ ]. Approximating the sample average by an
ensemble average the thresholds of Eq. (15) are

sμ = 1

μ
ln

(
sinh(σμ)

σμ

)
. (18)

For small μ one obtains sμ ≈ (1/6)μσ 2, while in contrast
the threshold s∞ = σ is finite because the distribution of the
activation energies is bounded.

The relaxation spectrum of a finite-N disordered sample
(ring or box of length L = Na) can be found numerically by
solving the characteristic equation

det(z + W ) = 0. (19)

The relaxation rate is defined as in Eq. (10). For a given
realization of disorder we regard S� as a free parameter.
Making S� larger means that all the En are increased by
the same constant. We define the complexity threshold Sc as
the value beyond which the spectrum becomes complex. This
means that for S� < Sc the relaxation is overdamped like in a
box, while for S� > Sc the relaxation is underdamped like in
a clean ring. It has been established [16] that

Sc = Ns1/2. (20)

In the upper panel of Fig. 1 we calculate the dependence
of � on S� for a representative disordered ring via direct
diagonalization of the W matrix. The results are displayed as
blue symbols. The complexity threshold, Eq. (20), is indicated
by the left vertical dashed line. In the lower panel of Fig. 1 we
calculate the relaxation rate � for a box configuration; i.e., one
link of the ring has been disconnected. For such a configuration
the topological aspect is absent and therefore the spectrum of
the N -site sample is real (Sc = ∞).

We test whether Eqs. (11) and (12) can be used in order
to predict �. For this purpose v and D are independently
calculated using a standard procedure that is outlined in
Appendix A of [17]. Indeed we observe in Fig. 1 a nice
agreement between this prediction (solid and dashed green
lines) and the previously calculated relaxation rate (blue
symbols).

Having realized that � of a ring is determined by D via
Eq. (11) we would like to understand theoretically the observed
nonmonotonic variation as a function of s. In the N → ∞
limit the calculation of D can be carried out analytically [2],
using Eq. (A2) of Appendix A. In this limit D = 0 in the
range s < s1/2 where the spectrum is real; then it becomes
infinite for s1/2 < s < s2, and finite for s > s2. The result of the
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FIG. 1. The relaxation rate � = Re[λ1] versus the affinity s for a
sample with N = 1000 sites, and disorder strength σ = 5. The units
of times are chosen such that w = 1. The upper panel is for a ring,
while for the lower panel one bond has been disconnected (“box”).
The blue data points have been obtained via numerical diagonalization
of the W matrix, whereas the solid and dashed green lines are based
on Eqs. (11) and (12) with numerically calculated D and v. The red
dotted line and the red thick solid line in the upper panel are based
on analytical estimates for D, namely, Eqs. (6) and (A2). The vertical
dashed lines are the thresholds s1/2 (left) and s2 (right). The former
determines Sc via Eq. (20).

calculation in the latter regime is represented by the red curve
in the upper panel of Fig. 1. As expected it provides a good
estimate only for large s where Eq. (A2) can be approximated
by Eq. (A3), leading to

� ≈
(

2π

N

)2
w

2
exp

[
1

2
s − 3

2
s1/2 + s1

]
. (21)

Note that this expression roughly coincides with the clean ring
result of Eq. (11) with Eq. (6); see the black curve in the upper
panel of Fig. 1.

In the range s1/2 < s < s2 the diffusion coefficient is large
but finite and becomes N dependent. In [17] a heuristic ap-
proach was attempted in order to figure out this N dependence.
In the present work we would like to adopt a more rigorous

approach. We deduce the N dependence of � analytically
from the characteristic equation, Eq. (19). We also provide an
optional derivation for Eq. (21).

IV. EXTRACTING � FROM THE CHARACTERISTIC
EQUATION

With the W of the rate equation, Eq. (1), it is possible to
associate a symmetric real matrix H as explained in Appendix
B. The latter has real eigenvalues −εk with k = 0,1,2,3, . . . .

