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Possible origin of the smaller-than-universal percolation-conductivity exponent in the continuum
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For quite a few systems in the continuum, such as carbon nanotube polymer composites and segregated
composites, percolation electrical conductivity exponents that are much smaller than the universal value have
been reported. This is unexpected in view of the classical lattice percolation theory. Here we provide a simple
general phenomenological model that accounts for such observations within the framework of universality. We
suggest that these small value exponents are due to the interplay between the connectivity and the structural
variations that follow the increase of the fractional volume content of the conducting phase.
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I. INTRODUCTION

It is widely accepted that the electrical conductivity, σ , in
many conductor-insulator two-phase continuum systems can
be described by the relation [1–5]

σ = σ0
(
x − x0

c

)t
, (1)

where x is the fractional volume, or weight, content of the con-
ducting phase in the system, while σ0, x0

c , and t are determined
by the analysis of the σ (x) data that is found experimentally
or computationally. Equation (1) is borne out by the lattice
theory of percolation as a phase transition and the possible
mapping of the continuum on it [4] that leads to the same t

values for the lattice and the continuum [6]. According to the
lattice theory, that is briefly reviewed here in Appendix A, t

is equal to its universal (only dimensionally dependent) value
μ. In particular, μ(3D)�2 for three-dimensional (3D) systems
and μ(2D)�1.3 for two-dimensional (2D) systems [1,3,7].
Indeed, in most percolation systems in the continuum t = μ

but there are numerous reports on t > μ values [4,5,8]. These
higher t values are well understood by now (both for lattices
[9] and for the continuum [10,11]) to be a result of a diverging
distribution of the local conductances, g, as x → x0

c , that yields
to g → 0 there [9–11]. For a brief review and background on
this nonuniversal behavior, see Appendix B.

There are however, as detailed in Appendix C, quite a few
experimental [8,12–17] and computational [18–20] reports on
continuum systems for which t is smaller than (the relevant
universal exponent [21]) μ and even smaller than 1. In
particular, experimental values of t = 1.2 for carbon nanotube
(CNT) composites [22], and as low as a t = 0.4 value for
segregated composites, were reported [13,14]. Such low values
are not consistent with the above mentioned universal values
(even if one assumes [23] a 2D conducting subnetwork within
the 3D system).

The t < μ observations are quite surprising since they
appear, a priori, to contradict the sound and well-established
classical percolation theory of the electrical conductivity as
given by the simple links-nodes-blobs (LNB) model [7,24,25].
This model, described in Appendix A, is the only widely
accepted topological description of an electrical (obeying
Kirchhoff’s laws) percolation network from which the μ values
were derived.

The intriguing questions that arise then are whether the
observed t < μ relations involve some other special univer-
sality class (as was suggested for other cases and different
systems [26]), or if not, how can they be explained within
the framework of the known percolation universality class
[6,7]? Noting that this problem has not been adequately
discussed, we try in this article to provide an explanation for
those t < μ observations in accordance with the framework of
that universality class. In particular, we use excluded volume
considerations [27] to explain the observations for systems
such as CNT-polymer composites [8], for which t < μ values
were reported. While we limit our analysis here to these
composites we also suggest (see below) that the values of
t < μ found in other systems [12–17] result from the same
basic reasons that we propose here for the CNT composites.

As the conductivity is associated with an electrical network,
it is a bond percolation problem (as described by the LNB
model) [7,24,25]. In lattices, the classical critical behavior of
the conductivity is given by σ ∝ (pb–pbc)μ where pb is the
bond (i.e., the local conductor) occupation probability and pbc

is its critical value. The average number of bonds per site in
lattices is given by B = pbZ where Z is the lattice coordination
number and thus σ ∝ (B–Bc)μ [1,7,24,25,28]. While in the
continuum pb and Z are not defined, the latter relation, as
mentioned below, is still obeyed in view of the expected
topological mapping of the continuum on the lattice problem
[1,6]. Indeed in 2D systems of widthless sticks, where the only
topological parameter that changes (and can be determined) is
B, a universal behavior has been found [20,21]. Hence, in both
the lattice and the continuum the conductivity can be described
by σ ∝ (B–Bc)μ. For permeable particles B = nVex where n

