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Stochastic systems characterized by a random driving in a form of the general stable noise are considered.
The particle experiences long rests due to the traps the density of which is position dependent and obeys a
power-law form attributed to the underlying self-similar structure. Both the one- and two-dimensional cases are
analyzed. The random walk description involves a position-dependent waiting time distribution. On the other
hand, the stochastic dynamics is formulated in terms of the subordination technique where the random time
generator is position dependent. The first passage time problem is addressed by evaluating a first passage time
density distribution and an escape rate. The influence of the medium nonhomogeneity on those quantities is
demonstrated; moreover, the dependence of the escape rate on the stability index and the memory parameter is
evaluated. Results indicate essential differences between the Gaussian case and the case involving Lévy flights.
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I. INTRODUCTION

The continuous time random walk theory (CTRW) is a
natural approach to the dynamics of complex systems which
are characterized by a large number of strong interacting
components, a sensitivity on the initial conditions resulting
in an apparent stochastic motion, as well as long memory
effects. CTRW resolves itself to a single jump probability
density function (PDF) ψ(l,τ ) which determines both a length
l of the jump and a time interval τ between successive jumps.
In the simplest case, CTRW is decoupled: ψ(l,τ ) = λ(l)w(τ ).
If w(τ ) possesses algebraic tails, τ−1−β (0 < β < 1), the
memory effects emerge: PDF obeys a fractional Fokker-Planck
equation and the transport is subdiffusive [1]. In the Lévy
walk model [2], in turn, the jump length is related to the
velocity, which is finite and makes the jumping time finite,
then ψ(l,τ ) = λ(l|τ )w(τ ). In the present paper, we consider
another version of CTRW assuming that the waiting time
PDF depends on the current process value x, w = w(τ |x),
while jumps are instantaneous [3]. This ansatz traces back
to a picture of a motion in a medium with nonhomogeneously
distributed traps which may invoke periods of long rests; such a
picture is common for complex [4] and disordered systems [5].
Moreover, in some dynamical systems (in particular, of a
generalized Lorentz gas type) the trajectories can stick to
stability islands, nonhomogeneously distributed in the phase
space, and abide there for a long time (dynamical traps) [6].
The presence of a position-dependent distribution of sojourns
is obvious for problems related to a population movement [7],
since some areas provide more opportunities than the others,
whether in respect to an employment offer or as a touristic
attraction. Despite a ubiquity of problems involving the
position-dependent memory, the CTRW taking into account
that effect has been rarely investigated. The conditional form
of w(τ |x) leads to a variable, position-dependent diffusion
coefficient in a corresponding Fokker-Planck equation [8] and
is a source of the anomalous transport: both a subdiffusion and
an enhanced diffusion. The anomalous transport emerges even
if w(τ |x) is Poissonian, i.e., in the absence of any memory
effects.

The analysis of many physical, in particular, complex
systems may require taking into account long jumps by

generalizing the Gaussian form of λ(l) to arbitrary Lévy stable
distributions (Lévy flights). The α-stable form of λ(l) may
reflect a self-similar medium structure in complex systems
where clusters of short jumps coexist with long jumps at all
scales. The Lévy flights occur in many areas of science [9,10]
and, in particular, are observed in heterogeneous materi-
als [11]. The space heterogeneity may require, in turn, the
introduction of the variable diffusion coefficient. This happens,
for example, in the folded polymers [12] and in a random walk
description of transport in a composite medium with many
layers characterized by a position-dependent trapping time
statistics [13].

The decoupled CTRW can alternatively be formulated in the
framework of a subordination technique [14] and generalized
to the case of a medium with heterogeneously distributed traps
where the heterogeneity is taken into account as a variable trap
density [15,16]. Then the problem resolves itself to a fractional
Fokker-Planck equation with a position-dependent diffusion
coefficient.