Using the identity Eq. (C3) of Appendix C, and setting the
units of time such that w = 1, the characteristic equation,
Eq. (19), is

∏
k

(z − εk(s)) = (−1)N2

[
cosh

(
S�
2

)
− 1

]
. (22)

Taking the log of both sides, this equation takes the form

(z) = 
(0). The identification of the right-hand side as

(0) is based on the observation that z = λ0 = 0 has to be
an eigenvalue, corresponding to the steady state solution. It
is illuminating to regard 
(z) as the complex potential in a
two-dimensional (2D) electrostatic problem:


(z) =
∑

k

ln (z − εk) ≡ V (x,y) + iA(x,y), (23)

where z = x + iy. The constant V (x,y) curves correspond
to potential contours, while the constant A(x,y) curves
corresponds to streamlines. The derivative 
 ′(z) corresponds
to the field, which can be regarded as either an electric
or a magnetic field up to a 90◦ rotation. On the real axis
(x = ε, y = 0), the potential is

V (ε) =
∑

k

ln(|ε − εk|) ≡
∫

ln(|ε − ε′|)�(ε′)dε′. (24)

The spectral density �(ε) of the eigenvalues {εk} is further dis-
cussed in Appendix D. Using the language of the electrostatic
picture we regard it as a charge distribution. For full disorder
the density for small ε is characterized by an exponent μ,
namely, �(ε) ∝ εμ−1. The spectral exponent μ is determined
via Eq. (15). An explicit example for the implied dependence
of μ on s is provided by inverting Eq. (18). One observes
that μ becomes infinite as s approaches s∞ = σ . For s > s∞
a gap is opened. In Appendix E we provide some insight with
regard to the implied electrostatic potential V (ε). The bottom
line is summarized by Fig. 2. For full disorder, if s < s1/2 the
envelope at the origin has a positive slope; hence the equation
V (x) = V (0) has real solutions, and the relaxation spectrum
{λk} comes out real. For s > s1/2 the envelope at the origin has a
negative slope; hence there are no real solutions at the bottom
of the spectrum, and the low eigenvalues become complex.
Accordingly the threshold Sc for full disorder is determined
by Eq. (20).

We would like to estimate the relaxation rate in the
nontrivial regime S� > Sc, where the topology of the ring
is reflected. Given the spectral density �(x), the electrostatic
potential is

V (x,y) = 1

2

∫
ln[(x − x ′)2 + y2]�(x ′) dx ′. (25)
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FIG. 2. Caricature of the electrostatic picture used to determine
the transition to complexity. The panels of the top row display
the integrated density of states that comes from �(ε). The latter is
represented by a cloud along the axes of the lower panels. A weak
link (defect) contributes an isolated charge at the vicinity of the origin,
unlike full disorder (left) that fills the gap with some finite density. The
associated envelope of the electrostatic potential is displayed as green
lines. The dashed red line is V (0). For s < s1/2 the spectral density
has exponent μ < 1/2; hence V ′(0) is positive, and consequently the
equation V (x) = V (0) has real solutions. For s > s1/2 the spectral
exponent μ > 1/2 implies negative V ′(0), and consequently complex
roots appear.

Expanding to second order near the origin, we have

V (x,y) ≈ C0 − C1x + 1
2C2y

2, (26)

where the coefficients Cn are defined as

Cn =
∫ ∞

0

1

εn
�(ε) dε. (27)

Notice that C0 = V (0) and C1 = E(0) are the potential and
the electrostatic field at the origin. To determine the real part
of the complex gap it is enough to realize that the equipotential
contour V (x,y) = V (0) is approximately a parabola near the
origin:

x = 1

2

C2

C1
y2. (28)

