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Tensor-network algorithm for nonequilibrium relaxation in the thermodynamic limit

Yoshihito Hotta*

Department of Physics, University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
(Received 21 December 2015; published 22 June 2016)

We propose a tensor-network algorithm for discrete-time stochastic dynamics of a homogeneous system in
the thermodynamic limit. We map a d-dimensional nonequilibrium Markov process to a (d + 1)-dimensional
infinite tensor network by using a higher-order singular-value decomposition. As an application of the algorithm,
we compute the nonequilibrium relaxation from a fully magnetized state to equilibrium of the one- and two-
dimensional Ising models with periodic boundary conditions. Utilizing the translational invariance of the systems,
we analyze the behavior in the thermodynamic limit directly. We estimated the dynamical critical exponent z =
2.16(5) for the two-dimensional Ising model. Our approach fits well with the framework of the nonequilibrium-
relaxation method. Our algorithm can compute time evolution of the magnetization of a large system precisely for a
relatively short period. In the nonequilibrium-relaxation method, one needs to simulate dynamics of a large system
for a short time. The combination of the two provides a different approach to the study of critical phenomena.
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I. INTRODUCTION

It is important to develop algorithms to analyze stochastic
processes using tensor networks. Stochastic processes often
appear in statistical mechanics. Monte Carlo methods are most
often used to simulate stochastic processes. The density-matrix
renormalization group (DMRG) is also sometimes used to
analyze them [1–6]. We develop an algorithm to analyze
stochastic processes using tensor networks in this paper.
Tensor-network algorithms are a generalization of the DMRG
and transfer-matrix methods to higher dimensions [7–9] and
can handle models in two and higher dimensions straightfor-
wardly. We combine our algorithm with the nonequilibrium-
relaxation method [10,11] to evaluate critical exponents. The
computational time of our algorithm does not depend on
the system size when the system is homogeneous, whereas
the computational time of Monte Carlo simulation generally
depends on the system size.

Monte Carlo methods are stochastic processes that are
often used in studies of statistical mechanics. Although Monte
Carlo methods have advantages, such as wide applicability and
ease of implementation, they also have drawbacks, e.g., the
dependence of computational complexity on the system size.
As another drawback, equilibrium Monte Carlo analysis of
critical phenomena becomes extremely difficult as the system
approaches a critical point because of the divergence of the re-
laxation time. The nonequilibrium-relaxation method [10,11],
on the other hand, determines critical exponents including
dynamical ones by observing relaxation from an ordered state
to an equilibrium state. This method is especially suitable
for systems with large fluctuation and long relaxation, e.g.,
frustrated and random systems [12].

Other than Monte Carlo simulations, the DMRG is also
popular, having been very successful in one-dimensional
quantum systems [13]. Recently developments in the field of
quantum information have stimulated extensions of the DMRG
to higher-dimensional systems. Tensor-network algorithms are
such an extension [7–9]. One of the reasons why tensor-
network algorithms have attracted attention is that they can
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handle systems with large degrees of freedom with small
computational cost as long as the system is homogeneous.
For example, static critical exponents of two- and three-
dimensional Ising models have been obtained to high accuracy
by tensor renormalization group methods [14–19]. On the
other hand, calculation of a two-dimensional quantum system
by tensor networks is not so successful as classical cases [20].

DMRG studies of stochastic processes [1–6] have been
limited to one-dimensional systems until recently. Johnson
et al. studied nonequilibrium stochastic processes in one
and two dimensions using a tensor-network algorithm called
time-evolving block decimation [21–23]. It discretizes
the time of the dynamics of a finite system, using the
Suzuki-Trotter decomposition [24]. They showed that their
algorithm can compute in high accuracy large-variance
observables that strongly depend on the time-evolving path
of configuration, while Monte Carlo methods require a large
number of samples for such variables.

It is always useful to study the Glauber dynamics for
classical models, for which equilibrium distribution is usually
studied. First, the Glauber dynamics in discrete time can be
regarded as an approximation of dynamics of real condensed
matters, which actually obey the Schrödinger equation. Al-
though it is not a priori ensured that the approximation is
good, the Glauber dynamics shows interesting behavior, such
as the divergence of correlation time and the spatial correlation,
which are experimentally observable. Therefore, the Glauber
dynamics is a good starting point of studying nonequilibrium
critical phenomena. Second, study of the Glauber dynamics in
one dimension is a good test bench of numerical algorithms,
because it is exactly solvable. In this paper we compare the
exact solution of relaxation of the one-dimensional Ising model
with our numerical calculation and assess the performance
of our algorithm. Third, combining it with nonequilibrium
relaxation, we can derive static critical exponents as well as
the dynamical critical exponent. Thus, considering the Glauber
dynamics is also useful to study static properties of critical
phenomena.

