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Identification of two mechanisms for current production in a biharmonic flashing electron ratchet
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Ratchets rectify the motion of randomly moving particles, which are driven by isotropic sources of energy
such as thermal and chemical energy, without applying a net, time-averaged force between source and drain.
This paper describes the behavior of a damped electron, modeled by a quantum Lindblad master equation, within
a flashing ratchet (a one-dimensional potential that oscillates between a flat surface and a periodic asymmetric
surface). By examining the complete space of all biharmonic potential shapes and a large range of oscillation
frequencies, two modes of ratchet operation, differentiated by their oscillation frequencies (relative to the rate of
electron relaxation), are identified. Slow-oscillating, strong friction ratchets operate by a classical, overdamped
mechanism. In fast-oscillating, weak friction ratchets, current is primarily produced when the frequency of the
oscillating potential is resonant with the beating of the electron wave function in the potential well. The shape
of the ratchet potential determines the direction of the current (and, in some cases, straightforwardly accounts
for current reversals), but the maximum achievable current at any shape is controlled by the degree of friction
applied to the electron.

DOI: 10.1103/PhysRevE.93.062128

I. INTRODUCTION

A ratchet is a nonequilibrium scheme that rectifies the mo-
tion of randomly moving particles without a net applied force
in the direction of transport, by breaking symmetries of the
particle motion in space and time. Ratcheting is the operative
mechanism of biological enzymes, pumps, and motors [1,2],
and has been experimentally realized in particle separators
and sorters [3–8]. In particular, a “flashing” ratchet works by
switching, continuously or instantaneously, between two states
of the potential surface on which the particle travels [Fig. 1(a)]:
(i) a surface with periodic features that are asymmetric in the
direction of transport, and (ii) a surface that allows random,
isotropic diffusion of a particle (i.e., a flat potential). The
random motion of the particle, due to its coupling to the
environment, is rectified by the local, time-dependent forces
from the oscillating potential. An exciting possible application
of such a mechanism is the enhancement of directional
transport in nanostructured organic and inorganic materials by
ratcheting the charge carriers [9,10]. In photovoltaic, sensing,
logic, and low power devices based on these materials, electron
motion is randomized by strong electron-phonon coupling
and an abundance of scattering mechanisms, which lead
to fast dissipation of electronic energy into the vibrational
bath. A method to induce transport of highly damped charge
carriers toward the current-collecting electrodes by rectifying
their random thermal motion is therefore a promising avenue
for improving the performance of these devices. A flashing
electron ratchet (as we model here) [11–13]—as opposed to
a tilting ratchet, where the asymmetric potential is rocked by
an oscillating force—is particularly suited to improving the
yield of charge collection in photovoltaic and sensing devices
because it introduces the oscillating potential through a gate
electrode, rather than requiring the application of an alternating
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source-drain bias [14] or scattering features [15–18] that could
interfere with the collection of current.

In this work, we study the mechanisms by which a simple
model of a flashing ratchet, in which a damped electron
travels along one dimension within an oscillating biharmonic
potential, achieves directional current without applied bias.
The local spatial symmetry is broken by the asymmetric
features of the periodic potential, and the temporal symmetry is
broken through coupling the electron to the environment via a
Lindblad master equation, a purely quantum mechanical prop-
agator. Although a very short electronic dephasing lifetime
(1–100 fs over distances of 1–10 nm) ensures that coherence
does not play a role in electron transport in this system, the
use of a quantum propagator properly describes the electron’s
behavior at nanometer length scales by allowing for tunneling
during certain portions of the potential’s oscillation period.
In a flashing ratchet potential, there is no net bias. Significant
tunneling therefore leads to the formation of a delocalized state
where the electron no longer feels the local asymmetry of the
potential. Tunneling therefore decreases the ratchet current
from that achieved by a purely classical system. In contrast,
a tilting ratchet preserves the asymmetry of the potential
because the applied bias changes the potential depending on
the direction of the tilt [14,19]. We explore the parameter space
of all possible biharmonic shapes, by far the most common set
of asymmetric potentials used in the literature [5,20,21], and
a large range of oscillation frequencies for the potential, and
study the influence of these parameters on the net directional
current achieved by the ratcheting mechanism. This work
represents a systematic study of the effect of potential shape
on the current produced in a flashing electron ratchet with a
quantum mechanical propagator.

Our most important finding is that there exist two distinct
modes of ratcheting, characterized by the ratio of the potential
oscillation time scale to the electron relaxation time scale (i.e.,
the degree of friction applied to the electron). “Fast” electron
ratchets, where the potential oscillation and relaxation time
scales are similar, exploit resonances between the oscillation
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FIG. 1. Basic description of the flashing ratchet and ratchet
potential. (a) An illustration of the general mode of operation of
a classical overdamped ratchet. The probability density function
(quantum or classical) begins localized in a well. When the potential
turns off, the random forces from the bath spread the probability
density isotropically. As the potential turns on again, the local,
periodic asymmetry of the potential surface causes asymmetric
relaxation of the probability density, rectifying the random motion.
This mechanism does not work if the switching is much faster or
much slower than the characteristic spreading time of the probability
density function. Only one period of the ratchet potential is simulated,
with periodic boundary conditions, for the results and discussion.
(b),(c) The effect on the shape of the biharmonic potential V (x) =
a1 sin( 2πx

L
) + a2 sin( 4πx

L
) of (b) fixing the coefficient a1 while varying

a2, or (c) fixing a2 while varying a1. In (b), the degree of asymmetry
changes, while in (c), the shape is largely preserved but relative
heights of the peaks and depths of wells change.

of the potential and the damped beating of the electron
wave function inside a potential well to maximize directional
current. “Slow” electron ratchets operate like classical, over-
damped ratchets [see Fig. 1(a)]. The shape of the ratchet
potential determines, at least in the case of slow ratchets, the
direction of the current, and accounts for often mysterious
“current reversals” that can manifest upon variations of any
ratchet parameter [20]. The maximum magnitude of the
current achievable by the ratchet for any biharmonic shape
is controlled by the degree of friction applied to the electron;
fast ratchets achieve a globally higher maximum current than
slow ratchets.