We define as a reference the field line A(x,y) = 0 that
stretches through the origin along the x axis to −∞. The
first excited eigenvalue is determined by the intersection
of the V (x,y) = V (0) potential contour with the next field
line, namely, with A(x,y) = 2π . By definition of the stream
function A(x,y), which can be regarded as an application of the
Cauchy-Riemann theorem, it is equivalent to the requirement
of having an enclosed flux∫ √

2(C1/C2)�

0
| 
E(x,y)| dy = 2π. (29)

The integrand is approximated by | 
E(x,y)| ≈ C1; hence we
deduce

� ≈ 2π2 C2

C3
1

. (30)

If all the Cs are proportional to N it follows that � ∝ N−2 as
in the case of a clean diffusive ring. This is indeed the case

if s > s2. But if s < s2 we have to be careful about the lower
cutoff. From the quantization condition N (ε) = 1 we deduce
that ε1 ∝ N−1/μ and get

� ∝ N−η, η =
⎧⎨
⎩

1
μ
, for s1/2 < s < s1,(

3 − 2
μ

)
, for s1 < s < s2,

2, for s > s2.

(31)

Comparing with Eq. (11) we realize that consistency re-
quires one to assume that D ∝ N (2/μ)−1 for s1 < s < s2, and
D ∝ N2−(1/μ) for s1/2 < s < s1. The latter result (but not the
former) is in agreement with the heuristic approach of [17].
In the heuristic approach it has been assumed, apparently
incorrectly, that the disorder-induced correlation length scales
like N throughout the whole regime s < s2 and becomes
size independent for s > s2. Apparently the N dependence of
the disorder-induced correlation length becomes anomalous
within the intermediate range s1 < s < s2.

The result in Eq. (31) for � has an obvious implication on
the spectral density of the relaxation modes. Clearly Re[λν]
with ν = 0,1,2,3, . . . should be a function of ν/N , reflecting
that the spectral density is extensive in N . Accordingly Eq. (31)
can be rephrased as saying that Re[λν] ∝ νη. This result is in
general agreement with the heuristic argument of [12], but not
in the regime s1 < s < s2, where it had been argued that η = μ

while our result is η = 3 − (2/μ). The maximum difference
is for μ ∼ 1.5. Our prediction is supported by the numerical
example in Fig. 3. We also note that Eq. (28) implies that
Im[λν] ∝ νη/2 irrespective of μ. But a numerical inspection
(not displayed) shows that the latter approximation works well
only for the few first eigenvalues.

FIG. 3. The εν (circles) and the Re[λν] (stars) versus the index
ν = 1,2,3, . . . in natural log-log scale for an N = 1000-site disor-
dered ring. The strength of the disorder is σ = 5, and s = 3.2015
which implies μ = 1.5091. The expected density �(ε) ∝ εμ−1 at
the lower part of the spectrum is confirmed by the agreement with
εν ∝ ν1/μ (dotted line). We compare the numerical result for Re[λν]
with our prediction η = 3 − (2/μ) (slope of the red solid line) and
contrast it with the naive heuristic expectation η = μ (slope of the
blue dashed line).
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V. SPARSE DISORDER

So far we have considered “full disorder” for which one
is able in principle to determine a coarse-grained diffusion
coefficient D, that may depend on L, and from that to extract
� via Eq. (11), leading to Eq. (31). But in practice the disorder
might be “sparse,” meaning that only a few links are defective.
The extreme case is having a single “weak link,” meaning a
bond or a region where the transitions are extremely slow.
In such case Eq. (11) for � as well as Eq. (20) for Sc are not
physically meaningful. Still we can use the electrostatic picture
of the previous sections in order to analyze on equal footing
the secular equation. This is demonstrated in the subsequent
sections.

To get tangible analytical results we consider a minimal
model, namely, a diffusive ring with a single weak-link region.
The length of the diffusive region is L, and it is characterized
by a diffusion coefficient D0, while the length of the defective
region is L1, and it is characterized by a diffusion coefficient
D1. We characterize the weak-link region by a “conductance”
parameter g = (D1/L1)/(D0/L) and take the limit L1 → 0,
keeping g constant. We find that the threshold Sc does not
depend on L as in Eq. (20), but rather reflects g. The
characteristic equation implies that � ∝ 1/L2 as for a clean
ring, but with a prefactor that depends on g. This dependence
is illuminating: it leads to an interpolation between the “ring”
result in Eq. (11) and the “box” result in Eq. (12).

