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It is always some constraint that yields any nontrivial structure from statistical averages. As epitomized by the
Boltzmann distribution, the energy conservation is often the principal constraint acting on mechanical systems.
Here we investigate a different type: the topological constraint imposed on “space.” Such a constraint emerges
from the null space of the Poisson operator linking an energy gradient to phase space velocity and appears
as an adiabatic invariant altering the preserved phase space volume at the core of statistical mechanics. The
correct measure of entropy, built on the distorted invariant measure, behaves consistently with the second law of
thermodynamics. The opposite behavior (decreasing entropy and negative entropy production) arises in arbitrary
coordinates. An ensemble of rotating rigid bodies is worked out. The theory is then applied to up-hill diffusion
in a magnetosphere.
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I. INTRODUCTION

There are plenty of examples that seemingly violate the
principle of entropy maximization. So-called up-hill diffusion,
creating density gradients, is often observed in multiphase
fluids and solids undergoing spinodal decomposition [1,2],
in metallic alloys [3], nanoporous materials [4], and magmas
[5]. By separating the different components of the mixture,
Helmholtz free energy achieves a local minimum, charac-
terized by nonuniform concentrations, that is stable against
fluctuations [2]. With a completely different mechanism,
astronomical plasmas accumulate within the magnetic fields
of stars and planets through the process of inward diffusion
[6–9] and generate an heterogeneous density profile. That
the determining factor is not the energy constraint is made
apparent by the experimental observation of non-neutral
plasma particles climbing up the potential hill [8], as well as by
numerical calculations concerning their thermal equilibrium
[10]. Here the topological constraints [11–16] affecting the
phase space are the underlying principle. Once the constraints
are broken, the quasistationary state is destroyed and the
systems progressively approach thermal death. Accretion of
galaxies under the action of gravitation [17,18], ferromag-
netism mediated by the magnetic field [19,20], spontaneous
creation of planetary magnetospheres through electromagnetic
interaction [6–8], vortical structures in magnetofluids preserv-
ing helicities [21], living organisms harvesting “negentropy”
[22], and self-organization of data flows in information theory
[23] are some of the most paradigmatic examples of such
ordered structures that originate from the topological invariants
affecting the relevant “phase space.”

In the present paper, we study the nonequilibrium statistical
mechanics of Hamiltonian systems subjected to the afore-
mentioned topological constraints. To formulate statistical
mechanics, the phase space must be “homogeneous” so that
the equilibrium state becomes a uniform distribution, as
the entropy principle predicts [24]. However, a topological
constraint introduces inhomogeneity to the phase space by
limiting the accessible region. Then we have to formulate an
alternative “proper phase space” in which the homogeneity
recovers. The statistical processes in the proper phase space

may appear very differently when projected into the original
constrained phase space [12]. In the context of the present
study, the degeneracy of the Poisson bracket represents such a
topological constraint (the adiabatic invariants are the physical
origin of the constraint) [11,21]. Then the proper phase space is
the Casimir leaf [13–15], which is a symplectic submanifold.
When the Casimir leaf is inhomogeneously embedded in the
original phase space, the distorted metric on the leaf (viewed
from the original phase space of the degenerate Poisson
bracket) gives rise to nontrivial structures. In particular, we
show that the entropy defined on the invariant measure of the
proper phase space behaves consistently with the second law of
thermodynamics. Due to the noncovariant nature of differential
entropy [25,26], the time evolution of the uncertainty measured
in arbitrary coordinates may “flip” and appear as an entropy
decrease in the Cartesian perspective. It is the Jacobian of the
coordinate change that yields the ordered structure, while the
probability distribution is flattened in the proper variables.

The theory, which finds its roots in the phenomenological
observation that particle density in planetary magnetopsheres
tends to be homogenized in the magnetic coordinates [27,28],
shows that the proper phase space upon which statistical
mechanics can be formulated differs from the a priori variables
used to represent a general physical system. These findings
may pave the way for a new and rigorous understanding of the
statistical mechanics governing constrained systems.