When a system is restricted in space, the particle, after
reaching a boundary, may either escape or return to the bulk;
then appropriate boundary conditions apply: the absorbing
and/or reflecting ones. The escape problem is well known
in the Gaussian case [17]; it was also discussed for the Lévy
flights when trajectories are discontinuous and the boundary
conditions nonlocal, which results in a nontrivial leapover
statistics [18]. The escape problem for the Lévy flights was
studied both for a free particle [19] and in the presence of
an external deterministic force [20,21]. It was demonstrated
in the field of the disordered systems that the first passage
time statistics may be different for the annealed and quenched
disorder [22]. The first passage time distribution has divergent
moments, in particular, a mean, for waiting time distributions
with the algebraic tails [23].

The time characteristics of the escape process must be
influenced by the medium structure since the particle abides
longer in the region where the trap density is large. Indeed, the
variance for the confined Lévy flights rises slowly with time
if this density rises fast with the distance [16]. In the present
paper, we study the influence of the medium heterogeneity on
the escape process on the assumption that the jump length is
governed by the symmetric stable Lévy distribution and the
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sojourn time by the one-sided stable distribution, i.e., they
have the algebraic tails. The paper is organized as follows.
In Sec. II we define CTRW process and the corresponding
Langevin dynamics. Section III is devoted to the first passage
time problem. In Sec. III A we demonstrate how the escape rate
depends on the trap density, as well as on the parameters α and
β. The first passage time PDF is evaluated in the framework
of the subordination technique in Sec. III B.

II. RANDOM WALK WITH A POSITION-DEPENDENT
WAITING TIME AND THE LANGEVIN EQUATION

We define the random walk process by two density
distributions: the jump length and the waiting time distribution.
They describe movement of a particle performing jumps and
resting between successive jumps while the jumps themselves
are instantaneous [24]. The first distribution determines a
probability Q(l)dd l (d is a dimension of the system) that the
displacement assumes a value in the interval (l,l + dl). We
assume that Q(l) is a general symmetric stable distribution and
the components of l are independent. Then the characteristic
function reads

Q̃(k) = exp

(
−

d∑
i=1

|ki |α
)

, (1)

where 0 < α � 2. In the case of the Lévy flights, the diver-
gence of the mean squared displacement poses a difficulty if we
are dealing with dynamics of massive particles. However, one
may take into account that the finiteness of the system imposes
a natural cutoff and makes the variance actually finite. This can
be formalized either by introducing truncated distributions [25]
or a multiplicative noise at the boundary [16]. On the other
hand, the infinite variance does not violate physical principles
for such physical problems as diffusion in the energy space
in spectroscopy or diffusion on a polymer chain in chemical
space [1].

The waiting time distribution w(ξ ), in turn, depends on the
current position, and this dependence reflects a nonhomoge-
neous trap distribution. Two cases are distinguished. If w(ξ )
has a Poissonian form, the process is Markovian without any
memory effects [3], while the presence of those effects implies
algebraic and long tails of w(ξ ). They emerge, for example, in
disordered systems as a result of the exponential distribution of
site energies [22]. We assume w(ξ ) as a one-sided completely
asymmetric Lévy distribution Lβ(ξ ) with a skew parameter β,
0 < β < 1; it has the asymptotics ∝ ξ−1−β and for small ξ

obeys a form [26],

w(ξ ) ∝ ξ−c1 e−c2ξ
−c3

, (2)

where c1 = (2 − β)/2(1 − β), c2 = (1 − β)ββ/(1−β), and c3 =
β/(1 − β). The stable form of the distribution w(ξ ) is consis-
tent with a subordination formalism which we will introduce at
the end of this section. The position dependence enters w(τ |r)
via a trap density g(r). It is natural to expect that a large trap
density results in a long waiting time: the larger g(r) the longer
the time the particle abides in the vicinity of r. Therefore we
put

w(τ |r) = Lβ[τ/g(r)], (3)

and the equations defining the CTRW process read

rn+1 = rn + ξQ,
(4)

tn+1 = tn + g(rn)ξw,

where the components of ξQ and ξw stand for mutually
independent and uncorrelated random numbers distributed
according to Q(ξ ) and w(ξ ), respectively. If w(ξ ) has a
Poissonian form, Eq. (4) is equivalent to a master equation the
solution of which, p0(x,t), satisfies, in a limit of small wave
numbers, a fractional Fokker-Planck equation with a variable
diffusion coefficient [8,16]. The density for β < 1, p(x,t),
follows from a simple scaling of the time variable which
produces a Laplace transform p̃(x,s) = sβ−1p̃0(x,sβ) [1]; then
the time derivative in the Fokker-Planck equation becomes
fractional [cf. Eq. (15)]. We assume a power-law form of the
trap density g(r) which in the one-dimensional case reads