is the concentration of the particles and Vex is the excluded
volume, i.e., the volume around the center of a particle in which
the center of another particle has to be for the two particles to
have some overlap [27]. The existence of the overlap is defined
as an occupied bond and is assumed to represent the electrical
contact between the two particles, either by touching or by
tunneling [4,5]. These models have been widely used for CNT
composites [8,29].

Following that, in Sec. II we consider in some detail
the above σ ∝ (B–Bc)μ relation, in Sec. III we show how
the variation in the excluded volume can affect the B(x)
dependence, and in Sec. IV we show how the latter can yield
t < μ values. Our conclusions are summarized in Sec. V.
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II. CONNECTIVITY AND CONDUCTIVITY IN
LATTICES AND THE CONTINUUM

As mentioned above, the excluded volume argument is
conveniently applicable to permeable particles but the CNTs
are a priori particles with a hard core. For the application
of this to the CNT composites let us try now to bridge
between the B’s associated with permeable and nonpermeable
objects. We start then with the well-known model of Scher
and Zallen who suggested that for touching nonpermeable
(rigid or “hard core”) spheres of two types [1], the fractional
volume of the conducting phase, x, is proportional to the
lattice site occupation probability ps . This led later to the
general site-percolation assumption that, even for systems
where the conducting particles are embedded in a continuum of
an insulating matrix, one should expect that σ ∝ (ps–psc)μ ∝
(n–nc)μ ∝ (x − x0

c )μ [2,4]. Here psc is the site-percolation
probability threshold value, n is the concentration of the
conducting particles, and nc is its threshold value. In the
case of such hard core particles in the continuum x = nV ,
where V is the volume of the individual conducting particle
(assumed to be independent of n). On the other hand, as
mentioned above B = pbZ and σ ∝ (pb–pbc)μ ∝ (B–Bc)μ

[7,24]. Comparison of the above σ (x) and σ (B) dependences
led to the assumption that B ∝ x. Hence, while not stated
explicitly, this was the underlying assumption in numerous
works associated with continuum systems. This of course
overlooked the fact that x = nV is a quantity that originated
from the lattice site occupation probability, ps , rather than from
the bond percolation quantities pb or B. The experimental and
simulation observations of t = μ [3–5,8] in many continuum
systems cannot be taken then as an a priori justification
for the use of x for the conductivity problem. Here, in
order to determine the proper exponent of the conductivity
we consider the B(x) dependence that we should substitute
in the σ ∝ (B–Bc)μ relation in some systems of hard core
particles. Our proposed model in this article is based on
starting with the linear B ∝ x relation [1] and then noting
that in the conspicuous system on which the t < μ values
were reported, the CNT composites [8], there is enough
experimental evidence to suggest that with the increase of x,
some basic parameters of the systems change. In particular, we
will show that these changes can result in a B(x) dependence
which can lead to the t < μ observation.

Returning to the concept of excluded volume we recall that
in their seminal paper, Shante and Kirkpatrick [30] suggested
that the total volume φ occupied by permeable particles or
objects, each with a volume V , can be given by ϕ = 1–(1–V )n,
where n is the number of particles per unit volume (n �
1, V � 1 so that nV is finite). In the limit of large n (and
thus satisfactory for the statistics) this yields that (1–V )n =
exp(–nV ). For permeable objects we also have that B = nVex