II. TOPOLOGICALLY CONSTRAINED
HAMILTONIAN MECHANICS

We start with a short review of the Hamiltonian formalism.
Hamiltonian mechanics is the result of interaction between
matter (energy or Hamiltonian function H ) and space (Poisson
operator J ) according to the equation

v = J∇H, (1)

where v = ẋ is the flow velocity in n-dimensional phase
space. Equation (1) admits two typologies of constants of
motion: those that can be ascribed to the specific form of
the Hamiltonian function, i.e., to the properties of matter,
and the so-called Casimir invariants that originate from the
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eigenvectors with 0-eigenvalue (the null space or kernel) of
the Poisson operator, i.e., from the properties of space. This
second kind of invariants, which limits the accessible regions
of phase space as a result of the constraining environment,
is at the core of the theory developed in the present work.
Specifically, due to antisymmetry J T = −J , whenever the
operator J has a kernel ξ such that J ξ = 0, the system is
subjected to topological constraints:

ξ · v = 0. (2)

Equation (2) can be thought of as the formal definition of
topological constraint. We remark that the above result holds
for any Hamiltonian and even if J does not satisfy the
Jacobi identity (see Ref. [29]). However, because of Darboux’s
theorem [13–15], the Jacobi identity ensures that the kernel is
integrable, i.e., that a Casmir invariant exists:

ξ = λ∇C, (3)

where, for now, we assume that the rank of J is n − 1 (see
Ref. [30]), and the two functions λ and C are the integration
factor and Casimir invariant (Ċ = λ−1ξ · v = 0), respectively.

III. NONCOVARIANT NATURE OF
DIFFERENTIAL ENTROPY

It is now useful to make some considerations on the nonco-
variant nature of differential entropy. Extension of Shannon’s
discrete entropy to continuous probability distributions is a
delicate process [25,26]. Indeed, the quantity

S̃ = −
∫

V

p(x) log p(x) dV (4)

is not, in general, the entropy of the continuous probability
distribution p(x) on the volume element dV = dx1 ∧ · · · ∧
dxn. The reason is that S̃ is not covariant, i.e., its value changes
depending on the chosen coordinate system, and (4) tacitly
assumes that dV is an invariant measure. Unfortunately, this
is not always the case, and (4) has to be amended with Jaynes’
functional:

SJ = −
∫

V

p(x) log

[
p(x)

I(x)

]
dV , (5)

where the Jacobian I(x) compensates the coordinate depen-
dence of the logarithm. In the Hamiltonian picture, one can
always find a time-independent function I(x) nullifying the
Lie derivative of IdV with respect to the dynamical flow v,
i.e., such that LvI(x)dV = 0. The obtained I with (5) will
then give the desired covariant form of entropy. It is useful to
recast (5) as

� = −
∫

VI

P ( y) log P ( y) dVI . (6)

Here P is the probability distribution of y and dVI is the
invariant measure of the system dVI = dy1 ∧ · · · ∧ dyn =
IdV satisfying LudVI = 0, with u = ẏ.

IV. ENSEMBLE OF ROTATING RIGID BODIES

We are now ready to test the theory with a simple 3D
example. In three dimensions Eq. (1) can always be cast

in the form v = w × ∇H , where w is a properly chosen
vector (see Ref. [31]). The Euler’s rotation equation for
the motion of a rigid body with angular momentum x and
moments of inertia Ix , Iy , and Iz can be obtained by setting
H = (x2/Ix + y2/Iy + z2/Iz)/2 and w = x. The kernel ξ

associated to this operator, i.e., the topological constraint (2)
affecting the phase space of a rigid body, is soon identified
to be ξ = x. Indeed, ξ · v = x · x × ∇H = 0. At the same
time, one can verify that the Jacobi identity (see Ref. [32])
is satisfied x · ∇ × x = 0, making the system Hamiltonian.
The Jacobi identity also guarantees that the kernel is integrable
[remember (3)] to give the integration factor λ = 1 and the
Casimir invariant C = x2/2, so that w = ∇C. Furthermore,
the invariant measure turns out to be dVI = dx ∧ dy ∧ dz, as
follows from ∇ · v = 0. Since this is the original statistical
measure, one can directly apply (4) to define the entropy of
an ensemble of such rigid bodies. However, suppose that we
consider a slightly more complicated rotation pattern, such as