g(x) = |x|θ , (5)

where θ is a parameter characterizing a degree of the medium
nonhomogeneity and may assume, in principle, both positive
and negative values. g(x) in the form (5) may be interpreted
as a result of a fractal trap structure. Then the fractal density is
proportional to |x|df −1, where df stands for a fractal (capacity)
dimension [27,28]. More precisely, one evaluates, for a fixed,
high resolution, the number of traps up to the distance
x (|x| < 1) and normalizes the result to the number of traps
in the unit interval. The comparison of the above expression
for the fractal density with Eq. (5) relates the parameter θ to
the fractal dimension, θ = df − 1, and imposes a restriction
on θ : −1 � θ � 0. Therefore, the interpretation of Eq. (5) as
the fractal density implies that θ must always be nonpositive.
In the following, we will also consider two versions of a
two-dimensional case, r = (x,y). First, we assume an isotropic
trap distribution for which

g(r) = rθ , (6)

where r = |r|, and the fractal density equals rdf −2; accord-
ingly, θ = df − 2 and −2 � θ � 0. As a second case, we
consider a nonisotropic trap distribution, namely, a structure
where the nonhomogeneity is restricted to the one direction,
i.e., g(r) obeys Eq. (5) in the x direction while g(y) = 1.
We will call this case “nonisotropic.” Dimension of the
corresponding fractal is just a sum of dimensions in both
directions: df = dx

f + d
y

f = θ + 2 (−1 � θ � 0). Therefore,
df depends on θ in the same way for the isotropic and
nonisotropic cases but the range of θ is different [29].

The influence of the variable trap density on the PDF
time evolution is illustrated in Fig. 1. The one-dimensional
trajectories were evaluated by sampling the jump length l

and the waiting time τ from the stable distributions Q(l)
and Lβ(τ/|x|θ ), respectively, according to a well-known
procedure [30]. The particle was initially positioned at x = x0

and this point was regarded as a trap, namely, the first jump
took place after a period of resting. Consequently, p(x,t)
exhibits a peak at the origin which is larger for θ < 0 and
then the evolution proceeds much slower. The tails of all the
distributions obey the form |x|−1−α .

Alternatively, the dynamics may be formulated in terms
of the subordination technique which is equivalent to CTRW
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FIG. 1. Time evolution of the CTRW density calculated for α =
1.5, β = 0.9, x0 = 0.1, and two values of θ . The curves (from bottom
to top) correspond to the following times: 5, 6, 10, 50, and 100 (a);
450, 500, 550, 600, and 800 (b).

in the diffusion limit. The second equation (4) governs the
random waiting time, while the first equation is responsible for
displacements as a function of a step number n. In the continu-
ous limit, the latter equation turns into a Langevin equation and
n becomes an operational time. The random, physical time t is
defined by a continuous counterpart of the second equation (4)
that becomes an adjoined Langevin equation. In the case of the
variable trap density, the random time generator depends on the
current position, which explicitly enters the second equation.
Then the set of the Langevin equations reads [15,16]

dr(τ ) = η(dτ ),

dt(τ ) = g(r)ξ (dτ ). (7)

In the above equations, the increments of the noise ξ represent
the one-sided completely asymmetric Lévy distribution Lβ(ξ )
and η refers to a symmetric Lévy stable distribution with a
stability index α, which is the same for all directions. The
second Eq. (7) takes into account the medium structure: longer
trapping times are more probable if the trap density g(r) is
larger. In particular, for g(r) in the form (6) and negative θ ,
the trapping time becomes infinite in the origin. Equation (7)
is equivalent to the following system of equations [15,31]:

dr(τ ) = g(r)−β/αη(dτ ),

dt(τ ) = ξ (dτ ). (8)