VI. RING WITH WEAK LINK

We would like to analyze how the relaxation spectrum is
affected once a weak link is introduced into a diffusive ring.
We use the continuum limit Eq. (7) for the purpose of deriving
the characteristic equation. In a region where v(x) and D(x)
are constant, a free-wave solution ρ(x) ∝ eik̃x−λt has to satisfy
the dispersion relation λ = Dk̃2 + ivk̃. It is convenient to use
the notation s = v/D, which would be consistent with the
discrete-lattice convention if the lattice constant were taken as
the unit length. Given λ we define k that might be either real
or pure imaginary through the following expression:

λ ≡
[
k2 +

(
s

2

)2]
D. (32)

The complex wave numbers that correspond to this value
are k̃± = ±k − i(s/2). In each location the actual stationary
solution of Eq. (7) has to be a superposition of clockwise (k+)
and anticlockwise (k−) waves,

ρ(x) = [Aeikx + Be−ikx]e(s/2)x (33)

≡ ψ+(x) + ψ−(x). (34)

We define the state vector


ψ(x) ≡
(

ρ(x)
∂ρ(x)

)
=
(

1 1
ik̃+ ik̃−

)(
ψ+(x)
ψ−(x)

)
. (35)

The transfer matrix M that matches the state vector at two
different locations is defined via the relation


ψ(x2) = M 
ψ(x1). (36)

In a ring with a weak link there are two segments with different
diffusion coefficients D0 and D1. The continuity of the density
ρ(x) and the current J = −D(x)∂ρ(x) + v(x)ρ(x) implies
that the derivative ∂ρ should have a jump such that across
the boundary(

ρ

∂ρ

)∣∣∣∣
1

=
(

1 0
0 D0/D1

)(
ρ

∂ρ

)∣∣∣∣
0

. (37)

We define the matrices

U =
(

1 1
ik̃+ ik̃−

)
, (38)

T =
(

eik̃+x 0
0 eik̃−x

)
, (39)

R =
(

1 0
0 D0/D1

)
. (40)

For free propagation over a distance L we have
M0 = UT0U

−1, with T0 that involves a wave number k

that is determined by D0. For a weak link we have
M1 = R−1UT1U

−1R, where T1 describes the free propagation
in the D1 region that has some length L1. It is convenient to
define the effective length of the weak link as � = (D0/D1)L1.
The only nontrivial way to take the limit of zero-thickness
weak link (L1 → 0) is to adjust D1 → 0 such that � is kept
constant. This leads to the following result:

M1 = R−1UT1U
−1R =

(
1 �

0 1

)
. (41)

The characteristic equation is

det[1 − M1M0] = 0, (42)

leading to

cos(q) − 1

2g

[
q2 +

(
S�
2

)2] sin(q)

q
= cosh

(
S�
2

)
, (43)

where we have defined

g ≡ L

�
= D1/L1

D0/L
(44)

along with q = kL and S� = sL.
In Fig. 4 we find the dependence of the lowest eigenvalues

on S� via numerical solution of Eq. (43) and using Eq. (32).
The units of length and time are such that D = L = 1. From
the first eigenvalue we get � as defined in Eq. (10). It is implied
by the rescaling of the variables in the characteristic equation
that � ∝ 1/L2 as for a clean ring. In Fig. 5 we illustrate the
dependence of � on S� and on g. The observed S� dependence
is monotonic, unlike that of Fig. 1. In the clean-ring limit
there is no S� dependence because we are considering the
continuum limit, setting D = 1 irrespective of s, while in Fig. 1
the diffusion coefficient was given by Eq. (6). Irrespective of
this presentation issue, as g decreases, the drift-determined
s dependence is approached, consistent with Eq. (12). Thus
we have a nice interpolation between the “ring” and “box”
expressions for �.