v = λ(x)∇ x2

2
× ∇H, (7)

where, for example, λ = ez2/2. Since ż ∝ λ, high values of z

will be less probable, and (7) may represent the anisotropic
rotation of a rigid body that tends to spin around the axis
with angular momenta x,y. Equation (7) still satisfies the
Jacobi identity and thus represents an Hamiltonian system with
the same Casimir element C. However, the invariant measure
becomes

dVI = e−z2/2 dx ∧ dy ∧ dz = dC ∧ dχ ∧ dz, (8)

where we introduced new coordinates (C,χ,z), with χ =
e−z2/2 arctan (y/x). Separating the constant of motion C, the
new 2D canonical equations are

u =
[
χ̇

ż

]
=

[−Hz

Hχ

]
. (9)

One can verify that (9) is divergence free.
In order to study the statistical mechanics of the new system,

we now consider an ensemble of objects obeying (9) and let
them interact by adding to the Hamiltonian an interaction
potential φ. Its ensemble average must go zero 〈φ〉 = 0, since
the total energy of the system has to be preserved. In addition,
and this is the key point of the paper, there are grounds for
the ergodic hypothesis in the novel coordinates (C,χ,z) [and
not in the original variables (x,y,z)] because of the invariant
measure (8). In other words, it is licit to exchange ensemble
averages with time averages only on (8):

0 = 〈dφ〉 = 〈φχ 〉dχ + 〈φz〉dz

= φ̄χdχ + φ̄zdz = �̄χ (t)dχ + �̄z(t)dz, (10)

with �χ and �z Gaussian white noises and where the bar
indicates long-time averaging. In (10) first we substituted
ensemble averages with time averages, and then represented
the various components with random processes of zero
time average. We remark that this would not have been
possible in the original coordinates (x,y,z), as they are not
measure preserving. Neglecting the constant C, the equations
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FIG. 1. (a) � (increasing line) and S̃ (decreasing line) as a function of time t . (b) σ as a function of time t . Arbitrary units are used. Initial
condition is a flat distribution f on dV .

accounting for the interaction become[
χ̇

ż

]
=

[−Hz − �z

Hχ + �χ

]
. (11)

Note that, while the Hamiltonian is no more a constant, C

is still a Casimir invariant: the rigid bodies will explore the
surface of phase space defined by C.

The next step is to build the Fokker-Planck equation
associated to (11). We refer the reader to Refs. [9,34] for a
detailed description of the procedure. The result is

∂P

∂t
= Hz

∂P

∂χ
− Hχ

∂P

∂z
+ 1

2
Dχ

∂2P

∂χ2
+ 1

2
Dz

∂2P

∂z2
. (12)

Here P is the probability distribution on (χ,z), and Dχ , Dz

are the diffusion coefficients associated with the white noises.
Finally, we seek for an explicit expression of the entropy
production rate σ of the system. Define the Fokker-Planck
velocity Z to be the vector field such that (12) is written as
∂tP = −∇ · (ZP ). Then, recalling (6):

d�

dt
=

∫
VI

{P∇ · Z + ∇ · [P log(P )Z]} dVI . (13)

The first term represents the ensemble average of the Fokker-
Planck velocity divergence, while the second factor can be

cast as a surface integral representing entropy flow out L. It is
straightforward to deduce that

σ = 〈∇ · Z〉, (14a)

L = −
∫

VI

∇ · [P log(P )Z] dVI . (14b)

Substituting the expression of Z in (14a), we obtain

σ = −1

2
Dχ

〈
∂2 log P

∂χ2

〉
− 1

2
Dz

〈
∂2 log P

∂z2

〉
. (15)

In Fig. 1 we report the results of the numerical simulation
of (12). The entropy �, defined on the invariant measure (8)
of the system behaves consistently with the second law of
thermodynamics and the associated entropy production σ is
positive. On the other hand, the wrong measure of entropy
S̃ = − ∫

f log f dV = � + 〈λ〉, defined by the distribution
function f on the original phase space dV = dx ∧ dy ∧ dz,
decreases. Furthermore, diffusion flattens the distribution P ,
and since preservation of particle number requires P dVI =
f dV , f = P/λ creates an ordered structure by approaching
f ∝ λ−1.