We can consider either a continuous-time version or
discrete-time version of the Glauber dynamics. Physically
speaking, both versions are just approximations of reality, so
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that it is just a matter of preference which version we study.
However, both have pros and cons. The continuous-time ver-
sion is mathematically equivalent to the Schrödinger equation,
and hence we can directly apply algorithms of quantum many-
body systems to the classical dynamics, e.g., the time-evolving
block decimation [21–23]. It can, however, have the difficulty
of numerical error associated with the discretization of time,
which is inevitable in numerical simulation. On the other hand,
the discrete-time version is different from the time evolution of
quantum systems, and therefore we need to develop a special
algorithm that is not applicable to quantum systems. Since it
is formulated as the discrete Markov process, we do not have
numerical error associated with time discretization.

The data structure of tensor networks represents the spatial
structure of the system and its correlation. It is thus suited
to computation of time evolution of systems with spatial
correlations. Dynamical critical phenomena are examples of
such systems. The dynamical critical exponent is a quantity
that characterizes dynamical critical phenomena. We are
usually interested in dynamical critical phenomena for systems
with dimensions greater than two because the dynamical
critical exponents take nontrivial values there. Their analytical
calculation is usually intractable, and we need to rely on
numerical methods.

In the present paper, we propose a tensor-network algorithm
for discrete-time Markov chains in d-dimensional infinite ho-
mogeneous systems. Representing the probability distribution
with a tensor-network state and the transition probability with
a tensor-network operator, we map d-dimensional nonequi-
librium processes to (d + 1)-dimensional infinite tensor net-
works. While other tensor-network algorithms for dynamics
usually make use of the Suzuki-Trotter decomposition [21–
23], we construct a tensor-network operator of the transition
probability in an entirely different way. We construct a tensor-
network operator for a sublattice-flip update, using a higher-
order singular-value decomposition [25]. Taking advantage
of the homogeneity of the systems, we treat infinite systems
directly just as the infinite time-evolving block decimation
algorithm [26,27]. The correlation length diverges in a critical
system, for which we need to study a large system. Our
algorithm is especially suitable for the study of dynamical
critical phenomena because the computational complexity of
our algorithm does not depend on the system size.

We analyze nonequilibrium relaxation of the magnetization
of the one- and two-dimensional Ising models as an application
of our algorithm. In particular, we determine the dynamical
critical exponent z of the two-dimensional Ising model. Our
algorithm of time evolution particularly goes well with the
nonequilibrium-relaxation method, for which one prepares a
large system and computes time evolution for a relatively short
time. Our method has common features; it also prepares a
system so large that it can be treated as the thermodynamic
limit and computes the time evolution for a short period.

This paper is organized as follows. In Sec. II we explain
notation and the model that we use as an example of the
algorithm that we propose. We consider the Glauber dynam-
ics [28] in discrete time throughout. We borrow notations from
quantum mechanics, expressing the probability distribution
as a ket and the transition probability as an operator. In
Sec. III we explain how to construct a tensor-network operator

for the transition probability, using a higher-order singular-
value decomposition. We calculate the relaxation of the
magnetization from the all-spin-up state to the equilibrium
with various bond dimensions and compare the results with an
analytic result. In Sec. IV we analyze a system at the critical
point and estimate the dynamical critical exponent z using the
nonequilibrium-relaxation method.

II. MODEL AND NOTATION

Throughout this paper, we focus on kinetic Ising models,
whose definition we give in this section; we can easily
generalize our algorithm to any sublattice-update dynamics
with nearest-neighbor interactions on a bipartite graph. We
first define the update rule of spins and next explain how to
describe a Markov process, borrowing the notation of quantum
mechanics and using diagrams of tensor networks.

Unlike continuous time evolution, we do not need to per-
form the Suzuki-Trotter decomposition for the time evolution;
we instead construct an operator of time evolution using the
higher-order singular-value decomposition.