The current in flashing ratchets is sensitive to the variation
of any parameter, including friction, driving amplitude, fre-
quency, and temperature [20,22]. Recent computing advances
have enabled studies that show that the ratchet current is a
deeply complex function of large, combined parameter spaces
[23–27], but physical intuition on many characteristics of
flashing ratchets, including current reversals and resonances,
remains sparse. Here, we identify two parameters, i.e., the
shape of the potential and the amount of friction on the electron
(defined as the ratio of the potential oscillation time scale
to the electron relaxation time scale), that, when explored
simultaneously over a large parameter space, reveal two modes

of ratchet operation that produce current by two different
mechanisms. Prior work that explored the effect of shape on the
behavior of the ratchet current focused on variations to a single
potential [28–34]; however, while the current from a ratchet
of a single shape does show resonances at certain oscillation
frequencies [20], examining the frequency dependence of a
single shape does not make apparent the transition from un-
derdamped to overdamped ratcheting mechanisms. Identifying
this transition, which is only possible when considering the
complete space of biharmonic shapes and a large range of
friction values, is critical in uncovering physically intuitive
behaviors, and relating these behaviors to structural features
of this complex system.

Description of the model: The Lindblad master equation.
We consider the dynamics of a single (noninteracting) damped
electron moving in a one-dimensional potential that is periodic
in space and time. Our electron is not a wave packet moving
within a lattice; it is an electron with a periodic wave
function within a periodic potential. The damping is induced
by ohmic coupling of the electron to a large number of
harmonic oscillators at some temperature T , such that the
bath always remains in thermal equilibrium (Born-Markov
approximation). By eliminating the bath degrees of freedom,
implicit effects of the bath are left on the electron, namely
decoherence and dissipation [35–38]. The Lindblad master
equation (LME) that we choose is given in Eq. (1) (in atomic
units),

∂ρ

∂t
= −i[HS,ρ] − iγ0[x,{p,ρ}] − 2meγ0kBT [x,[x,ρ]]

− γ0

8mekBT
[p,[p,ρ]], (1)

where ρ is the density matrix in the Schrodinger picture, HS

is the system Hamiltonian, γ0 is the system-bath coupling,
me is the effective mass of the electron, kB is Boltzmann’s
constant, and {p,ρ} is an anticommutator. The first term on
the right-hand side (RHS) is the nondissipative Liouville–von
Neumann term. The second and third terms, respectively,
describe momentum damping (dissipation) and localization
(decoherence). The fourth term guarantees positivity of the
density matrix at all times; without this term, Eq. (1) is
the Caldeira-Leggett master equation. This particular form
of the LME yields translationally invariant relaxation and
allows us to control the relaxation with just two parameters, γ0

and T .
For the specific form of the LME in Eq. (1), the coupling

strength γ0 to the bath causes an exponential decay of the
momentum p (and thus energy) in time [38]:〈p̂〉t ∝ 〈p̂〉0e

−2γ0t .
We choose γ0 to yield a momentum half life, τrelax = ln(2)

2γ0
=

50 fs. We will see later that it is the ratio of τrelax to the
oscillation period, rather than the absolute value of τrelax , that
influences the ratchet current.

The decay of spatial coherence is governed by the third
term on the RHS of Eq. (1), which suppresses the off-
diagonal elements of the density matrix [38]: ρ(x,x ′,t) =
ρ(x,x ′,0)e−2meγ0kBT (x−x ′)2

t , where x and x ′ are two different
positions within the one-dimensional (1D) ratchet potential.
Since the master equation we use is derived for a nonperiodic
potential, the rate of this decoherence process grows, without
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bound, with increasing separation between two positions.
Within the periodic ratchet potential, however, ψ(x + L) =
ψ(x), so the maximum distance between x ′ and x is L/2. We
therefore modify the distance matrix (x − x ′) by subtracting
L from any (x − x ′) > L/2 and adding L to any (x − x ′) <

−L/2. With this modification, Eq. (1) respects the periodic
boundary conditions of the ratchet potential.

Initial conditions. The initial state of the electron is a
thermally weighted sum of the eigenfunctions of the system,

ρ0 = 1

Z

∑
n
e−βEn |ψn〉〈ψn|, (2)

where β = 1
kBT

is the inverse temperature, Z = Tr(e−βH ) is
the quantum partition function, and |ψn〉 is an eigenfunction
of the system Hamiltonian. Although we can achieve the same
steady state by starting with a symmetric (zero-mean velocity)
set of plane waves or wave packets (Figs. S1(a) and S1(b) in
the Supplemental Material [39]), Eq. (2) allows the system to
achieve a steady state with the least computational effort. The
temperature of the system at t = 0 and the temperature of the
bath are set to 300 K. The temperature of the bath influences
the final equilibrium state and the decoherence rate, but since
the decoherence rate is much faster than the dissipation rate,
and the system is designed such that the thermal equilibrium
is never achieved, the effect of the exact temperature on
the steady-state mean velocity of the electron is minimal
(Figs. S1(c) and S1(d) in the Supplemental Material [39]).

The form of the ratchet potential. The ratchet potential
is represented as a biharmonic Fourier series [Figs. 1(b)
and 1(c)],

V (x,t) = sin2

(
πt

τratchet

)[
a1 sin

(
2πx

L

)
+ a2 sin

(
4πx

L

)]
,

(3)

where L is the spatial period of the ratchet potential, and an

are the coefficients (in units of energy, eV) of the Fourier
terms; the range 0 � a1,a2 � 4.5 eV is chosen to capture
a large set of confining potentials for an electron with an
initial kinetic energy of 25 meV (i.e., 300 K). The spatial
period L is set to 50 nm, similar to the length scale of
state-of-the-art photolithographic patterning techniques. Since
L is much greater than the length scale of atomic potentials,
we assume that the electron travels in a parabolic conduction
band with effective mass me = 1, i.e., a free or nearly free
particle, with no static disorder. Our conclusions about the
general behaviors of biharmonic electron ratchets, including
the presence of two ratcheting regimes at different levels of
friction, do not depend on the absolute value of the ratchet
spatial period, bath temperature, or coupling constant, as our
equation of motion [Eq. (1)] can be written in dimensionless
form (see the Appendix). In the Supplemental Material [39],
we show two sets of results where we use different values for
L and γ0 than in the main text.

We vary the oscillation period of the ratchet, τratchet , about
the momentum relaxation half life, τrelax [50 fs; Eq. (1)]. For
each ratio τratchet

τrelax
, we calculate the steady-state velocity of the

electron 〈〈v〉〉, where the first set of brackets denotes the
quantum expectation value and the second set of brackets
denotes a time average over one oscillation period of the
potential, as a function of a1 and a2. The mean velocity is

directly proportional to the current, and we use the two terms
interchangeably.