Due to the transformation from (7) to (8), we can describe
the dynamics as the ordinary subordination to the random
time of a multiplicative process in the Itô interpretation. Then
the subordinator, given by the second equation (8), becomes

independent of a specific path and represents a renewal process
that connects the times τ and t :

τ (t) = inf{τ : t(τ ) � t}. (9)

As a consequence, PDF of the process r(t) can be evaluated
from PDF of r(τ ) by integration over τ . The asymptotics of
PDF that follow from Eq. (8) is either a stretched Gaussian
(α = 2) [16],

p(x,t) ∼ |x|θ t− β(1+θβ)
(2+θβ)(2−β) exp[−A|x|(2+θβ)/(2−β)/t

β

2−β ], (10)

where A = (2/β − 1)/[β3/(2−β)(2 + θβ)2/(2−β)], or a power
law (α < 2),

p(x,t) ∝ tβ/(α+θβ)|x|−1−α. (11)

Equation (8) corresponds to a fractional Fokker-Planck equa-
tion where the fractional derivatives are taken over both time
and position [32]. The first passage time problem resolves
itself to a solution of that equation with appropriate boundary
conditions.

III. FIRST PASSAGE TIME STATISTICS

We put a particle at r = r0 and ask about a time needed to
leave a given area. This escape problem is described by a first
passage time density distribution, defined as a probability that
the time the particle needs to reach the edge of the area for the
first time lies within the interval (t,t + dt) [33]. The problem
is determined by a density distribution p(r,t), which satisfies
the initial condition and the absorbing boundary conditions
at the edge. The survival probability, namely, the probability
that the particle never reached those barriers up to time t (it
still remains inside the bulk), is given by S(t) = ∫

p(r,t)ddr,
where the integration is performed over the area inside the
barriers. The first passage time density distribution reflects the
change of the survival probability with time,

pFP (t) = −dS(t)/dt, (12)

and the mean first passage time,
∫ ∞

0 tpFP (t)dt , serves as an
estimator of a speed of the escape process. However, if the
asymptotics of the waiting time distribution has power-law
tails, w(t) ∝ t−1−β with 0 < β < 1, the mean first passage
time diverges. Instead, one can simply characterize the first
passage time statistics by a median location or an interquan-
tile width [21]. Alternatively, one may introduce fractional
moments of pFP (t),

Mδ =
∫ ∞

0
t δpFP (t)dt, (13)

which are finite for −1 � δ < β: the right inequality results
from the asymptotics of pFP (t) and the left equality follows
from pFP (0) = 0 (the particle rests at the initial point). The
moment M−1 is distinguished, it allows us to substitute the
divergent mean first passage time 〈t〉 by the escape rate, which
we define as an average over the inverse first passage time.
Then the quantity

ν = M−1 (14)

can serve as a measure estimating how fast the particles leave
the bulk: large values of ν mean the fast escape. For a given
distance between the initial point and the boundary (Lb), Lbν
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is just a mean (effective) particle velocity in the bulk. ν has
been recently applied as a measure for the search efficiency in
a study of random search processes involving long jumps [34].
For the Lévy flights, the arrival at the barrier often means
a substantial overleap, but since jumps are instantaneous,
the position of the particle after a jump does not influence
the escape time and the mean velocity. In the following, we
estimate the speed of the escape process by evaluating the rate
ν. The fractional moments corresponding to positive δ have a
similar meaning as the mean first passage time; they will be
evaluated in Sec. III B.

A. Escape rate derived from CTRW

The time evolution of the stochastic trajectories is given by
Eq. (4); the successive displacements ri and waiting times τi

are sampled from the respective distributions. Since jumps are
instantaneous, the escape time t is determined by a sum of
the waiting times, t = ∑N

i=1 τi , where N satisfies a condition
| ∑N+1

i=1 ri | � L. In the nonhomogeneous case, the density of
traps diminishes with the distance and one can expect that
the escape time is larger when one starts closer to the origin;
consequently, the choice of the initial condition influences the
results. In the following, if not stated otherwise, we assume
that the initial position of the particle is uniformly distributed
inside either an interval [one-dimensional (1D) case] or a circle
[two-dimensional (2D) case] of a radius x0, and the evolution
begins from resting at the initial point. The absorbing barrier
we define either as two points, x = ±L, or a circle of the
radius L around the origin. Notice, however, that the boundary
conditions corresponding to the absorbing barriers must be
defined differently for the Lévy flights than those involving
only short jumps [35]. In fact, they are nonlocal: the barrier
is reached when |r| � L. The speed of escape is estimated by
the rate ν which has been evaluated as a function of the system
parameters θ , α, and β; the results are presented in Figs. 2–4.