A. Kinetic Ising model

The Glauber dynamics [28] is a kind of kinetic Ising
model whose transition rule is a heat-bath type. We consider
the Glauber dynamics in discrete time although the original
Glauber dynamics is in continuous time. The Glauber dynam-
ics in a computer simulation is usually the one in discrete
time because such dynamics is simulated by Monte Carlo
methods in many cases. Our strategy is to implement heat-bath
algorithms using tensor networks.

We explain the Glauber dynamics taking the one-
dimensional case as an example; generalizing it to higher
dimensions is straightforward. Let us consider a one-
dimensional spin chain of length 2N whose Hamiltonian is
given by

H = −
∑

i=1,...,2N

σiσi+1. (1)

We use periodic boundary conditions throughout this paper.
We update a single spin with the following heat-bath-type

transition probability:

w(σi → σ ′
i ) = eβσ ′

i (σi−1+σi+1)∑
σ ′′

i =±1 eβσ ′′
i (σi−1+σi+1)

. (2)

Here σ denotes a spin variable, which takes the values ±1, i

is the spin that we try to update, and σi and σ ′
i are the values

of the spin i at the previous and new time steps, respectively.
We adopt the two-sublattice multispin-flip dynamics, in which
we divide the whole system into two sublattices and flip all
the spins on each sublattice simultaneously. In the odd time
steps, the transition probability of the whole system is given
as follows:

w(σ1, . . . ,σ2N ; σ ′
1, . . . ,σ

′
2N )

=
∏

i=1,3,...,2N−1

eβσ ′
i (σi−1+σi+1)∑

σ ′′
i =±1 eβσ ′′

i (σi−1+σi+1)

∏
i=2,4,...,2N

δσi ,σ
′
i
,

(3)
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where δij is Kronecker’s delta. The above transition probability
means that spins at even sites are frozen and act as a heat bath
to odd spins during the time evolution. This is a sufficient
condition for relaxation to the equilibrium. In the even time
steps, roles of spins at odd and even sites are exchanged. The
transition probability becomes

w(σ1, . . . ,σ2N ; σ ′
1, . . . ,σ

′
2N )

=
∏

i=2,4,...,2N

eβσ ′
i (σi−1+σi+1)∑

σ ′′
i =±1 eβσ ′′

i (σi−1+σi+1)

∏
i=1,3,...,2N−1

δσi ,σ
′
i
. (4)

We obtain the probability distribution by applying the transi-
tion operators (3) and (4) alternatively.

B. Diagramattic representation of the Markov chain

Consider a spin chain of length M (M ∈ N) and denote the
spin variables as σ = (σ1, . . . ,σM ). We express the probability
distribution P (σ ) of a spin configuration borrowing the
notation of quantum mechanics:

P (σ ) = 〈σ |P 〉. (5)

We now describe the ket of the probability distribution using
a matrix-product state [8]:

|P 〉 =
∑

σ

Tr[A[1]σ1 · · ·A[M]σM ]|σ1 · · · σM〉. (6)

We can represent this matrix-product state as a diagram in
Fig. 1(a).

For example, consider the fully magnetized state, in which
all spins point up. We can represent it as a product of matrices
of 1 × 1:

A[i]σi=+1 = 1, A[i]σi=−1 = 0 (i = 1, . . . ,M). (7)

For another instance, let us consider a fully magnetized state
whose spins are all up or down with the same probability. In
this case, the state is more complex than the previous example,
and we cannot express it as a product of 1 × 1 matrices; we
need 2 × 2 matrices to express the state as a matrix product:

A[i]σi=+1 = 2−1/M

(
1 0

0 0

)
,

(8)

A[i]σi=−1 = 2−1/M

(
0 0

0 1

)
(i = 1, . . . ,M).

Generally speaking, the more complex a state becomes, the
larger the matrices we need to express it as a matrix-product
state. The dimensionality of matrices to express a state is
called the bond dimension of a matrix-product state; the bond
dimension of the first example is thus one, and that of the
second example is two.