[24,27] and thus ϕ = 1– exp(–nV ) = 1– exp(–BV/Vex). Since
topologically the B values involved are typically within the
1 < B < 10 range throughout the relevant nV � 1 regime
[4,27] we can write that ϕ ≈ nV = BV/Vex. On the other
hand for nonpermeable particles x ≡ ϕ = nV , and thus, for
dilute systems, we can use the latter relation to formally write
that x ≈ BV/Vex. However, this is also justified physically; for
a dilute system (i.e., x � 1) of hard core particles of volume

V where the interaction is long range (i.e., Vex/V � 1) the
scenario from the connectivity point of view is the same as
that of a system of permeable objects. Such is the case of the
CNT composites where the typical studied x regime is from
x0

c up to the order of 10−2 and where V/Vex ≈ r/L is usually
of this order [8]. Hence, for the present nonpermeable CNTs
case the applicability of the permeable particles result as done
below is justified only if V/Vex � 1, i.e., only if x � 1. This
condition is then a necessary condition for the applicability of
our model.

III. APPLICATION OF THE EXCLUDED VOLUME TO
CNT-POLYMER COMPOSITES

Turning to our t < μ problem let us utilize now the concept
of the excluded volume [8,27,30] as manifested in CNT
composites [31]. As we mentioned above, in order to use the
B = nVex relation for the conductivity one needs first that
the actual (hard core or soft core) volume V of the particle
is very small in comparison with its “interaction” volume
(i.e., Vex). Now let us suppose that Vex/V is x dependent. We
suggest that such dependence can result from the well-known
processes that may take place during the fabrication of the CNT
composites and can be intensified with the increase of x. These
are the flocculation [32–35] and/or bundling [36–38] (or other
aggregations [39]) of the CNTs as well as the increase of the
CNTs’ alignment during molding [40–43]. We point out here
that while in the literature there are statements that the prepara-
tion conditions can affect the measured t exponent [41,44,45],
in these articles there are no suggestions as how this will take
place. In fact, there is not even a speculation, as what will be
the tendency of the change in the value of t . In this article we
go much further than that, by connecting between the molding
procedure, the CNT-composites’ parameters, the variation of
t with x, and the t < μ observations. In passing, we remark
that for the segregated composites the increase of x can result
in a widening of the conduction channels [13], an effect that
is reminiscent of the bundling effect in the CNT composites.

We recall now (see above) that in a system of permeable ob-
jects B = nVex [24,27]. Hence, following the bond percolation
picture we find that

σ ∝ (B − Bc)μ ∝ [(n − nc)Vex]μ, (2)

where Bc and nc are the corresponding thresholds of the
percolation network. The important physical point that we note
here is that Vex actually transfers the site-percolation quantity
n to the bond percolation quantity B = nVex [46–48] that is
needed for the conductivity. As we saw above, when V � Vex

we can use the relation B = nVex also for nonpermeable
objects and thus, in systems with x � 1 values, such as CNT
[8,40,49] or graphene [15–17] composites, we can use the
results obtained for permeable particles, yielding that in Eq. (2)
we can write B ≈ xVex/V . We know that for long cylinders
of length L and radius r (representing CNTs [31]) V = πr2L

and (for L � r) Vex = 4rL2〈sin θ〉 [27], where θ is the angle
between two (partially overlapping) connected cylinders and
〈sin θ〉 is an average over the ensemble of CNT pairs [27,46].
Substituting these expressions for V and Vex in B we get

B = (4/π )(xL/r)〈sin θ〉. (3)
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From this it follows that the very large Vex/V =
(4/π )(L/r)〈sin θ〉 values yield very small x values (and
thus also the small typical x0

c (�1) values in CNT-polymer
composites [31].