To determine the threshold Sc for the appearance of complex
eigenvalues we take a closer look at Eq. (43). The left-hand
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FIG. 4. The lower eigenvalues for a ring with a weak link versus
S ≡ S�. The units of length and time are such that D = L = 1 and
we set g = 0.2. For large enough S the eigenvalues become complex
and the real parts coalesce (indicated by blue circles). The threshold is
indicated by the dashed curve that has been deduced from the envelope
of the characteristic equation. The dashed vertical lines indicate Sc of
Eq. (46).

side is an oscillating function within an envelope:

A(q) =
√

1 + 1

g2

(
q2 + (S�/2)2

2q

)2

. (45)

This envelope has a minimum at q = S�/2. Accordingly if
A(S�/2) < cosh(S�/2) complex eigenvalues appear, and we

FIG. 5. The relaxation rate � for the ring of Fig. 4 versus S ≡ S�.
The horizontal solid green line is for a clean ring (g = ∞), while the
dashed green line is for a disconnected ring (g = 0). The other lines
are for g = 10, 1, 0.1, and 0.01. To the right of each knee the first
eigenvalue (λ1) becomes complex, indicated by the blue circles. This
figure should be contrasted with Fig. 1: the significant difference is the
nonmonotonic s dependence there (one should not be overwhelmed
by the different s dependence in the clean-ring limit; see text).

can deduce the threshold Sc from the equation√
1 +

(
S�
2g

)2

= cosh

(
S�
2

)
. (46)

To get an explicit expression we solve the approximated
equation S�/(2g) = cosh(S�/2) and deduce a solution in
terms of the Lambert function,

Sc = −2W(−g/2). (47)

This is valid provided S� � g, which is self-justified for small
g. We can use the same procedure in order to determine the
complexity threshold for a given eigenvalue λ in Fig. 4. Recall
that the corresponding q is q2 = L2λ/D0 − S2

�/4. Solving the
quadratic equation A(q) = cosh(S�/2) we find the q beyond
which the spectrum becomes real again. It terms of λ the
explicit expression is

λc = 2D0

L2
g2 sinh2

(
S�
2

)⎡⎢⎣1 +

√√√√1−
(

S�
2g sinh S�

2

)2
⎤
⎥⎦.

(48)

This boundary is indicated by a dashed black line in Fig. 4.

VII. RECONSTRUCTION OF THE CONTINUUM LIMIT

By reverse engineering, requiring consistency between
Eq. (43) and Eq. (22), we deduce that the electrostatic potential
that is associated with the characteristic equation for a ring with
a weak link is

V (ε) = ln

{
2(cos(q)−1) − 1

g

[
q2+

(
S�
2

)2] sin(q)

q

}
. (49)

This potential is plotted in Fig. 6 and labeled as N = ∞.
We would like to reconstruct this potential by means of
Eq. (24). For this purpose we have to find the real eigenvalues
of the associated H ; see Eq. (B6). Formally the equation
det(z + H) = 0 is obtained by setting S� = 0 in the right-hand
side (RHS) of Eq. (43), leading to

cos(q) − 1

2g

[
q2 +

(
S�
2

)2
]

sin(q)

q
= 1. (50)

From Eq. (32) it follows that εk = [q2
k + S2

�/4]D0/L
2, where

qk are the roots of the above equation. Using these “charges”
we compute V (ε) via Eq. (24) and plot the result in the upper
panel of Fig. 6. Some truncation is required, so we repeat
the attempted reconstruction with N = 10 and N = 23 roots.
We observe that the result converges to the N = ∞ limit. The
residual systematic error as ε becomes larger is due to finite
truncation of the number of roots used in the reconstruction.