Figure 2 presents ν as a function of θ for some values
of α and the range of θ in the plot corresponds to a fractal
with the dimension 0 < df � d, where d is either 1 or 2.
According to the upper panel, corresponding to the 1D case,
ν rises with θ with an exponential rate for all α except
α = 2, and the slope is larger for smaller α. That growth
can be explained by a strong trapping of the particle near
the origin for large negative θ . In contrast to that picture, for
α = 2, ν(θ ) diminishes when θ approaches zero, which can
be attributed to a complicated structure of the trajectory x(t).
It consists of many short jumps and may return to the origin
many times; we shall present such a trajectory in the next
section. In the 2D case we consider two trap geometries: the
isotropic distribution and the case when g(r) depends only on
x, according to its definition in Sec. II. Results for the former
geometry are presented in the middle panel of Fig. 2. The
curves exhibit a similar pattern as for the 1D case, but ν is
always smaller for a given θ , which reflects the fact that the
particle more easily leaves the neighborhood of the origin—the
region bearing the main responsibility for trapping—when
the medium dimensionality is larger. If the trap density varies
only in one direction (nonisotropic case), the slope of ν(θ )
is larger, as it is demonstrated in Fig. 2 for α = 1.5. Then
the trapping is efficient, since the particle may remain in the

FIG. 2. (a, b) ν as a function of θ for β = 0.5, L = 10, and the
following values of α: 2, 1.9, 1.8, 1.5, 1.2, 0.8, and 0.5 (from bottom
to top). Those panels correspond to 1D and 2D cases, respectively;
stars mark the nonisotropic case. (c) ν(θ ) calculated for 1D case with
the initial condition x0 = 10−1, 10−2, 10−3, and 10−4 (from top to
bottom).

region of a large g(x) (small |x|) during its movement along
trajectories parallel to the y axis. As already mentioned, the
results for the nonhomogeneous case may depend on the initial
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FIG. 3. Rate ν as a function of α for β = 0.5 and L = 10. (a, b)
1D and 2D (isotropic) cases, respectively. The curves correspond to
the following values of θ (from top to bottom): 0, −0.2, −0.5, −0.7,
and −0.9 (a) and 0, −0.5, −1, −1.5, and −1.9 (b).

conditions. This observation is illustrated in the lower part of
Fig. 2 where ν was calculated for various but fixed initial
conditions, instead of sampling inside an interval: the slope of
ν(θ ) rises when x0 becomes smaller.

The dependence of ν on α is displayed in Fig. 3 for
some values of θ . The curves rapidly fall with α, faster than
exponentially, which is the obvious consequence of the rising
slope of the PDF asymptotics. However, this conclusion has to
be qualified if θ is very negative: the fall of ν(α) is strongest
for θ = 0, while ν(α) is flat for θ < −1. The latter observation
becomes clear when we consider the Langevin equations
corresponding to CTRW, Eq. (8). Then the multiplicative factor
reduces the effective jump length when |r| is small and θ

negative.
Figure 4 shows ν as a function of β for both 1D and 2D

problems. The dependence ν(β) discloses a kind of a plateau
for β around 0.6 and strongly rises when β approaches small
values. The latter effect may be attributed to the shape of the
one-sided Lévy distribution, Eq. (2), which is depicted in the
figure and exhibits a high maximum near zero when β is small.
If we introduce a cutoff of w(ξ ) at small ξ for β < 0.4, which
could be reasonable when a system is characterized by a low
limit of the waiting time, the growth of ν(β) for small β does
not emerge. The above observations are valid for all values
of θ and both dimensionalities; ν diminishes when θ becomes
more negative, in agreement with Fig. 2. ν is largest for the
2D isotropic case and smallest for the nonisotropic case; the