Let us examine now the possible effects of the variations of
the systems’ parameters L, r , and 〈sin θ〉 on B in Eq. (3) with
the increase of x during the fabrication of the material (e.g.,
due to the increase of direct or indirect “friction” between
the particles [8,32]). In flocculation, the “breaking” of the
particles causes L to decrease with x while in bundling the
effective r increases with x, and in some molding processes
the function 〈sin θ〉 of x [〈sin θ〉(x)] may be a decreasing
function of x [40]. Hence, considering these dependences
we have that B in Eq. (2) is given by the resulting function
B(x) ∝ x{L(x)[〈sin θ〉(x)]}/r(x). Correspondingly we denote
now the value of x that is associated with Bc = ncVex in
Eq. (2) by xc. [Note that this is different than x0

c that is derived
from the experimental or computational analysis according
to Eq. (1)]. We expect then that for any reasonable (in the
above context of CNT composites) x-decreasing B(x)/x ∝
L(x)[〈sin θ〉(x)]/r(x) function, the conductivity exponent will
vary with x. To see if and how such dependences can lead
to a t < μ behavior we will present here a couple of such
B(x) dependences (more presentation and analyses will be
presented elsewhere). We remark here that in general the
molding processes do not necessarily yield the above effects.

In passing we note that the alignment (unlike the results
of flocculation and bundling) does not affect the size of the
individual particles but changes a global property of the
system. This increasing alignment of the particles is also
evident from the observed increase of the percolation threshold
that is well known to be associated with that increase [40,49].

We should also add here that while in the computer
simulation studies [18,19] the results of the molding have not
been explicitly considered, they were included implicitly by
the interaction between the CNT fibers that induced possible
variations of the spatial and orientational distributions. Cor-
respondingly, we tentatively attribute the observed low values
of t there (0.4 and 0.87 respectively) to these changes. The
fact that in both simulation studies the observed t values are
smaller than 1 cannot be explained by the simple tendency
of the crossover between percolation and effective medium
behavior [2] which yields that t = 1. This is of course at
variance with the simulation results [21] in which there are
no interactions between the widthless sticks in 2D, and the
increase of their concentration just represents the transition
between the percolation μ(2D) and the value of 1 as derived
from the effective medium approximation.

IV. THE EXPECTED MANIFESTATION OF
THE t < μ EFFECT IN COMPOSITES

For a transparent and simple illustration of the t < μ

problem and its solution let us assume that in the x region of
interest (i.e., x > xc,) the effect of x on L due to flocculation
can be described (phenomenologically) by L = L0(x/xc)−β1

where L0 is the value of L at the percolation threshold xc.
Similarly we can use r ∝ (x/xc)β2 and 〈sin θ〉 ∝ (x/xc)−β3

where for each of the above mentioned different effects (that
result during the composite fabrication) a different value

of βi > 0 may apply. We get, then, that for this simple
model the combination of these effects can yield that B(x) ∝
xL〈sin θ〉/r ∝ xγ where γ = 1–(β1 + β2 + β3). One notes of
course that since the functional dependence of the system
parameters on x due to the fabrication processes is not available
explicitly at present (experimentally or theoretically), our
above model is just a possible illustrative description of how
the x-decreasing B(x)/x dependence can yield to the t < μ

observation. Considering our interest in the conductivity we
start by substituting the xγ dependence for B in Eq. (2) which
yields that

σ = A
(
xγ − xγ

c

)μ
, (4)

where A is a constant. Since σ is found always (experimentally
or computationally) to increase with x, one concludes from
Eq. (4) that γ > 0. Using Eq. (2) or Eq. (4) for the extreme case
where B deviates enough from Bc the conductivity exponent t

approaches γμ. The request that B(x)/x will be a decreasing
function of x simply yields in this model that γ < 1.