Next, consider the transition probability W (σ → σ ′) from
a configuration σ to a new configuration σ ′; it is a rank-2M

tensor, which we can represent as a matrix-product operator:

Ŵ =
∑
σ ,σ ′

|σ ′〉〈σ ′|Ŵ |σ 〉〈σ | :=
∑
σ ,σ ′

W (σ → σ ′)|σ ′〉〈σ |. (9)

Figure 1(b) is a diagrammatic representation of this matrix-
product operator. Combining it with the matrix-product-state

)b()a(

(c)

FIG. 1. Diagrams in the tensor-network algorithm for a one-dimensional system. (a) A matrix-product-state representation of the probability
distribution. (b) A matrix-product-operator representation of the transition probability. The squares and rhombuses are Y and X tensors defined
in Eqs. (14) and (13), respectively. (c) A diagrammatic representation of the time evolution (11).
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(a) (b)

(c)

FIG. 2. Diagrams in the tensor-network algorithm for a two-dimensional system. (a) A tensor-network-state representation of the probability
distribution. (b) A tensor-network-operator representation of the transition probability. (c) Time evolution in a single time step, which updates
half of the spins [Eq. (10)].

representation of the probability distribution, we can represent
the time evolution of a probability distribution in the form

|P (t + 1)〉 = Ŵ |P (t)〉, (10)

which is followed by

|P (t)〉 = Ŵ t |P (0)〉. (11)

The corresponding diagram is Fig. 1(c).
In a two-dimensional system, the probability distribution

and the transition probability become a tensor-network state
and a tensor-network operator, respectively (Fig. 2). We
can represent any transition probabilities with tensor-network
operators in principle. However, writing its form is not
a trivial problem in practice and requires ingenuity. For
the two-sublattice multispin-flip dynamics, we can write the
tensor-network operator explicitly, as we will explain in the
following two sections.

III. ONE-DIMENSIONAL KINETIC ISING MODEL

We numerically analyze the one-dimensional kinetic Ising
model in this section. The update rule is the one explained in
Sec. II A. We prepare all the spins to be σi = 1 at the initial time
and observe the relaxation to equilibrium. Ito et al. derived
an asymptotic form of the relaxation of the magnetization
analytically [29,30]. We calculate it numerically and compare
the result with their asymptotic form.

Transition matrix as matrix-product operator

We use the transition probabilities given by the rank-4N

tensors (3) and (4). We first decompose the local transition
probability by using the higher-order singular-value decom-
position [25,31] as

w(σi → σ ′
i ) = e(1/T )σ ′

i (σi−1+σi+1)∑
σ ′′

i =±1 e(1/T )σ ′′
i (σi−1+σi+1)

=
∑

α,β,γ=1,2

Sαβγ Uσ ′
i α

V
(L)
σi−1β

V (R)
σi+1γ

, (12)

where S is a rank-3 tensor called the core tensor, while U , V (R),
and V (L) are 2 × 2 orthogonal matrices, and 1/T is the inverse
temperature. We perform this decomposition numerically. We
can represent this equation using a diagram in Fig. 3. We next
define the following rank-4 tensors:

X
σ ′

j σj

pq := V (R)
σj p

V (L)
σj q

δσ ′
j σj

, (13)

Y
σ ′

i

βγ = Y
σ ′

i σi

βγ :=
∑

α=1,2

Sαβγ Uσ ′
i α

. (14)

We let Y have an index σi because we need Y to have both
indices σi and σ ′

i in the definition of a matrix-product operator
below. We obtain matrix-product-operator representations of
the whole system by lining up X and Y [Fig. 1(b)]. For instance,
in the odd time steps,

W (σ → σ ′) = Tr[Y σ ′
1σ1Xσ ′

2σ2Y σ ′
3σ3Xσ ′

4σ4 · · · ]. (15)

In the even time steps, the order of X and Y in the trace is
interchanged. We thus represent the time evolution by piling
up the two matrix-product operators alternatively to the initial
matrix-product state [Fig. 1(c)]. We set the initial state to be
the all-spin-up state, which is a matrix-product state of bond
dimension D = 1. The bond dimensionality of the matrix-
product operator is two.

We calculate |P (t + 1)〉 from |P (t)〉 using Eq. (10). We can
represent |P (t + 1)〉 as a matrix-product state since |P (t)〉 is
also a matrix-product state and Ŵ is a matrix-product operator.
Our initial state |P (0)〉 is the matrix-product state of Eq. (7).