The density matrix of the electron is represented in the
Fourier grid basis [40] with 256 grid points, and prop-
agated according to Eq. (1), for 2.5 ps or ten oscilla-
tion periods, whichever is greater, using the variable order
Adams-Bashforth-Moulton predictor-corrector algorithm in
MATLAB (ode113). We explicitly simulate only one period
L of the ratchet potential, with periodic boundary conditions.
Since the coherence length of the electron (as given by its
thermal wavelength λ = 1√

2mekBT
∼ 1.9 nm) is much smaller

than the period L of the potential, self-interference is negligible
due to the fast decoherence rate as well as the localized
behavior of the wave function, as shown in the Supplemental
Material [39] movies (for example, the latter half of movies
M1 and M2).

II. RESULTS AND DISCUSSION

Figure 2 is a series of color maps of the nonequilibrium
steady-state velocity of the electron, 〈〈v〉〉, as a function of
the Fourier coefficients a1 and a2, for a series of ratios τratchet

τrelax
.

Figure S2 in the Supplemental Material [39] contains the full
dataset that we calculated (i.e., plots for more values of τratchet

τrelax
).

Positive current is shown in shades of red and yellow (top of
the color bar), and negative current is shown in shades of blue
and purple bottom of the color bar). A generic, symmetric
color bar is shown at the top of the figure; the actual range
of 〈〈v〉〉 represented by that color bar changes from tile to tile
in order to best visualize the features of each plot. Figure 3
shows the maximum value of 〈〈v〉〉 versus the time-scale ratio
τratchet

τrelax
. In every case, the maximum value of 〈〈v〉〉 is positive

for reasons we discuss below.
The amplitude of the ratchet potential at any given time

depends on the absolute values of a1 and a2, but the ratio of
the Fourier coefficients a2

a1
determines the shape of the ratchet

potential; see Figs. 1(b) and 1(c). Any straight line drawn on
a plot in Fig. 2 that goes through the origin traces out a series
of potentials with the same shape. For example, the dotted
lines corresponding to a2

a1
= 0.25 represent the widely studied

biharmonic approximation to the piecewise linear sawtooth
ratchet potential, which is chosen as a “typical example” of a
ratchet potential [20]. By inspection of the plots in Fig. 2, we
see that, in fact, the peak currents as a function of the ratchet
shapes we study here, at least those with τratchet

τrelax
> 1, tend to

fall on the line with a2 ∼ 0.6a1 (shown as dashed lines on the
plots in Fig. 2). When a1 or a2 is equal to zero (along the x

and y axes of the plots in Fig. 2), the potential is symmetric,
and 〈〈v〉〉 is zero within machine precision.

The parameter τratchet [Eq. (3)] is a measure of the rate
at which the electron periodically receives energy from the
ratchet potential, and τrelax [Eq. (1)] is a measure of the rate at
which the electron loses energy to the environment. Figure 3
shows a plot of the maximum velocity 〈〈v〉〉 at each time-
scale ratio, τratchet

τrelax
, chosen from all possible biharmonic shapes.

This plot has two peaks, at τratchet

τrelax
∼ 1 and ∼ 20, separated

by an inflection point at τratchet

τrelax
∼ 3. We colloquially refer to

the ratchets with τratchet

τrelax
< 3 as “fast” ratchets, and ratchets

with τratchet

τrelax
> 3 as “slow” ratchets. The time-scale ratio that
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FIG. 2. Plots of the average steady-state velocity 〈〈v〉〉 of the electron as a function of the biharmonic Fourier coefficients a1 and a2, for
a series of ratios of oscillation and dissipation time constants, τratchet

τrelax
(where τrelax is constant). All plots comprise 60 × 60 calculated values

of 〈〈v〉〉 and have the same ranges of values on the x and y axes: 0 � a1,a2, � 4.5 eV. The absolute values of vmax = max(〈〈v〉〉) and −vmax

(color bar) are different for each plot; the color bar is adjusted from plot to plot to best show the features of the plot. Along lines going through
the origin, the ratio a2

a1
, and therefore the shape of the ratchet potential, is constant. The dotted (a2 = 0.25a1) and dashed (a2 = 0.6a1) lines

correspond to the shape most used in the literature and the shape that we find produces the most current for τratchet

τrelax

>∼ 1, respectively. The full
data set is shown in the Supplemental Material [39].

produces the global maximum of 〈〈v〉〉 is ∼1; if the ratio is
not ∼1, changing the shape of the potential (by changing a1 or
a2) cannot increase the velocity to the global maximum. The
Supplemental Material [39] shows that these two regimes of
ratcheting are also distinguishable for ratchets with different
values of for τratchet (Fig. S3) and L (Fig. S4), although we do
not necessarily observe a peak in 〈〈v〉〉 as a function of τratchet

τrelax

for slow ratchets.
Mechanisms of operation for fast and slow ratchets. Our

simulations of the behavior of the electron in the ratchet
potential, shown in the movies in the Supplemental Material
[39], allow us to understand the bimodal dependence of
〈〈v〉〉 on τratchet

τrelax
in Fig. 3. Slow ratchets operate like classical,

overdamped flashing ratchets, as seen in Fig. 1(a). The wave
function spreads as the potential turns off; as the potential

turns on again, it causes an asymmetric relaxation, and ratchet
current results; see movie M1. If the oscillation of the potential
becomes too slow, the wave function fully delocalizes before
the ratchet potential turns on again, and no current results.
Additionally, in the limit τratchet

τrelax
� 1, the electron remains in

the equilibrium state of the instantaneous potential, and no
current results; see Fig. S5 in the Supplemental Material [39].