FIG. 4. ν as a function of β for β = 0.5. Panel (a) corresponds
to the 1D problem. Panel (b) contains curves calculated for α = 1.5
and, for the isotropic case, the following values of θ : 0, −0.5, −0.9,
−1.5, and −1.9 (from top to bottom). Inset: Shape of the one-sided
Lévy distribution for β = 0.2, 0.3, and 0.4 (from up to down at the
left-hand side).

curve for the 1D case lies in between. For the Gaussian case,
a deep minimum of ν(β) is observed and the dependence on θ

is weak, except a region of very small β.
The above results for the 2D cases have been obtained on

the assumption that the jump lengths in both directions are
independent. If one assumes, instead, that η(dτ ) has a uniform
distribution on a circle, ν becomes systematically smaller than
that for the symmetric case but the results (not presented)
remain qualitatively the same.

B. Langevin equations and first passage time statistics

The system of equations (8) corresponds, in the 1D case, to
a fractional Fokker-Planck equation with a variable diffusion
coefficient [31,32],

∂p(x,t)

∂t
= 0D

1−β
t

∂α

∂|x|α [|x|−θβp(x,t)], (15)

where the Riemann-Liouville fractional derivative is defined
by the expression

0D
1−β
t f (t) = 1

�(β)

d

dt

∫ t

0
dt ′

f (t ′)
(t − t ′)1−β

(16)
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and the Riesz-Weyl derivative by its Fourier transform,

∂α

∂|x|α f (x) = F−1[−|k|αf̃ (k)]. (17)

Equation (15), supplemented by the initial and boundary
conditions, determines the escape problem. On the other hand,
we can express the density given by the first equation (8) as a
solution of a Fokker-Planck equation, which is local in time,

∂p0(x,τ )

∂τ
= ∂α[|x|−θβp0(x,τ )]

∂|x|α , (18)

and integrate over the operational time,

p(x,t) =
∫ ∞

0
p0(x,τ )h(t,τ )dτ. (19)

In the above integral, h(t,τ ) is an inverse subordinator
transforming the operational time to the random, physical
time. More precisely, the random time t is given by a
one-sided, maximally asymmetric stable Lévy distribution
h′(τ,t) = Lβ(τ ), where 0 < β < 1, which vanishes for τ < 0.
Then h(t,τ ) = t

βτ
Lβ( t

τ 1/β ) [14].
We express the solution of Eq. (18), which satisfies the

conditions p(x,0) = δ(x − x0) (0 < x0 < L) and p(0,t) =
p(L,t) = 0, in the form

p0(x,τ ) =
∑

n

φn(τ )ψn(x). (20)

As a first step, let us consider the case α = 2. Inserting Eq. (20)
into Eq. (18) produces the equation [36]

∂2x−θβψn(x)

∂x2
+ λ2

nψn(x) = 0, (21)

where λn =const, the solution of which can be expressed in
terms of the Bessel function,

ψn(x) ∝ xθβ+1/2J1/(θβ+2)

( √
2λn

θβ + 2
x(θβ+2)/2

)
. (22)

It follows from the boundary conditions that the parameters
λn are given by zeros γn of the Bessel function, λn = (θβ +
2)γn/

√
2L(θβ+2)/2. Moreover, Eq. (18) yields φn(τ ) ∝ e−λ2

nτ

and the normalized PDF reads [36]

p0(x,τ ) = xθβ+1/2
∑

n

CnJ1/(θβ+2)

(
γn

L(θβ+2)/2
x(θβ+2)/2

)

× exp

(
− (θβ + 2)2γ 2

n

2Lθβ+2
τ

)
, (23)

where

Cn = θβ + 2

Lθβ+2

√
x0J1/(θβ+2)

(
γn

L(θβ+2)/2 x
(θβ+2)/2
0

)
[J ′

1/(θβ+2)(γn)]2
. (24)

After performing the integral over x, the survival probability
in the operational time takes a form

S(τ ) = 2x0√
L

∑
n

J1/(θβ+2)
(

γn

L(θβ+2)/2 x
(θβ+2)/2
0

)
γnJ−(θβ+1)/(θβ+2)(γn)