S

U

V V

FIG. 3. A diagrammatic representation of the higher-order
singular-value decomposition (HOSVD) of a local transition prob-
ability [Eq. (12)].
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We can represent the procedure of time evolution graphically.
Suppose that Fig. 1(a) is the state at t = 0. Applying the
matrix-product operator of Fig. 1(b), we obtain the state at
t = 1. Repeating the procedure, we can temporally evolve the
stochastic process. For example, Fig. 1(c) is the state at t = 4.
In numerical computation, we contract vertical bonds every
time we apply a matrix-product operator to a state. Therefore,
states are always expressed as matrix-product states. The shape
of the state is the same as in Fig. 1(a), but all tensors are not the
same for t � 1 because the applied matrix-product operators
consist of the two kinds of matrices (13) and (14). Each
time we apply a matrix-product operator to a state, the bond
dimensionality of the state doubles, as the bond dimensionality
of the matrix-product operator is two. We could be able to
express the state at t exactly as a product of matrices of size
2t . However, as the amount of memory is limited, of course,
we need to perform approximation; we truncate the bond
dimensions at a dimensionality D by using the singular-value
decompositions and keep the D largest singular values. When
the dimensionality of every connected bond is less than D, we
say that the tensor network has bond dimensions D.

We explain this procedure in detail here, following Ref. [8].
Let us consider approximating the bond connected by the
two tensors A[i] and A[i+1] in Eq. (6). The product before
approximation is

D′∑
j=1

A
[i]σs

i,j A
[i+1]σt

j,k . (16)

The dimensions of the indices σs and σt are two, and we assume
that the dimensions of the indices i,j, and k are D′ (D′ > D).
Our task is to approximate the contraction (16), which is the
summation of D′ terms, by a summation of D terms. First,
we rewrite the tensors with three indices to tensors with two
indices (matrices):

A
[i]σs

i,j = A
′[i]
(i,σs ),j , A

[i+1]σt

j,k = A
′[i+1]
j,(k,σt )

. (17)

Then the contraction (16) becomes a multiplication of the new
two matrices: A

′[i]A
′[i+1]. We now approximate the product of

two rank-D′ matrices by a product of two rank-D matrices as
follows. We first decompose A

′[i]A
′[i+1] by using the singular-

value decomposition:

A
′[i]A

′[i+1] = U�V †. (18)

Here � is a diagonal matrix of size D′ and we assume that
the eigenvalues are sorted in the nonascending order. We keep
only the D largest eigenvalues of � and omit the other small
eigenvalues:

U�V † ≈ Ũ�̃Ṽ †, (19)

where �̃ is the diagonal matrix of size D. We left out the
last D′ − D columns of U and V , and defined the two new
matrices Ũ and Ṽ . We now approximate A

′[i] and A
′[i+1] as

follows:

A
′[i] ≈ Ã

′[i] := Ũ
√

�̃, (20)

A
′[i+1] ≈ Ã

′[i+1] :=
√

�̃Ṽ †. (21)

We reshape the matrices Ã
′[i]
(i,σs ),j and Ã

′[i+1]
j,(k,σt )

to tensors with
three indices again:

Ã
′[i]
(i,σs ),j = Ã

′[i]σs

i,j , (22)

Ã
′[i+1]
j,(k,σt )

= Ã
′[i+1]σt

j,k , (23)

where i and k runs over 1, . . . ,D′, j runs over 1, . . . ,D, and
σs and σt take ±1. The contraction of the D′ terms are finally
approximated by the contraction of the D terms:

D′∑
j=1

A
[i]σs

i,j A
[i+1]σt

j,k ≈
D∑

j=1

Ã
[i]σs

i,j Ã
[i+1]σt

j,k . (24)

The computational complexity of the time evolution is of
O(D3) because the singular-value decomposition takes CPU
time of O(mn2) for an m × n(m � n) matrix.

We finally calculate the average magnetization at the odd
sites and that at the even sites separately. Let us consider
calculating the average of σ1 as a representative of the
odd spins. Suppose that the state at time t is |P (t)〉 =∑

σ Tr[Aσ1Bσ2Aσ3Bσ4 · · · ]|σ 〉. We first compute the marginal
distribution of |σ1〉:

P (σ1; t) :=
∑

σ2,··· ,σ2N

Tr[Aσ1Bσ2Aσ3Bσ4 · · · ]. (25)

The average magnetization of σ1 is then given by

〈σ1〉 =
∑

σ1=±1

σ1P (σ1; t)

= Tr

[
(A+1 − A−1)

∑
σ2

Bσ2
∑
σ3

Aσ3
∑
σ4

Bσ4 · · ·
]
. (26)