The characteristic equation, Eq. (43), parallels the discrete
version, Eq. (22). One should be aware that the spectral density
contains an “impurity” charge ε0 as illustrated in the third panel
of Fig. 2. It is easy to explain the appearance of this exceptional
charge using the discrete-lattice language. In the absence of
a weak link the diagonal elements of the W matrix are −γ ,
where γ = wes/2 + we−s/2 = 2w cosh s/2. The spectrum of
the associated H matrix forms a band, such that the lower edge
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FIG. 6. Electrostatic reconstruction of the characteristic equation
of a continuous ring with weak link with D = L = 1 and g = 10−3

and S� = 20. The blue line is the electrostatic potential of a
continuous ring with a defect. The dashed red line is V (0). The
yellow and green lines are reconstructions using a finite number of
(numerically obtained) charges. By increasing the number of charges
that are included in the reconstruction, it is clear that the deviation
from the blue line is due to finite size truncation. In the lower panel
we display the contribution of the impurity-level charge (dashed
black line) and the quasicontinuum charges (the other lines) to the
reconstructed potential.

of �(ε) is

εfloor = γ − 2w = 2w[cosh(s/2) − 1]. (51)

If we introduce a weak link w0 � w at the (0,1) bond, we get
one exceptional diagonal element γ0. Consequently, for small
enough w0, there is an out-of-band impurity level that does not
mix with the band:

ε0 ≈ γ0 = w0e
s/2 + we−s/2. (52)

In the lower panel of Fig. 6 we separate the contribution of
the impurity level from the contribution of all the other band
levels.

VIII. DISCUSSION

We have outlined a physically appealing procedure to
extract the relaxation rate of a stochastic spreading process
in a closed ring, bridging between the discrete model and its
continuum limit, and treating on equal footing full and sparse
disorder. By sparse disorder we mean several weak links. For
presentation purposes we have provided a full analysis for a
ring with a single defect, but the generalization to several weak
links is merely a technical issue.

Our approach has been inspired by previous works re-
garding non-Hermitian Hamiltonians [13–15] and follows our
previous publication [16] regarding the determination of the
complexity threshold. In the present work the emphasis was
on the determination of the relaxation rate � in the “complex”
regime where the topological aspect manifests itself. Generally
speaking in this regime � may exhibit anomalous dependence
on the length of the sample.
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APPENDIX A: EXPRESSIONS FOR v AND D IN THE
PRESENCE OF DISORDER

In the presence of disorder, the forward and backward rates
are random numbers. Here we summarize known analytical
expressions for v and D based on [2], using notations as in
[16,17]. Taking the infinite chain limit, and using units such
that the lattice spacing is a = 1, the expression for the drift
velocity is

v = 1 − 〈←−w−→w 〉〈
1−→w
〉 . (A1)

We notice that a nonpercolating resistor-network disorder will
diminish the drift velocity as expected due to the denominator.
Irrespective of that the result above is valid only in the
“sliding regime” where v > 0. Looking at the numerator one
observes that the implied condition for that is s > s1. As for
the diffusion, it becomes finite for s > s2, and the explicit
expression is

D = 1 − 〈←−w−→w 〉2
1 − 〈(←−w−→w

)2〉
〈

1
−→w
〉−3

×
[〈

1
−→w
〉〈 ←−w

−→w 2

〉
+ 1

2

〈
1

−→w 2

〉(
1 −

〈←−w
−→w
〉)]

. (A2)

For large bias a practical approximation is

D ≈ 1

2

〈
1
−→w
〉−3〈 1

−→w 2

〉
. (A3)

Considering a ring with random rates we±En/2, the dependence
of all the various expectation values on the affinity s is
expressible in terms of the parameters w and sμ. For example,

v = e
1
2 (s1−s1/2)

[
2 sinh

(
s − s1

2

)]
w. (A4)
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APPENDIX B: THE ASSOCIATED H MATRIX