Let us turn now to the consequences of the above B ∝ xγ

dependence when the observed σ (x) dependence is analyzed
according to Eq. (1). Assuming that Eq. (4) describes the
actual behavior of the system, we suggest that in the many
experimental [8,22,23] and computational [18,19] works
(see Appendix C) that showed the t < μ effect, researchers
essentially tried to analyze an Eq. (4)-like behavior by fitting
the data to Eq. (1). We also see that when the analyzed x

range is close to x0
c (x → x0

c ), the universal exponent (t = μ)
is achieved. In the power-law example that we use, the fits of
such data to Eq. (1) can be distinguished analytically in the
two extreme cases. In the first case we consider the fitting to
Eq. (1) in an x interval for which xγ � x

γ
c and x � x0

c . In
this case one actually fits the data to a σ ∝ xt dependence.
However, according to Eq. (4) σ ∝ xγμ and this yields that
t = γμ, and then, since γ < 1, a t < μ value will be found.
The second case is the other extreme where the examined x

range is close to x0
c . Equating Eqs. (1) and (4) we get, then,

that xγ − x
γ
c = (σ0/A)1/μ(x − x0

c )t/μ. The derivatives of both
sides of the equation have to be the same and this yields that
γ xγ –1 = (σ0/A)1/μ(t/μ)(x − x0

c )(t/μ)–1. In particular, for x →
x0

c the derivative on the left side has a finite (>0) value, while
(since x − x0

c → 0) the derivative on the right side has a finite
value only for t = μ. Therefore, the value of t will vary from
γμ, when x � x0

c , to μ as the studied x range approaches x0
c .

We note of course that for any reasonably smooth B(x), t → μ

for x → x0
c . The physics of the above described behavior is

quite simple; while the exponent μ represents the changes
in the (phase-transition-like) connectivity that determines the
universal critical behavior, the exponent γ accounts for the
x-dependent changes in the basic parameters of the system
(here, L, r , and 〈sin θ〉). In particular, if x is very close to x0

c the
character of the system (e.g., due to flocculation) has not been
changed significantly compared to that at x0

c . In contrast, when
x and x0

c are far apart, the system’s character (e.g., the decrease
of L and the corresponding increase of n with the increase of
x) could have varied considerably. Hence, universality will
always dominate when x → x0

c , but as x departs from x0
c a

t < μ value may be reflected by the measured exponent. As
preliminary recent experimental evidence for this behavior,
we can consider the results of Grunlan et al. [50] and of
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FIG. 1. The best fit of Eq. (1) to data produced by the use of
Eq. (4) with A = 100 (	 cm)−1, γ = 0.2, xc = 0.01, and μ = 2.

Mukherjee et al. [14] on segregated composites for which
they found that with the departure of the x intervals from
x0

c , the t values decreased from 1.87 to 0.90 and from 0.8
to 0.4, respectively. Note that these values were derived from
experimental results on macroscopic systems and thus there are
no finite size effects, or deviations from percolation criticality,
that could have yielded a conductivity exponent below t = 1.

As a numerical illustration for our above conclusion and
for appreciating how this t value transition from μ to γμ takes
place we started by generating data points by using Eq. (4) with
A = 100 (	 cm)−1, γ = 0.2, xc = 0.01, and the 3D value of
μ = 2. The data, shown in Fig. 1, include 31 values of σ in the
interval 0.014 � x � 0.99. The best fit of Eq. (1) for this wide
x interval yielded the values of σ0 = 46 (	 cm)−1, x0

c = 0.013,
and t = 0.95. As seen in Fig. 1, the quality of the fit to this
entire x regime varies along different x intervals. To follow
the variation of the t and x0

c values with the proximity of the x

interval to x0
c , we have fitted the data points to Eq. (1) for a few

types of x-interval selections. In all those selections we saw a
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FIG. 2. The best fit of Eq. (1) to data produced for the six lowest
x values (a) and for the six highest x values (b) used in Fig. 1.
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FIG. 3. A summary of the t (bold curve) and the x0
c values

obtained from fits such as in Fig. 2, where N is the number of the last
point in the interval considered in each fit.