In “fast” ratchets ( τratchet

τrelax
∼ 1), the oscillating potential

exerts a high impulse (I = − ∫ t+τratchet

t
dV
dx

dt) on the electron.
Under these conditions, the rate of energy input exceeds the
relaxation rate, and the electron undergoes damped beating
inside the wells; see movie M2 (1:00 min and onwards). If
the beating is resonant with the oscillation frequency of the
potential (or integer multiples of that oscillation frequency),
then the potential turns off as the wave function spreads, such
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FIG. 3. A plot of the maximum average velocity 〈〈v〉〉max of
the electron in the parameter space 0 � a1,a2 � 4.5 eV at each
time-scale ratio, τratchet

τrelax
, extracted from the plots in Fig. 2. For reasons

explained at the end of the text, 〈〈v〉〉max is always positive, so
〈〈v〉〉max = |〈〈v〉〉|max . The values of τrelax and of the temperature
T of the bath are constant across the data set. There are two distinct
peaks in this plot, centered around τratchet

τrelax
∼ 1 and τratchet

τrelax
∼ 20. The

noise around τratchet

τrelax
∼ 1 is due to the range of a1 and a2 that we

explored not being large enough to capture the maximum current;
extending the upper range of a1 and a2 to 9 eV comes closer to
capturing the maximum current (red triangles).

that the wave function releases two wave packets travelling
in opposite directions. As the potential turns on again, if the
potential surface is sufficiently asymmetric, one wave packet
moves to the adjacent well, while the second one is reflected
back to the original well. Eventually, a localized, right-moving
wave packet redevelops and is resonantly accelerated by the
oscillating potential. This mechanism leads to net unidirec-
tional acceleration of the wave function and ratchet current. If,
however, the beating is out of phase with the oscillations of the
potential, then the wave function is contracting as the potential
turns off, and no current results; see movie M3. Furthermore,
in the limit of very fast oscillations ( τratchet

τrelax
	 1), which is

quickly approached on the left side of the plot in Fig. 3, the
electron sees an averaged, static potential, and no current is
produced; see Fig. S6 in the Supplemental Material [39].

The resonances between the oscillating potential and the
beating wave packet appear in plots of 〈〈v〉〉 versus the
oscillation period for a given potential shape [some examples
are in Fig. 4(a)]. Resonant behavior due to vibrations of a
particle inside a potential well have been observed in classical
flashing ratchets where the particle has finite inertia, i.e., is
not overdamped [41,42], because the equations of motion for
overdamped particles have no inertial term that allows for
beating or other nonequilibrium dynamics. This mechanism is
therefore only operative for “fast” or weak friction ratchets,
and not for “slow” or strong friction ratchets. We note that
the mechanism for the resonances in current we observe here
is distinct from the phase coherence that produces current in
some quantum ratchet systems [43–48].

Since a given potential can induce wave-function beating
that is resonant with the oscillation frequency of the potential,
we also expect that a given oscillation frequency will be
resonant with the beating of the wave function within different
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FIG. 4. Illustrations of the resonance mechanism for the operation
of “fast” flashing ratchets. (a) A plot of the average velocity 〈〈v〉〉
of the electron vs the oscillation period of the ratchet potential for
three different potential shapes: (a1,a2) = (1.98,1.21)(solid line),
(1.44,0.76) (dashed line), and (3.50,1.06) (dotted line), in eV.
The peaks are a result of resonances between the frequencies of
wave-function beating and potential oscillation. (b) A plot of the
damped, natural frequency ωD of an electron in a static potential
defined by biharmonic Fourier coefficients a1 and a2, in the harmonic
approximation 〈〈E〉〉 = �ωD . Inset: The result of multiplying the
plot in (b) by τratchet = 48 f s ( τratchet

τrelax
= 0.9672) and coloring values

equal to (n ± 0.1) red, where n is an integer; the red values
correspond to potential shapes where the natural frequency of the
static potential is resonant with the oscillation frequency. This
simulation approximately reproduces the interference pattern-like
features in the plots in Fig. 2.

potential shapes. These “resonant shapes” manifest as the
interference pattern-like features in the plots in Fig. 2; these
patterns are most clearly apparent for 2.18 < τratchet

τrelax
< 4.84,

but exist up to τratchet

τrelax
< 9.67. The tilted bands of high current

are separated by regions where the average velocity is a factor
of 102–104 lower than the current in those bands. The bands
of current in Fig. 2 are approximately vertical rather than
horizontal because fixing the value of a2 and varying a1

increases the asymmetry while preserving the general shape
of the potential, whereas fixing a1 and varying a2 changes
the shape of the potential and its asymmetry; see Figs. 1(b)
and 1(c).

To simulate the interference pattern-like features, let us
assume that the electron spends most of its time in the
deepest wells of the periodic ratchet potential, and calculate its
damped, natural frequency ωD from its energy in one period of
the static potential V (x) = a1 sin( 2πx

L
) + a2 sin( 4πx

L
), using the

harmonic approximation 〈〈E〉〉 = �ωD (the minimum of the
potential is deep enough so that the ground state is localized).
A numerical solution for the ground state, as opposed to
evaluating mω2

bare = ∂2V
∂2x

|x0 , is needed for even qualitative
accuracy as it takes into account the relaxation from the bath.
We plot ωD = 1

τD
as a function of a1 and a2 in Fig. 4(b).

We then multiply every value in that plot by, for example,
τratchet = 48 fs ( τratchet

τrelax
= 0.967) such that each point now

corresponds to the ratio τratchet /τD . Finally, we color integer
multiples of τratchet /τD (and values that are within ±0.1 of
integer multiples) red to obtain the tilted vertical stripe pattern
shown in the inset of Fig. 4(b). Within these stripes, the
oscillation of the potential is synchronized (i.e., an integer
multiple) with the beating of the wave function, which is the
source of the resonant peaks in velocity shown in Fig. 4(a) and
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Fig. 2. For increasing values of τratchet , the number of values
of ωD that are integer multiples of 1/τratchet in the space of
potential shapes that we examine increases, so the number of
bands that fit into the plots in Fig. 2 increases. The vertical
columns in the inset of Fig. 4(b) do not line up exactly with
the features in Fig. 2 because ωD is calculated for a static
potential whereas the ratchet is time dependent, and because
the harmonic approximation only considers the curvature of
the potential well at its minimum.

As τratchet

τrelax
(i.e., friction) increases, the bands of current in

the plots in Fig. 2 begin to blend together. The resonance
condition is weakening because the increasing friction damps
the beating of the wave function before the potential goes
through one oscillation cycle. We observe a local minimum in
ratchet current at τratchet

τrelax
∼ 3 (Fig. 3) because the oscillation is

too slow to exploit the beating of the wave function before it
is damped, and too fast to allow the wave function to spread.
As the ratchet slows further, the impulse from the potential
decreases and high-barrier potentials (which, for fast ratchets,
provided the high impulse that induced beating of the wave
function) now trap the electron. The peak current therefore
moves toward lower-magnitude potentials (i.e., the origins of
the plots in Fig. 2), and the current decreases monotonically
outward from the origin, along lines of constant shape a2

a1
.