We can represent this equation as the diagram shown in Fig. 4.
Each open circle denotes

∑
σ=±1 Aσ , each solid circle denotes∑

σ=±1 Bσ , and the solid rhombus denotes A+1 − A−1.
We repeat a sufficient number of renormalization until the

result converges. We explain the procedure of renormalization
in detail. In the first step, we define

C = (A+1 − A−1)
∑

σ=±1

Bσ , (27)

E =
∑

σa=±1

Aσa

∑
σb=±1

Bσb . (28)

In the second step, the renormalization step, we update C and
E as

C ← CE, (29)

E ← EE. (30)

FIG. 4. A diagrammatic representation of the average of the spins
at odd sites. The denominator is the norm of probability. The right
figure shows the definition of each symbol.
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FIG. 5. The relaxation of the magnetization of the one-
dimensional Ising model. The horizontal axis indicates the number of
the time steps, while the vertical axis indicates the magnetization.
We changed the maximum bond dimension D. The broken line
is the analytic asymptotic form [11]; the magnetization decays
exponentially with the correlation time ξt defined in Eq. (32).

The sum of probabilities
∑

σ Tr[Aσ1Bσ2Aσ3Bσ4 · · · ] deviates
from unity as time evolves because of truncations by singular-
value decompositions. To preserve the normalization of the
probability, we divided the magnetization by the norm of the
probability distribution at time t as in Fig. 4. The average
magnetization at odd sites is

〈σodd〉 = Tr C

Tr E
. (31)

We repeat this renormalization procedure until the average
magnetization 〈σodd〉 converges.

The calculation of the magnetization at even sites is similar.
The magnetization of the whole system is the average of these
two averaged magnetizations. The evaluation of the diagram
in Fig. 4 takes CPU time of O(D3). The total computational
complexity of our algorithm is thus of O(D3).

We show the results of the calculation in Fig. 5. The broken
line in the figure is the analytic asymptotic form [29,30]; the
magnetization decays exponentially with the correlation time

ξt = 1

log[coth(2/T )]
. (32)

As the bond dimension D increases, the range of time for which
we can calculate the magnetization precisely also expands. We
were able to do so up to around t ≈ 100 in one dimension with
D = 1024.

We update half of the tensors at each step of time. An
advantage of our algorithm is that we can update half of
the system at the same time, making use of the translational
variance of the system. We just need to update a single tensor
of a sublattice because the tensors of the same sublattice are
all the same. In Monte Carlo simulation, on the other hand,
flipping a half of the system takes the CPU time that increases
linearly in the system size.

IV. TWO-DIMENSIONAL KINETIC ISING MODEL

We numerically analyze the two-dimensional kinetic
Ising model in this section. In particular, by using the
nonequilibrium-relaxation method, we estimate the dynamical
critical exponent z of the two-dimensional Ising model.

A. Transition operator as tensor-network operator

The update rule of a single spin in the one-dimensional
Glauber dynamics, Eq. (2), changes in the two-dimensional
case to

w(σi → σ ′
i ) = e(1/T )σ ′

i (σL+σR+σD+σU )∑
σ ′′

i =±1 e(1/T )σ ′′
i (σL+σR+σD+σU )

(33)

=
∑

α,β,γ,δ,ε=1,2

Sαβγ δεUσ ′
i α

V
(L)
σLβV (R)

σRγ V
(D)
σDδV

(U )
σU ε ,

(34)

where the subscripts L,R,U, and D represent spins to the left,
right, up, and down of the spin σi , respectively. As in the one-
dimensional case, we perform the higher-order singular-value
decomposition (HOSVD) and define local transition operators:

X
σ ′

j σj

pqrs := V (R)
σj p

V (L)
σj q

V (U )
σj r

V (D)
σj s

δσ ′
j ,σj

, (35)

Y
σ ′

i

βγ δε := Y
σ ′

i σi

βγ δε =
∑

α=1,2

Sαβγ δεUσ ′
i α

. (36)

A diagrammatic representation of the transition operator of the
whole system consists of the local transition operators X and
Y . The bond dimensionality of the transition operator is two;
see Fig. 2(b). We calculate the time evolution by stacking up
the tensor-network operators for each of odd and even time
steps alternatively [Fig. 2(c)].