systematic decrease of t and a systematic increase of x0
c with

the departure of the intervals from x0
c . The type we selected to

show here was chosen in order to mimic the typical available
data sets that usually contain fewer than ten experimental
[8,12–14,45,49,51] or computational [18,44] points. We have
considered, then, six intervals, of six points each, from the
data of Fig. 1, i.e., from points 0–5 to points 25–30, denoting
the last point of each interval by N . The fits in the extreme
cases, N = 5 and N = 30, are shown in Fig. 2. The results for
the first (lowest σ values) six data points yielded [Fig. 2(a)]
t = 1.40 and x0

c = 0.011 while for the last (highest σ values)
six data points [Fig. 2(b)] we got t = 0.60 and x0

c = 0.093. All
the t and x0

c values obtained by such fittings are shown in Fig. 3
as a function of N . The t dependence confirms the analytical
result that we described above and also exhibits the general
effect of the x interval used on the t (< μ) values observed
when the system’s parameters are x dependent.

For completeness, and to show that our choice of the
above xβ dependence is not a necessary condition or a unique
example for obtaining the t < μ behavior, we have also sub-
stituted the phenomenological B(x) ∝ xL(x) ∝ x/(1 + x2)
dependence (with μ = 2 and xc = 0.1) in Eq. (2). This yielded,
as in Fig. 3, to a decrease of the value of t (from t = 2), as
x increases above xc. For example, considering the data from
x = 0.2 to x = 0.7 yielded that t = 0.88. Other examples and
their analysis will be reported elsewhere.

V. CONCLUSIONS

In lattice percolation theory the conductivity depends in
a critical manner on the number of occupied bonds per site,
B, yielding that the observed conductivity critical exponent, t ,
cannot be smaller than its universal value μ. We suggest that in
the continuum, however, there are systems where B can have a
sublinear dependence on the particle concentration that brings
about the observation of measured or simulated t < μ values.
Our results show that this behavior of B can be associated with
the variation of the character of the system with the change
of x. We have shown, however, that the observed value of t

will always reach the value of μ as the percolation threshold
is approached. This is because the phase transition effect will
overcome there the effect of the material variation with x.
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APPENDIX A: THE LINKS-NODES-BLOBS (LNB) MODEL

Being concerned in this article with the t < μ problem, we
discuss here why the clear and unequivocal prediction of the
classical lattice percolation theory cannot yield a t < μ value.

In percolation theory, the only characteristic scale is the cor-
relation length ξ that determines the structure of the electrically
conducting network in the system (known as the backbone)
[7,24]. The electrical properties of a system of size � � ξ can
be described by a structure that is topologically consistent with
cubic units of volume ξD where D is the Euclidian dimension
of the system. Each of these cubes consists of electrically
conducting links of length ξ . Hence, the global conducting
network has the resistance R = Rξ (�/ξ )(2–D) where Rξ is the
resistance of a link [4,7,24,25]. The links intersect at nodes (the
corners of the cubes) and consist of singly connected bonds
in series with blobs (bunches of resistors, i.e., of bonds, that
provide more than a single path between the two ends of the
bunch).

The correlation length depends on the bond occupation
probability, pb, as ξ ∝ (pb–pbc)−υ , where υ is the correspond-
ing critical correlation length exponent (0.85 in 3D) [7]. The
only question that remains then, for the evaluation of R, is the
dependence of Rξ on pb–pbc. While the exact dependence is
determined by the structure of the link, it is well established
[24,25] that Rξ ∝ (pb–pbc)−ζ where the value of ζ (in 3D)
can be only between 1 and ∼ 1.13 [25] or 1.3 [3], and thus
μ ≡ υ + ζ can only be within the small interval between the
two values, 1.85 and 2.15 [1,7], for any internal structure of
the link. We have, then, that σ ∝ (pb–pbc)μ [2,25].