We confirmed that the interference pattern-like features are
not present in plots for the slowest (high friction) ratchets
by conducting a parameter sweep for τratchet

τrelax
= 12.1 and 0 �

a1,a2 � 1.5 eV at three times the energy resolution used to
construct the plots in Fig. 2; these calculations did not reveal
any new features.

The scaling relationship between current maps. For the
set of fast ratchets where τratchet

τrelax
< 2.42, as τratchet

τrelax
decreases

it appears that we are zooming in on the features in the
plot τratchet

τrelax
= 2.42 in Fig. 2, such that the striped pattern is

eventually no longer apparent. This behavior suggests that
there is a scaling relationship among the current maps in
Fig. 2; specifically, the overall structure of the velocity map
as a function of the scaled coordinates a′

1 = τratchet a1 and
a′

2 = τratchet a2 is the same for any fast ratchet. Physically, this
result implies that all fast ratchets have the same relationship
between the ratchet current and the shape of the potential. But
as we pointed out in the discussion of Fig. 3, the absolute
magnitude of the current is still controlled by the degree of
friction applied to the electron—that is, the value of τratchet

τrelax
.

Animation A1 shows this scaling behavior in the Supplemental
Material [39].

For τratchet

τrelax
< 0.846, we do not explore a large enough space

(a1,a2) to record the peak current, so we observe noise in the
plot of 〈〈v〉〉 versus τratchet

τrelax
(Fig. 3). Extending the upper limit

for a1 and a2 to 9 eV (from the original 4.5 eV) zooms out and
gets closer to the peak current (see red triangles on Fig. 3).
Further increasing a1 and a2 to zoom out to the full plot near
τratchet

τrelax
= 2.42, however, makes the potential too confining and

limits the maximum achievable current.
Current reversals in overdamped ratchets. For τratchet

τrelax
>

2.42, the plots in Fig. 2 are, in general, organized into regions
of positive current (upper left region in each plot) and negative
current (lower right) separated by the line a2 ≈ 0.7a1. The
sign of the current in our ratchet model is determined by
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a2 = 0.25a1
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a2 = 0.7a1
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FIG. 5. Representative potential shapes that lead to (a) positive
current (a2 = 0.25a1), (b) zero current (a2 = 0.7a1), and (c) negative
current (a2 = a1) for “slow” ratchets, i.e., τratchet

τrelax
> 2.42. In (a),

the current direction (red single arrow) is the shorter of two distances
between a well and its two neighboring peaks, indicated by the double
arrows. (b) As a2 becomes greater than 0.5a1, the shoulder transitions
into a well. (c) When a2 is equal to larger than a1, the distance between
the deepest well and its two neighboring peaks becomes very similar
(compare black double arrows), and the asymmetry in the heights of
those peaks controls the direction of current (blue single arrow). The
maximum negative current we observe is smaller in magnitude than
the maximum positive current we observe because trapping of the
electron in the secondary well, which only occurs for scenarios like
that in (c), rerandomizes the direction of the current, as explained in
the text.

the direction of the asymmetry of the potential, shown for
three general cases in Fig. 5. For a2 � 0.5a1 (upper left region
of each plot in Fig. 2), each repeat unit of the potential has
one well and one peak (with a shoulder); the asymmetry in
this class of structures originates from the different distances
from the bottom of the well to its two neighboring peaks
[Fig. 5(a)]. In these structures, the current flows from the
well to the closer peak, which, in our potentials, is always
to the positive side (right). For a2 � 0.5a1 (lower right region
in Fig. 2), the asymmetric shoulder deepens into a secondary
well and peak [Figs. 5(b) and 5(c)]. The change in the sign
of the current from positive to negative coincides with the
depth of the secondary well becoming greater than the average
kinetic energy of the electron; see Figs. S7 and movies M4
in the Supplemental Material [39]. Since the electron can
be trapped by the secondary well from its starting point in
the deepest well, the asymmetry in the potential is now due
to the difference in heights, instead of distances, to the two
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adjacent peaks [Fig. 5(c)]. The spreading of an electron wave
function in the deepest well is less impeded by the lower peak
to the left, so the direction of ratchet current in these structures
reverses. This flow of negative current is, however, countered
by the tendency of probability density, once in the secondary
well, to flow in the direction of the lower peak back to the
deepest well. The peak current in the negative direction is
therefore always smaller than the peak current in the positive
direction, and thus the global maximum in current for a given
ratio τratchet

τrelax
is always positive (Fig. 3). This mechanism does

not entirely explain current reversals for fast ratchets, which
we are still investigating. Current reversals as a function of
shape have been observed in “delta-kicked” ratchet models
[24]; however, the mechanism we describe here depends on
the ratchet potential trapping the dynamically relaxing wave
function, a feature that is absent in a delta-kicked model since
the potential is only on during the instantaneous kick.

III. CONCLUSIONS

In summary, we constructed a quantum model of an electron
in a flashing ratchet potential. The electron experiences dissi-
pation and decoherence through a Lindblad master equation.
We calculated the average steady-state velocity of the electron
in all possible biharmonic shapes and large range of oscillation
frequencies of the potential (Fig. 2). We find that the ratio of
time scales of oscillation of the potential and dissipation of
the electron, τratchet

τrelax
(i.e., the friction on the electron), is the

most important parameter in determining the magnitude of the
ratchet current (Fig. 3). Furthermore, we observe two distinct
modes of ratchet operation. Weak-friction ratchets, τratchet

τrelax
< 3,

achieve higher currents than strong-friction (heavily damped)
ratchets, by exploiting resonances between the nonequilibrium
beating of the wave function inside the potential wells and
the oscillation of the potential. For strong-friction ratchets,
reversals of current (from positive to negative) in shape space
are related intuitively to the type of asymmetry present in the
potential (Fig. 5). The time-scale ratio τratchet

τrelax
can be expressed

as a combination of multiple subrelaxation time scales,
including relaxation of the electron in-well and transmission
between barriers, as investigated by Tarlie and Astumian [49],
who use a potential that switches instantaneously between
static “positive” and “negative” states, but these quantities are
difficult to deconvolve for a continuously driven system like
the one we describe here.