Our model is described by a conservative matrix W that
describes hopping between sites. In the chain configuration
the site index n runs from −∞ to ∞, while in the ring
configuration it is defined modulo N . In the latter case we
characterize the stochastic field by a potential U (n) and by an
affinity S�, such that

En = U (n) − U (n−1) + S�
N

. (B1)

Then we associate with W a similar matrix W̃ and a real
symmetric matrix H as follows:

W = diagonal{−γn(s)} + off diagonal{wne
± En

2 },
W̃ = diagonal{−γn(s)} + off diagonal{wne

± S�
2N },

H = diagonal{−γn(s)} + off diagonal{wn},
such that

W̃ = eU/2We−U/2, (B2)

where U = diag{U (n)} is a diagonal matrix. The relation
between W and W̃ can be regarded as a gauge transformation,
and S� can be regarded as an imaginary Aharonov-Bohm flux.
The Hermitian matrix H can be regarded as the Hamiltonian
of a particle in a ring in the absence of a magnetic flux. The
W of a clean ring[ Eq. (3)] and its associated H are

W = 2w

[
cos

(
P + i

s

2

)
− cosh

(
s

2

)]
, (B3)

H = 2w

[
cos(P) − cosh

(
s

2

)]
, (B4)

while in the continuum limit, Eq. (7) implies that

W = −D P2 + iv P, (B5)

H = −D

[
P2 +

(
v

2D

)2]
. (B6)

In the absence of disorder the eigenvalues are obtained by the
simple substitution P �→ (2π/L)ν, where ν is an integer.

APPENDIX C: THE CHARACTERISTIC EQUATION

Consider the tridiagonal matrix

A =

⎛
⎜⎜⎜⎝

a0 b1 0 · · · c0

c1 a1 b2 · · · 0
0 c2 a2 · · · 0

· · · · · · · · · · · · · · ·
b0 0 0 · · · 0

⎞
⎟⎟⎟⎠ (C1)

and associated set of transfer matrices,

Tn =
(

an −bncn

1 0

)
. (C2)

Our modified indexing scheme of the elements allows a simpler
presentation of the formula for the determinant that appears

in [18]:

det[A] = trace

[
N∏

n=1

Tn

]
− (−1)N

[
N∏

n=1

bn +
N∏

n=1

cn

]
.

From here follows

det(z + W ) = det(z + W̃ )

= det(z + H) − 2

[
cosh

(
S�
2

)
− 1

]
(−w)N.

(C3)

Hence the characteristic equation is Eq. (22).

APPENDIX D: THE SPECTRAL DENSITY �(ε)

Consider a ring where the transition rates between neigh-
boring sites are random variables we±En/2. The equation
that describes the relaxation in such a ring in the contin-
uum limit is Eq. (7) with “white disorder.” Namely, v(x)
has Gaussian statistics with 〈v(x)v(x ′)〉 = νσ δ(x−x ′) where
νσ = w2a3Var(E). Assuming D(x) = D0, and adding to the
disorder an average value v0, one observes that the diffusion
equation is characterized by a single dimensionless parameter.
It is customary to define, consistent with Eq. (18),

μ ≡ 2D0

νσ

v0 = 2s

Var(E)
. (D1)

This parameter equals v0 if we use the common rescaling of
units such that 2D0 = νσ = 1. Then the units of time and of
length are

[T ] = 8D3
0

ν2
σ

=
[

8

Var(E)2

]
w−1, (D2)

[L] = 4D2
0

νσ

=
[

4

Var(E)

]
a. (D3)

In the absence of disorder, by inspection of Eq. (B6), the
spectral density �(ε) is like that of a “free particle” but shifted
upwards such that the band floor is ε0 = (1/4)v2/D. In the
presence of Gaussian disorder the gap [0,ε0] is filled. In scaled
units the integrated density of states is [3]

N (ε) = 1

π2

L

J 2
μ(

√
2ε) + Y 2

μ(
√

2ε)
, (D4)

where Jμ and Yμ are Bessel functions of the first and
second kind. For any μ the large-ε asymptotics gives
N (ε) ≈ (1/π )

√
2ε in agreement with the free-particle result.