The important points to note here are that υ is universal
since it is determined by the universal structure of the
percolation network, while the above two extreme μ(3D)
values are due to the extreme estimates for ζ . The first
estimate considers the minimal possible resistance of the
link (by assuming the blobs to be electrical shorts) yielding
that ζ = 1 [24]. The other extreme estimate evaluates the
maximal resistance of the link by considering the shortest
path through it (i.e., a path that includes the blob resistors that
belong to that path while neglecting the other parallel resistors’
configurations to it in the blob) yielding that ζ ∼ 1.13 [25].
Hence, there is no 3D structure of the electrically conducting
backbone that can yield μ(3D) values outside the above (rather
narrow) range. Within the context of our article the important
consequence is that there is no percolation backbone structure
for which the exponent t can be smaller than 1.85 (= υ + ζ ).
Correspondingly the explanation given by Shao et al. [12] for
their experimental t = 0.87 < μ observation by a particular
backbone structure is not valid.

APPENDIX B: THE NONUNIVERSAL t > μ BEHAVIOR

In Eqs. (1) and (2) one implicitly assumes that all the
local conductances in the system have the same value g, or
that their average value 〈g〉 is independent of pb–pbc, B–Bc,
or x–xc. However, there are distributions of g values such
that 〈g〉 ∝ (pb–pbc)u or 〈g〉 ∝ (x–xc)u where the exponent
u (> 0) is determined by the properties of the system. The
most known example for such behavior follows the divergent,
but normalizable, distribution of the values of the local

conductances as g → 0. As suggested originally by Kogut
and Straley [9] such a distribution is

f (g) = (1 − α)g−α, (B1)

where 0 < α < 1. Considering that the global conductivity σ

of the conducting network is dominated by the higher value
conductances and using a normalized g value of 1 for the
highest value in the system, it is apparent that the lowest g

value that must be used in order to provide percolation (i.e.,
that σ > 0), gc, is given in the lattice model by

gc

∫ 1

f (g)dg = pbc/pb. (B2)

Using Eq. (B1) this yields that

gc = [(pb − pbc)/pb]1/(1−α), (B3)

and that the average local resistance in the system is

〈g−1〉=gc

∫ 1

f (g)(1/g)dg = [(1 − α)/α](gc
−α − 1). (B4)

Hence, from Eq. (B4) one can appreciate the behavior
of 〈g−1〉 for various values of α. For α → 0, 〈g−1〉 has
the logarithmic dependence [– ln(gc)] that becomes divergent
as gc → 0. If α < 0 and gc � 1, 〈g−1〉 is the constant
(1–α)/(–α); i.e., the system in the pb → pbc limit behaves
as if it is made of local resistors all of which have this average
constant value. If 0 < α < 1 one gets from Eqs. (B3) and (B4)
that, as pb → pbc,

〈g−1〉 ≈ [(1 − α)/α]gc
−α ∝ [(pb − pbc)]−α/(1−α), (B5)

and thus 〈g〉, defined as 〈g–1〉−1 [9], yields that

σ ∝ 〈g〉[(pb − pbc)]μ ∝ [(pb − pbc)]t , (B6)

where here

t = μ + α/(1 − α). (B7)

This t > μ behavior is commonly referred to as the nonuni-
versal behavior [3,4,7,10].

Following the above discussion we consider now the at-
tempt of Shao et al. [12] to account for their t < μ observation
in segregated composite by two arguments. One argument,
considering the basic backbone structure, was already negated
in Appendix A. Their other argument for t < μ was that
α/(1–α) < 0. However, this can happen only if α < 0 or
α > 1. For the α < 0 possibility, we have just shown that
〈g〉 = 〈g–1〉−1 is a constant independent of pb–pbc, and thus
t = μ. For the α > 1 possibility, the distribution function
[Eq. (B1)] cannot be normalized. Hence, this t < μ argument
of Shao et al. is also not valid.

APPENDIX C: THE t < μ OBSERVATIONS IN
VARIOUS COMPOSITES

There were quite a few experimental and simulation reports
with t < μ results [12–20]. The conspicuous system for
which those results were found is that of the CNT-polymer
composites. To show the validity of the t < μ problem, we
mention here the findings on this and some other systems
and discuss how all those findings can be attributed to the
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same reasons. These reasons are that the volume of the
particles is negligible compared with their excluded volume
and that changes in the particles (e.g., L and/or r) or in their
ensemble (e.g., 〈sin θ〉) take place with the increase of the
conducting-phase volume, x.