Quantifying the importance of quantum effects in our
model is not straightforward, but we can make the following
two comments. First, the decoherence lifetime in our system
is too fast for quantum coherences to be contributing to
transport in any way. Second, our system is certainly different
from one propagated classically (using, for example, the
Langevin equation) because a quantum equation of motion,
even in the fast decoherence limit, allows for tunneling. Since
tunneling through a flashing barrier has the same transmission
probability regardless of direction, it is an isotropic mechanism
of transport that reduces the overall efficiency of the ratchet
by randomizing electron motion; see movie M5. The quantum
master equation is essential to revealing that tunneling in a
flashing ratchet lowers the current, as opposed to a tilting
ratchet [19], where a rocking potential changes the tunneling

transmission probability depending on the incident direction,
although tunneling can also decrease the current [50]. Flashing
ratchets that produce the most current therefore tend to be very
confining: the ratio of the amplitude of optimal potentials to the
steady-state kinetic energy of the electron ranges from three for
fast ratchets to over 30 for slow ratchets. Due to the height and
width of the potential barriers, any probability density that is
inside classically forbidden regions as the potential turns on is
reflected in the classical direction, and the amount of tunneling
between wells is negligible. We do observe that wavelike
behavior of the electron, such as the beating of the wave
function seen in fast ratchets, is essential to producing current;
this type of resonance is also, however, present in classical
particle ratchets under certain conditions. We are currently
building a classical equivalent of our model to quantitatively
explore the effect of quantum transport on the ratchet current.

Finally, we note that in Fig. 2, increasing τratchet

τrelax
, i.e., increas-

ing the friction on the electron, decreases the sensitivity of the
current to the biharmonic shape. In fact, in the overdamped
limit that is a common starting point for many models, our
calculations show negligible dependence of ratchet behavior
on shape, so only studying a single potential shape may be
appropriate. A similar decrease in the sensitivity of ratchet
performance to shape in the high damping and/or weak-kick
limit has been seen for delta-kicked ratchets [23–25]. Our
work highlights the importance of searching both shape and
frequency space in drawing general conclusions about ratchet
behavior beyond the overdamped limit, especially since it
appears that ratchets with a larger inertial component perform
better than overdamped ratchets under many conditions.

The oscillation frequencies (THz) and length scales (50 nm)
we choose here can be realized by using plasmonic nanos-
tructures to concentrate infrared radiation [51]. A periodic
array of such structures could be used to enhance transport
in a solar cell by capturing otherwise unabsorbed infrared
energy. The Supplemental Material [39] shows, however, that
our conclusions do hold for other values of the potential period
L and bath coupling strength γ0. Our ability to write the master
equation in dimensionless form (see the Appendix) implies
that our conclusions apply, in general, to noninteracting par-
ticles with ohmic dissipation because modifying parameters
within the dimensionless ratios (such as inserting a specific
effective mass or E(k) dispersion) does not introduce any
new mechanisms of motion. Different forms of the spectral
density, which describe the coupling to the bath, can however
introduce new time scales of dissipation and decoherence that
may lead to quantitatively and qualitatively different results
than what we obtain here. We also expect our assumption of
noninteracting particles to fail if the Debye screening length
is greater than the average interelectron distance b = 1/2N−3

e ,
where Ne is the local electron concentration, which may be the
case when the wave function is localized in the wells of the
potential [11].

In future work, we will explore higher dimensional Fourier
series of periodic potentials, where we will have access to
a larger variety of shapes, with more sophisticated search
techniques, such as genetic algorithms or simulated annealing,
instead of the brute force approach we use here. The fact that
the ratchet current is sensitive to the variation of any parameter
shows that such large-scale studies of ratchet parameter

062128-7



LAU, KEDEM, RATNER, AND WEISS PHYSICAL REVIEW E 93, 062128 (2016)

space are necessary to illuminate general characteristics of
ratchets, however physically intuitive or nonintuitive these
characteristics may be.
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APPENDIX

The master equation [Eq. (1)] can be written in dimension-
less form using the following substitutions:

x ′ = x

L
, p′ = p

mLγ0
, t ′ = tγ0. (A1)

Yielding the dimensionless master equation and the
rescaled kinetic and potential energy operators (in atomic units

and without the prime annotation), we get

∂ρ

∂t
= − i

γ0
[H,ρ]−iL2γ0[x,{p,ρ}] − 2mekT L2[x,[x,ρ]]

− meL
2γ 2

0

8kT
[p,[p,ρ]],

T = meL
2γ 2

0
p2

2
,

V (x,t) = sin2

(
πt

γ0τ

)
[a1 sin(2πx) + a2 sin(4πx)]. (A2)

Equation (A2) is scale invariant in space because the
potential is periodic, hence x ′ can only vary between [0,1],
and is also scale invariant in time due to decoherence and
dissipation (in the long time limit, the velocity reaches a steady
state). The value of the dimensionless constants in front of the
double commutators defines a ratio of the three parameters L,
T , and γ0 (the spatial period, temperature of the environment,
and coupling constant to the environment, respectively) that
will give the same results for any actual values chosen so long
as they are combined in the same ratio.

In the Supplemental Material [39], we show two additional
sets of data that lead to different values for the dimensionless
constants, and thus two different families of solutions. The
same features that we discuss in the main text, namely two
regimes of ratcheting, the peak current and resonance features
in fast ratchets, and the broad, featureless smears in slow
ratchets, remain the same.
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Newbury, R. P. Taylor, and P. Omling, Science 286, 2314 (1999).

[15] A. M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko,
and H. Zirath, Appl. Phys. Lett. 79, 1357 (2001).

[16] A. M. Song, Appl. Phys. A: Mater. Sci. Process. 75, 229 (2002).
[17] S. Sassine, Y. Krupko, J. C. Portal, Z. D. Kvon, R. Murali, K.

P. Martin, G. Hill, and A. D. Wieck, Phys. Rev. B 78, 045431
(2008).

[18] C. Drexler et al., Nat. Nanotechnol. 8, 104 (2013).
[19] P. Reimann, M. Grifoni, and P. Hänggi, Phys. Rev. Lett. 79, 10

(1997).
[20] P. Reimann, Phys. Rep. 361, 57 (2002).
[21] R. Bartussek, P. Hänggi, and J. G. Kissner, Europhys. Lett. 28,

459 (1994).
[22] M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).
[23] A. Celestino, C. Manchein, H. A. Albuquerque, and M. W.