In the other extreme, for small ε we get N (ε) ∝ εμ. It is also
not difficult to verify that the clean-ring spectrum (with its
gap) is recovered in the σ �→ 0 limit.

We have verified that for box-distributed En the approxi-
mation �(ε) ∝ εμ−1 holds at the vicinity of the band floor. In
contrast with a Gaussian distribution μ becomes infinite as s

approaches s∞ = σ ; see Eq. (18). For s > s∞ a gap is opened.

APPENDIX E: STEP-BY-STEP ELECTROSTATICS

The eigenvalues εn of H can be regarded as the locations
of charges in a 2D electrostatic problem. We would like to

062143-8



RELAXATION RATE OF A STOCHASTIC SPREADING . . . PHYSICAL REVIEW E 93, 062143 (2016)

gain some intuition for the associated potential along the real
axis. For a point charge at ε1 we have V (ε) = ln |ε − ε1|. For
a uniform charge distribution within ε ∈ [a,b] we get

V (ε) = 1

b − a

∫ b

a

ln |ε − ε′| dε′

= 1

b−a
[(ε−a) ln |ε−a| − (ε−b) ln |ε−b| + (a−b)],

(E1)

which has a minimum at ε = (a + b)/2 and resembles a “soft
well” potential. To have a flat floor the density has to be larger at
the edges. This is the case for a charge density that corresponds
to the spectrum of a clean ring. The locations of the charges
are

εn = 2

[
cosh

(
s

2

)
− cos

(
2π

N
n

)]
≡ ε(kn) (E2)

and the potential along the real axis is

V (ε) = N

2π

∫ 2π

0
ln |ε − ε(k)|dk. (E3)

For ε within the band, the integrand can be written as
ln |2[cos(k0) − cos(k)]|, and accordingly the potential van-
ishes, reflecting an infinite localization length.

In the continuum limit the charge density in the case of a
clean ring behaves as �(ε) ∝ εμ−1 with μ = 1/2 and leads to
a flat floor. For general μ one can show [16] that

V ′(ε) ∝ πμ cot(πμ)εμ−1 (E4)

such that the sign of V ′(ε) is positive for μ < 1/2, and negative
for μ > 1/2. See Fig. 2 for an illustration. We also illustrate

there what happens if we have a clean ring that is perturbed by
a defect that contributes a charge in the gap.

For s > s∞ we have μ = ∞, meaning that a gap is opened.
If s is sufficiently large the eigenstates of H are “trivially
localized,” so the eigenvalues are simply

εn = exp[(s + ςn)/2], (E5)

where ςn ∈ [−σ,σ ] is uniformly distributed. Accordingly the
charge density is �(ε) = N/σε within an interval ε ∈ [a,b],
where a = exp[(s − σ )/2] and b = exp[(s + σ )/2], leading to

V (ε) = N

σ

[
ln(|ε − a|) ln

(
ε

a

)
− ln(|ε − b|) ln

(
ε

b

)

+ Li2

(
1 − a

ε

)
+ Li2

(
1 − b

ε

)]
. (E6)

We would like to calculate the decay rate as described by
Eq. (30). To carry out the calculation it is easier to integrate
with respect to ς . Expanding Eq. (25) in the vicinity of the
origin we get the coefficients

C1 = N

2σ

∫ σ

−σ

e−(s+ς)/2dς

= 2N

σ
sinh

(σ

2

)
e−s/2 = Ne(s1/2−s)/2, (E7)

C2 = N

2σ

∫ σ

−σ

e−(s+ς)dς

= N

σ
sinh(σ )e−s = Nes1−s . (E8)

Substitution of C1 and C2 into Eq. (30) leads to a result that
agrees with Eq. (21).
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