We calculate the time evolution of a state by contracting
the state and tensor-network operators from the bottom layers.
The state at t = 0 is shown in Fig. 2(a). Applying the
tensor-network operator of Fig. 2(b) to this state, we can
evolve the dynamics by one step [Fig. 2(c)]. We then contract
vertical bonds of Fig. 2(c) and obtain the tensor-network state
at t = 1. The shape of the tensor network state at t = 1 is
the same as Fig. 2(a), but all tensors are not the same. The
lattice consists of two sublattices; tensors of each sublattice
share the common tensor. By repeating the same procedure,
we can calculate the states of t � 1, |P (t)〉. During the
calculation of the time evolution, we truncate bond indices
by singular-value decompositions if the bond dimensionality
exceeds D. We can do these singular-value decompositions in
the time of O(D5) with a little ingenuity [32].

We finally compute the magnetization by repeating
renormalization of the tensor network that contains an
“impurity tensor” (the solid rhombus in Fig. 4) until
convergence as in the one-dimensional case. We also divide
the magnetization, which corresponds to the numerator of
Fig. 4, by the norm of |P (t)〉 (the denominator of the same
figure) as in the one-dimensional case. We use the algorithm
by Wang et al. [32], in which one truncates bond dimensions
by singular-value decompositions during renormalization,
whereas the other parts of the procedure are the same as
the tensor renormalization group with the higher-order
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)b()a(

FIG. 6. Relaxation of the magnetization from the all-spin-up state in the two-dimensional Ising model. The horizontal axis indicates the
time steps and the y-axis indicates the magnetization, while D denotes the bond dimensionality of tensors. (a) A semilogarithmic plot for
T = 3 > Tc under no magnetic field. (b) A logarithmic plot at the critical point T = Tc ≈ 2.269.

singular-value decomposition [16]. The calculation of the
average magnetization by tensor renormalization group takes
the time of O(D8) [32] and the total computational complexity
of our algorithm in two dimensions is also of O(D8).

B. Nonequilibrium relaxation

We observe the relaxation from the all-spin-up initial state
to the equilibrium state. The initial state is all-spin-up, which is
a two-dimensional tensor-network state of the bond dimension
D = 1. The asymptotic behavior of the magnetization depends
on which phase the system is in. In our case, since we do
not apply a magnetic field, the asymptotic decay becomes as
follows:

〈σ 〉 =

⎧⎪⎨
⎪⎩

e−t/ξt T > Tc

t−λm T = Tc

meq + ce−t/ξt T < Tc

, (37)

where Tc = 2.269 [33], ξt is the relaxation time, meq is the
spontaneous magnetization, c is a constant, and λm is the
dynamical critical exponent that characterizes the power-law
decay of the magnetization at the critical point. It is related
with the standard critical exponents as [10,11]

λm = β

zν
. (38)

In the two-dimensional Ising model, the critical exponents
β and ν have been obtained analytically at 1/8 and 1,
respectively, and therefore we can evaluate z from the decay
of the magnetization at the critical point. This method is called
the nonequilibrium-relaxation method [10,11].

We calculated the relaxation of systems in the high-
temperature phase and at the critical point (Fig. 6). In the high-
temperature phase, the magnetization decays exponentially in
time with the correlation time ξt , while at the critical point ξt

diverges, and the magnetization shows a power-law decay.
To calculate the critical exponent z precisely, we cal-

culated “local exponents” and extrapolated the results to
the limit of the infinite time [10,11]. We define the local

exponents by

λm(t) := −d log m(t)

d log t
≈ t

�t

[
m(t − �t)

m(t)
− 1

]
, (39)

z(t) := β

νλm(t)
. (40)

We choose �t = 1 and fit the series z(t) to

z(t) = a/t + z, (41)

where a is a constant and z is the final estimate of the critical
exponent when the numbers of times steps are extrapolated
to infinity. We did the extrapolation by the Bayesian linear
regression [34] (Fig. 7). The intersection of the line of the best
fit and the y axis is the point estimate of z. We used the 75 %
credible interval at the origin of the x axis as the uncertainty
of our estimate of z.