Beims, Phys. Rev. Lett. 106, 234101 (2011).
[24] A. Celestino, C. Manchein, H. A. Albuquerque, and M. W.

Beims, Commun. Nonlinear. Sci. 19, 139 (2014).
[25] L. Ermann and G. G. Carlo, Phys. Rev. E 91, 010903 (2015).
[26] M. W. Beims, M. Schlesinger, C. Manchein, A. Celestino,

A. Pernice, and W. T. Strunz, Phys. Rev. E 91, 052908
(2015).

[27] G. G. Carlo, A. M. F. Rivas, and M. E. Spina, Phys. Rev. E 92,
052907 (2015).

062128-8

http://dx.doi.org/10.1073/pnas.2436170100
http://dx.doi.org/10.1073/pnas.2436170100
http://dx.doi.org/10.1073/pnas.2436170100
http://dx.doi.org/10.1073/pnas.2436170100
http://dx.doi.org/10.1039/b708995c
http://dx.doi.org/10.1039/b708995c
http://dx.doi.org/10.1039/b708995c
http://dx.doi.org/10.1039/b708995c
http://dx.doi.org/10.1038/370446a0
http://dx.doi.org/10.1038/370446a0
http://dx.doi.org/10.1038/370446a0
http://dx.doi.org/10.1038/370446a0
http://dx.doi.org/10.1073/pnas.96.23.13165
http://dx.doi.org/10.1073/pnas.96.23.13165
http://dx.doi.org/10.1073/pnas.96.23.13165
http://dx.doi.org/10.1073/pnas.96.23.13165
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1103/RevModPhys.81.387
http://dx.doi.org/10.1063/1.3129868
http://dx.doi.org/10.1063/1.3129868
http://dx.doi.org/10.1063/1.3129868
http://dx.doi.org/10.1063/1.3129868
http://dx.doi.org/10.1103/PhysRevE.86.041106
http://dx.doi.org/10.1103/PhysRevE.86.041106
http://dx.doi.org/10.1103/PhysRevE.86.041106
http://dx.doi.org/10.1103/PhysRevE.86.041106
http://dx.doi.org/10.1039/c3lc50849h
http://dx.doi.org/10.1039/c3lc50849h
http://dx.doi.org/10.1039/c3lc50849h
http://dx.doi.org/10.1039/c3lc50849h
http://dx.doi.org/10.1109/TNANO.2013.2246796
http://dx.doi.org/10.1109/TNANO.2013.2246796
http://dx.doi.org/10.1109/TNANO.2013.2246796
http://dx.doi.org/10.1109/TNANO.2013.2246796
http://dx.doi.org/10.1038/nmat2922
http://dx.doi.org/10.1038/nmat2922
http://dx.doi.org/10.1038/nmat2922
http://dx.doi.org/10.1038/nmat2922
http://dx.doi.org/10.7567/JJAP.52.06GE07
http://dx.doi.org/10.7567/JJAP.52.06GE07
http://dx.doi.org/10.7567/JJAP.52.06GE07
http://dx.doi.org/10.7567/JJAP.52.06GE07
http://dx.doi.org/10.7567/JJAP.54.06FG02
http://dx.doi.org/10.7567/JJAP.54.06FG02
http://dx.doi.org/10.7567/JJAP.54.06FG02
http://dx.doi.org/10.7567/JJAP.54.06FG02
http://dx.doi.org/10.1126/science.286.5448.2314
http://dx.doi.org/10.1126/science.286.5448.2314
http://dx.doi.org/10.1126/science.286.5448.2314
http://dx.doi.org/10.1126/science.286.5448.2314
http://dx.doi.org/10.1063/1.1398324
http://dx.doi.org/10.1063/1.1398324
http://dx.doi.org/10.1063/1.1398324
http://dx.doi.org/10.1063/1.1398324
http://dx.doi.org/10.1007/s003390201334
http://dx.doi.org/10.1007/s003390201334
http://dx.doi.org/10.1007/s003390201334
http://dx.doi.org/10.1007/s003390201334
http://dx.doi.org/10.1103/PhysRevB.78.045431
http://dx.doi.org/10.1103/PhysRevB.78.045431
http://dx.doi.org/10.1103/PhysRevB.78.045431
http://dx.doi.org/10.1103/PhysRevB.78.045431
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1038/nnano.2012.231
http://dx.doi.org/10.1103/PhysRevLett.79.10
http://dx.doi.org/10.1103/PhysRevLett.79.10
http://dx.doi.org/10.1103/PhysRevLett.79.10
http://dx.doi.org/10.1103/PhysRevLett.79.10
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1209/0295-5075/28/7/001
http://dx.doi.org/10.1209/0295-5075/28/7/001
http://dx.doi.org/10.1209/0295-5075/28/7/001
http://dx.doi.org/10.1209/0295-5075/28/7/001
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.106.234101
http://dx.doi.org/10.1103/PhysRevLett.106.234101
http://dx.doi.org/10.1103/PhysRevLett.106.234101
http://dx.doi.org/10.1103/PhysRevLett.106.234101
http://dx.doi.org/10.1016/j.cnsns.2013.06.020
http://dx.doi.org/10.1016/j.cnsns.2013.06.020
http://dx.doi.org/10.1016/j.cnsns.2013.06.020
http://dx.doi.org/10.1016/j.cnsns.2013.06.020
http://dx.doi.org/10.1103/PhysRevE.91.010903
http://dx.doi.org/10.1103/PhysRevE.91.010903
http://dx.doi.org/10.1103/PhysRevE.91.010903
http://dx.doi.org/10.1103/PhysRevE.91.010903
http://dx.doi.org/10.1103/PhysRevE.91.052908
http://dx.doi.org/10.1103/PhysRevE.91.052908
http://dx.doi.org/10.1103/PhysRevE.91.052908
http://dx.doi.org/10.1103/PhysRevE.91.052908
http://dx.doi.org/10.1103/PhysRevE.92.052907
http://dx.doi.org/10.1103/PhysRevE.92.052907
http://dx.doi.org/10.1103/PhysRevE.92.052907
http://dx.doi.org/10.1103/PhysRevE.92.052907


IDENTIFICATION OF TWO MECHANISMS FOR CURRENT . . . PHYSICAL REVIEW E 93, 062128 (2016)

[28] J. F. Chauwin, A. Ajdari, and J. Prost, Europhys. Lett. 32, 699
(1995).