× exp

(
− (θβ + 2)2γ 2

n

2Lθβ+2
τ

)
≡

∑
n

Ane−Bnτ . (25)

Next we pass to the physical time t and, using Eq. (19), can
express the survival probability as a function of this time by its
Laplace transform, t → u. Taking into account that h̃(u,τ ) =
uβ−1 exp(−τu−β) we get

S̃(u) = uβ−1
∑

n

∫ ∞

0
Ane−Bnτ−τuβ

dτ =
∑

n

An

uβ−1

uβ + Bn

(26)

and the inversion of this transform yields the expansion that
contains Mittag-Leffler modes,

S(t) =
∑

n

AnEβ(−Bnt
β). (27)

The first passage time distribution follows from Eq. (12) and,
inserting a leading term from the asymptotic expansion of the
Mittag-Leffler function, gives us this distribution for large t :

pFP (t) ∼ β

�(1 − β)

∑
n

An

Bn

t−1−β. (28)

Having the survival probability calculated, we can estimate
the escape time by means of the fractional moments using
Eq. (13). Integration by parts yields

Mδ = −
∫ ∞

0
t δ

∂

∂t

∑
n

AnEβ(−Bnt
β)dt

= δ

β

∫ ∞

0

∑
n

AnB
−δ/β
n ξ δ/β−1Eβ(−ξ )dξ, (29)

and next we integrate term by term. The integration by parts
is valid and the integrated series convergent if δ satisfies
conditions 0 < δ < β. Evaluating a Mellin transform from
the Mittag-Leffler function yields the final expression,

Mδ = πδ

β

1

�(1 − δ) sin(πδ/β)

∑
n

AnB
−δ/β
n . (30)

The sum in Eq. (30) can be exactly evaluated for θ = 0 and
we put, for simplicity, x0 = L/2; then [23]

An = 4

π

(−1)n

2n + 1
and Bn = (2n + 1)2π2/L2. (31)

The moment reads

Mδ = 4δ

β

(π

L

)1−a 2−2a

�(1 − δ) sin(πδ/β)
[ζ (a,1/4) − ζ (a,3/4)],

(32)

where a = 1 + 2δ/β and ζ (s,q) stands for a generalized ζ

function.
According to Eqs. (20) and (19), the temporal properties of

PDF can be separated from its spatial characteristics and the
Mittag-Leffler pattern emerges for all θ and α � 2, producing
the asymptotics pFP (t) ∝ t−1−β . The detailed shape of PDF
and its moments can be obtained by numerical solutions of
Eq. (7) for which we shall apply the same initial and boundary
conditions as in Sec. III A. We discretize both equations and
the first equation reads

r(τn+1) = r(τn) + ηn�τ 1/α, (33)
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FIG. 5. Two exemplary trajectories x(τ ) calculated from the
Langevin equation for β = 0.5, L = 5, and two values of α: 2 (black)
and 1.5 (the shorter trajectory, marked by the red line).

where �τ is a time step assumed in all the calculations as
�τ = 10−4. The discretization of the second equation yields

t(τn+1) = t(τn) + g[x(τn)]ξn�τ 1/β, (34)

and the random numbers ηn and ξn are sampled from the
stable distributions Lα and Lβ , respectively. Equation (33)
determines the evolution in the operational time and evolution
in the random time t follows from the relation between those
times, Eq. (9). Typical examples of trajectories illustrating the
evolution in the operational time are presented in Fig. 5; the
evolution terminates when the barrier at |x| = L is reached.
The trajectories correspond to both the Gaussian case and
the Lévy flights; they look differently: in the latter case a
monotonic growth of the distance prevails while the Gaussian
case exhibits an oscillatory structure with many returns to
the origin. Obviously, since the evolution proceeds in the
operational time, the above observations are independent of
a specific trap structure. In many dimensions, the shape of
the trajectory does not depend on g(x) and the trap structure
influences only the time characteristics. The fact that the
same sites are visited many times has important consequences
if, in the disordered systems, correlations of the random
walk with the disorder are taken into account (quenched
disorder). The renewal theory (valid for the annealed disorder)
does not apply and the subordination technique breaks down
for the one-dimensional Gaussian case [37]. Consequently,
the transport properties for both disorders are different [5].
Figure 5 suggests that those properties could be more similar
for the Lévy flights.