FIG. 2. (a) � (increasing line) and S̃ (decreasing line) as a function of time t . (b) σ as a function of time t . Arbitrary units are used. Initial
condition is a Maxwell-Boltzmann distribution.

062140-3



N. SATO AND Z. YOSHIDA PHYSICAL REVIEW E 93, 062140 (2016)

FIG. 3. Self-organized plasma after entropy maximization.
(a) Spatial profile of particle density (a.u.). (b) Temperature
anisotropy T⊥/T‖. (c) Parallel temperature T‖(eV ). (d) Perpendicular
temperature T⊥(eV ). White (vertical) lines, green (circular) lines, and
purple (spreading from the left to the right) lines represent contours
of B, ψ , and l.

V. SELF-ORGANIZED CONFINEMENT
IN MAGNETOSPHERE

Let us show how the theory can be applied to the study
of a real self-organizing system: a magnetosphere. In astro-
nomical plasmas, charged particles are trapped by planetary
magnetospheres as they spiral around the magnetic field B =
∇ψ × ∇θ , where ψ = ψ(r,z) is the flux function and θ the
toroidal angle of a cylindrical coordinate system (r,z,θ ). This
dynamics (cyclotron motion) is characterized by preservation
of the magnetic moment μ = mv2

⊥/2B = const, where m is
the particle mass, v⊥ the particle velocity perpendicular to
magnetic field lines, and B = |B|. Because of the topological
constraint μ, it turns out [9,35] that the invariant measure of
magnetized particles is dVI = dμ ∧ dv‖ ∧ dl ∧ dψ ∧ dθ =
Bdμ ∧ dv‖ ∧ dx ∧ dy ∧ dz = BdV , where l and v‖ are

length and velocity along B, respectively. The electromagnetic
interaction diffuses the constrained particles on the statistical
measure dVI and maximizes the associated entropy �. Due
to the inhomogeneous Jacobian B, the process will appear
as creating density gradients and temperature anisotropy in
the Cartesian perspective, while the entropy S̃ defined on dV

is minimized. This scenario is exemplified in Figs. 2 and 3
obtained by simulation of the Fokker-Planck equation derived
in Refs. [9,35].

VI. SUMMARY AND CONCLUSIONS

Hamiltonian mechanics, formulated in terms of an energy
function and a Poisson operator, encompasses a broad class of
physical systems that often seem to deviate from the laws of
thermodynamics. In the present paper we have shown that the
key to a proper construction of statistical mechanics resides in
the kernel of the Poisson operator, which dictates topological
constraints. Such constraints are intrinsically different from the
usual energy conservation yielding the Boltzmann distribution,
and they act independently to limit the accessible phase space.
As a consequence, the invariant measure required to introduce
a consistent notion of entropy is distorted with respect to the
original reference frame exploited to represent the physical
system. The probability distribution will be flattened and
the entropy will be maximized on the properly constructed
invariant measure, while the Jacobian of the coordinate change
will cause an entropy “flip” in the original coordinates. Here,
due to the noncovariance of differential entropy, the system
will seemingly violate the second law of thermodynamics and
an order structure will arise.

The theory has been tested with an ensemble of rotating
rigid bodies and then applied to explain the nonequilibrium
statistical mechanics of up-hill diffusion in magnetospheric
plasmas.

Finally, the same arguments will remain valid whenever the
invariant measure carrying the ergodic hypothesis is connected
by an inhomogeneous Jacobian to the coordinates used to
observe the physical system.
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