An important class of composites in which particularly
small t [< μ(2D)] values were observed is that of segregated
composites [12–14] where small conducting particles are
confined to channels or slit-like structures (or cracks). For
these, even a suggested [33] 2D conducting subsystem cannot
account for the t < μ(2D) observations. In those composites,
t values as small as 0.4 [13,14], and very small percolation
thresholds, as small as x0

c = 0.001, were found (showing that
V � Vex). We suggest that the small t values may be due
to the fact [13] that with the increase of x “the conducting
channels become much thicker.” This is similar to the increase
of r with x in our model for the CNT composites as given
by Eq. (3). The low percolation threshold is also consistent
with the very low percolation thresholds that we have shown
previously [27] to exist in similar systems of channels and
cracks where the conducting phase consists of a liquid. Hence,
the two necessary conditions for the observation of t < μ that
we suggest are fulfilled also for the segregated composites.
Moreover, the x range for the determination of t in Ref. (13)
was (x − x0

c )/x0
c ≈ 10. This is consistent in particular with our

prediction for small t ≈ γμ values (and even t < 1 values)
when (x − x0

c ) � x0
c .

For the very many experimental studies reported on CNT-
polymer composites the value of t was found “in the range
from 1.3 to 4 peaked around t = 2′′ [8]. The broad range of
values found by experiments was described as a nonuniversal
behavior [37] and it was suggested [8,44,45] that the values of
the exponent t depend on the preparation conditions. However,
no specific connection between the observed values of the
exponent and those conditions was proposed. In particular,
quite a few t values in those 3D CNT composites were found
to be between μ(2D)�1.3 and μ(3D)�2. Some of these
observed values were explained [23] as due to a possible
conducting 2D subnetwork within the 3D conducting network,

but no structural experimental or computational evidence
was presented for that. In addition, simulation works on
elongated 3D constant size cylinders that represent CNTs
in the composites do not support this 2D explanation since
t < μ(2D) and even t < 1 values (as small as 0.4) have been
reported [18,19]. In these simulations, interactions that may
change the system parameters with increasing x have been
introduced. On the other hand, simulations on 2D systems
of widthless sticks [20,21], where no interactions that can
cause parameters changes have been introduced, showed t

values varying from μ(2D) to t = 1 (with departure from the
threshold). Accordingly, with no system parameter change t

cannot be smaller than μ(2D) (or 1) and obviously cannot
account for experiment [13,14] or simulation [18,19] with t

values as small as 0.4. This is important since it shows that
at least the t < 1 result should be attributed to another effect
such as the one that we propose in the present article.

The findings of t < μ for other carbon allotrope composites
were reported also for 3D polymer composites of graphene
and graphite nanosheets. For example, for these systems, for
which Vex � V (as shown for a system of disks [27]), values
of t of 1.26 [15], 1.67 [16], and 1.54 [17] were found. It is
important to note here that all the results that we cite were
measured (or simulated) on composites after their molding
and curing processes were completed and no further changes
in the samples’ structure took place. In other words, the σ (x)
dependence does not represent any kinetic effect [8,44] and
the values of x represent a series of independently prepared
samples.

We remark here that in all the above mentioned composites
(where V � Vex), x0

c can be of the order of 0.01 and thus
typical studies consider x ranges with (x − x0

c )/x0
c values of

the order of 10 [8]. The fact that in the overwhelming majority
of observations, values of t = μ [8,45] have been found, shows
that this range is still within the critical regime of classical
percolation [7]. A similar conclusion appears to apply also for
simulations, as follows from recent detailed studies [52] that
have shown that universal values for t can be obtained even
for (x − x0

c )/x0
c between 10 and 100.
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