The trajectory simulations yield the first passage time and
determine the density distributions. They are presented in
Fig. 6 for 1D case and some values of α and θ . The density
pFP (t) appears very sensitive to θ ; since the negative values of
θ result in longer trapping time, pFP (t) is suppressed at small
t while the tails are raised up, compared to the homogeneous
case. The shapes of the presented pFP (t), corresponding to the
same θ , are similar except the case α = 0.5 when the region of
very short escape times is pronounced because of large values
of the random force.

FIG. 6. First passage time density distributions for β = 0.9, L =
2, x0 = 0.1, and some values of α. The curves in each part of the
figure correspond to the following values of θ : 0, –0.2, –0.5, and –0.9
(from top to bottom). Each curve was calculated by averaging over
105 trajectories.

FIG. 7. ν as a function of θ for β = 0.9, L = 2, and the following
values of α: 2, 1.8, and 1.5 (bunches of curves from bottom to top:
solid black, dashed blue, and dotted red, respectively). The 1D case
is marked by points while the 2D case by squares (isotropic case) and
stars (nonisotropic case).
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The averaging over the numerically evaluated pFP (t) pro-
duces the fractional moments and the rate ν. The dependence of
ν on the system parameters appears similar to that presented in
Sec. III A for the random walk simulations and we summarize
the most important results of that analysis in Fig. 7, which
corresponds to Fig. 2. ν rises with θ for all the cases except
α = 2 and the growth is weakest for the isotropic 2D case.
Moreover, the results for 2D nonisotropic and the 1D cases are
similar unless α = 2.

The presence of the Mittag-Leffler function in problems
related to escape phenomena is also known for deterministic
systems. It emerges in a description of the first passage time
for intermittent weakly chaotic systems with invariant density
similar to Eq. (6) [38].

IV. SUMMARY AND CONCLUSIONS

We have considered transport properties in a stochastic
system characterized by long resting times that are random
but biased by the medium structure: the medium contains
traps, responsible for the rests and memory effects. Traps
are nonhomogeneously distributed, which has been taken
into account by introducing, in the CTRW description, a
position-dependent trap density. The assumed power-law form
of this density has been interpreted as a result of the underlying
self-similar structure. The jump lengths are governed by the
general symmetric stable distribution. On the other hand, a
stochastic dynamics, as a continuous counterpart of CTRW,
has been formulated in terms of the subordination technique
where the random time generator is position dependent and

the resulting system of the Langevin equations resolves
itself to a subordination of a multiplicative process to the
random time. This approach allows us to take into account
the nonhomogeneity effects in a simple way: by a fractional
Fokker-Planck equation.

The heterogeneity of the medium structure influences time
characteristics of the escape from a given area, in particular
the first passage time PDF and its moments. To quantify the
escape speed we have evaluated the escape rate ν, namely,
the moment of the order –1, which is proportional to the
effective particle velocity in the bulk, as a function of the
stability index α, memory parameter β, and the trap structure
parameter θ . ν decreases with α, β, and rising nonhomogeneity
(more negative θ ), but only for α < 2. The Gaussian case
is special since the dependencies ν(θ ) and ν(β) are not
monotonous, which can be attributed to multiple returns to
the origin. Analysis of the 2D case shows that the escape
speed is sensitive to the isotropy of the trap structure: ν

differs for the nonisotropic case from that for the isotropic
one, although the underlying fractal structure has the same
capacity dimension for a given θ . Another consequence of
the variable trap density is the sensitivity of the dynamics to
the initial position, which reflects the fact that the trapping
is strongest near the origin. The variable and diminishing
density g(x) substantially lowers the central part of the first
passage time PDF, making the escape time larger. On the
other hand, the strong memory (small β) may invoke a rapid
escape, which is a consequence of the enhancement of the
waiting time PDF near the origin and occurs for any α

and θ .
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