We calculated z for various bond dimensions ranging from
D = 2 to D = 20 and carried out the analysis described as
above. In the extrapolation of the local exponent z(t), we did

FIG. 7. Extrapolation of the local exponent z(t) to t → ∞
according to Eq. (41). We performed the Bayesian linear regression.
The line of the best fit is the maximum a posteriori solution, and
the shaded area is the 75% credible interval. The intersection of the
line of the best fit and the y axis is the final estimate of the critical
exponent z. The data are for the bond dimension of tensors D = 20.
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FIG. 8. Estimates of the dynamical critical exponent z with
various bond dimensions D. The error bars indicate the 75% credible
intervals of the predictive distribution at 1/t = 0 in Eq. (41), i.e., the
shaded area at the origin of the x axis in Fig. 7.

not use the first two data points corresponding to t = 0,1.
We used five data points (t = 2, . . . ,6) for D < 17 and six
data points (t = 2, . . . ,7) for D � 17. As Fig. 8 shows, the
estimates of z converges as D increases. We estimated the
critical exponents z to be 2.16(5) using data of D = 20.
The nonequilibrium-relaxation method with a Monte Carlo
method [10] estimated z to be z = 2.165(10) and a series
expansion [35] estimated z to be z = 2.183(5). Our result is
consistent with the values of these studies.

V. CONCLUSION

We have proposed an algorithm to compute sublattice-flip
dynamics on an infinite bipartite graph. We split local transition
probabilities into tensors that depend only on a single spin
variable by a higher-order singular-value decomposition and
constructed a tensor-network-operator representation of the
transition probability of the whole system. We can apply
this approach to any sublattice-update dynamics with nearest-
neighbor interactions on a bipartite graph. The rank of tensors
is determined by the degree of a graph (lattice). For example,
on a honeycomb lattice, the rank of tensor is four, because
a node is surrounded by three nodes with an additional
leg representing the spin index. We can calculate the time
evolution of magnetization in the following way. We first
compute the time evolution of probability distribution by
stacking up tensor network operator as in Fig. 2. Similarly
to the case of a square lattice, the bond dimension doubles at
each step, and hence we need to cut off the bond dimensionality
at D. This procedure takes O(D4) [32]. Next, we calculate
the magnetization by contracting the whole lattice to a
single point. This contraction can be done, for instance,

by tensor renormalization group [14] with computational
time O(D6). Therefore, the total computational complexity
for a honeycomb lattice is O(D6). We treat an infinite
system utilizing translational invariance and obtained the
magnetization in the thermodynamic limit directly without
system-size extrapolation. Instead of extrapolating the system
size to infinity, we did the bond-dimension extrapolation. We
are also able to apply our algorithm to an open boundary system
in principle. The system, however, becomes inhomogeneous,
and hence we will need to keep all the tensors that lie on all
the sites with the computational costs depending on the system
size. Therefore, studying dynamics in the thermodynamics
limit directly is possible only when we adopt the periodic
boundary condition.

Our algorithm goes together well with the nonequilibrium-
relaxation method. In the nonequilibrium-relaxation method,
one prepares a large system and simulate it for a rather small
number of time steps [11]. In calculation of the time evolution
with tensor networks, we cannot compute dynamics for an
arbitrary long time because an error due to singular-value de-
compositions accumulates during the time evolution. We can,
however, update an infinite number of spins at once utilizing
translational invariance. We calculated the time evolution of an
infinite system for a short period indeed with good precision
and were able to determine the critical exponent z.

We estimated only z among critical exponents because
the other exponents have been analytically known. The
nonequilibrium-relaxation method, however, can calculate the
other critical exponents as well as the critical temperature, and
thus we can use it even for systems for which analytical cal-
culation is intractable. The nonequilibrium-relaxation method
combined with our algorithm is a new direction of study of
critical phenomena with tensor networks.

A shortcoming of our algorithm at present is that we
can utilize it for a limited range of time. This problem is
serious in two dimensions; we obtained the results only for
t < 10 because it became difficult to increase bond dimensions
further as the dimensionality increased. The accuracy of our
estimate of the critical exponent z is worse than the estimate
of the nonequilibrium-relaxation method with a Monte Carlo
simulation [10] because we used a smaller number of time
steps. In order to compute longer and to improve the accuracy
of the estimate, we need to develop a better scheme to truncate
bond dimensions during the time evolution.
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[8] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[9] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143

(2008).
[10] N. Ito, Physica A 196, 591 (1993).
[11] Y. Ozeki and N. Ito, J. Phys. A 40, R149 (2007).
[12] Y. Ozeki and N. Ito, Phys. Rev. B 64, 024416 (2001).
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