[29] Y. D. Chen, B. Yan, and R. M. Miura, Phys. Rev. E 60, 3771
(1999).

[30] M. Kostur and J. Luczka, Phys. Rev. E 63, 021101 (2001).
[31] V. M. Rozenbaum, T. Y. Korochkova, D. Y. Yang, S. H. Lin, and

T. Y. Tsong, Phys. Rev. E 71, 041102 (2005).
[32] J. Chacko and G. Tripathy, Indian J. Phys. 89, 981 (2015).
[33] E. M. Roeling, W. C. Germs, B. Smalbrugge, E. J. Geluk, T. de

Vries, R. A. J. Janssen, and M. Kemerink, AIP Adv. 2, 012106
(2012).

[34] J. S. Roth, Y. Zhang, P. Bao, M. R. Cheetham, X. Han, and
S. D. Evans, Appl. Phys. Lett. 106, 183703 (2015).

[35] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[36] L. Diosi, Europhys. Lett. 22, 1 (1993).
[37] S. Gao, Phys. Rev. Lett. 79, 3101 (1997).
[38] M. A. Schlosshauer, Decoherence and the Quantum-To-

Classical Transition (Springer, Leipzig, 2008).
[39] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.93.062128 for data that shows the behavior
of the ratchet model for different initial conditions, spatial
periods, temperatures, and friction coefficients. Movies detailing
the dynamics of the wave function are also included.

[40] M. Berman and R. Kosloff, Comput. Phys. Commun. 63, 1
(1991).

[41] H. Chen, Q. Wang, and Z. Zheng, Phys. Rev. E 71, 031102
(2005).

[42] V. Kharchenko and I. Goychuk, New J. Phys. 14, 043042
(2012).

[43] J. Lehmann, S. Kohler, P. Hanggi, and A. Nitzan, Phys. Rev.
Lett. 88, 228305 (2002).

[44] S. Denisov, L. Morales-Molina, S. Flach, and P. Hänggi, Phys.
Rev. A 75, 063424 (2007).

[45] T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina,
and M. Weitz, Science 326, 1241 (2009).

[46] M. Heimsoth, C. E. Creffield, and F. Sols, Phys. Rev. A 82,
023607 (2010).

[47] F. Zhan, S. Denisov, A. V. Ponomarev, and P. Hänggi, Phys.
Rev. A 84, 043617 (2011).

[48] C. Grossert, M. Leder, S. Denisov, P. Hanggi, and M. Weitz,
Nat. Commun. 7, 10440 (2016).

[49] M. B. Tarlie and R. D. Astumian, Proc. Natl. Acad. Sci. USA
95, 2039 (1998).

[50] A. Kato and Y. Tanimura, J. Phys. Chem. B 117, 13132
(2013).

[51] V. Giannini, A. I. Fernández-Domı́nguez, S. C. Heck, and S. A.
Maier, Chem. Rev. 111, 3888 (2011).

062128-9

http://dx.doi.org/10.1209/0295-5075/32/8/014
http://dx.doi.org/10.1209/0295-5075/32/8/014
http://dx.doi.org/10.1209/0295-5075/32/8/014
http://dx.doi.org/10.1209/0295-5075/32/8/014
http://dx.doi.org/10.1103/PhysRevE.60.3771
http://dx.doi.org/10.1103/PhysRevE.60.3771
http://dx.doi.org/10.1103/PhysRevE.60.3771
http://dx.doi.org/10.1103/PhysRevE.60.3771
http://dx.doi.org/10.1103/PhysRevE.63.021101
http://dx.doi.org/10.1103/PhysRevE.63.021101
http://dx.doi.org/10.1103/PhysRevE.63.021101
http://dx.doi.org/10.1103/PhysRevE.63.021101
http://dx.doi.org/10.1103/PhysRevE.71.041102
http://dx.doi.org/10.1103/PhysRevE.71.041102
http://dx.doi.org/10.1103/PhysRevE.71.041102
http://dx.doi.org/10.1103/PhysRevE.71.041102
http://dx.doi.org/10.1007/s12648-015-0660-5
http://dx.doi.org/10.1007/s12648-015-0660-5
http://dx.doi.org/10.1007/s12648-015-0660-5
http://dx.doi.org/10.1007/s12648-015-0660-5
http://dx.doi.org/10.1063/1.3677934
http://dx.doi.org/10.1063/1.3677934
http://dx.doi.org/10.1063/1.3677934
http://dx.doi.org/10.1063/1.3677934
http://dx.doi.org/10.1063/1.4919801
http://dx.doi.org/10.1063/1.4919801
http://dx.doi.org/10.1063/1.4919801
http://dx.doi.org/10.1063/1.4919801
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1209/0295-5075/22/1/001
http://dx.doi.org/10.1209/0295-5075/22/1/001
http://dx.doi.org/10.1209/0295-5075/22/1/001
http://dx.doi.org/10.1209/0295-5075/22/1/001
http://dx.doi.org/10.1103/PhysRevLett.79.3101
http://dx.doi.org/10.1103/PhysRevLett.79.3101
http://dx.doi.org/10.1103/PhysRevLett.79.3101
http://dx.doi.org/10.1103/PhysRevLett.79.3101
http://link.aps.org/supplemental/10.1103/PhysRevE.93.062128
http://dx.doi.org/10.1016/0010-4655(91)90233-B
http://dx.doi.org/10.1016/0010-4655(91)90233-B
http://dx.doi.org/10.1016/0010-4655(91)90233-B
http://dx.doi.org/10.1016/0010-4655(91)90233-B
http://dx.doi.org/10.1103/PhysRevE.71.031102
http://dx.doi.org/10.1103/PhysRevE.71.031102
http://dx.doi.org/10.1103/PhysRevE.71.031102
http://dx.doi.org/10.1103/PhysRevE.71.031102
http://dx.doi.org/10.1088/1367-2630/14/4/043042
http://dx.doi.org/10.1088/1367-2630/14/4/043042
http://dx.doi.org/10.1088/1367-2630/14/4/043042
http://dx.doi.org/10.1088/1367-2630/14/4/043042
http://dx.doi.org/10.1103/PhysRevLett.88.228305
http://dx.doi.org/10.1103/PhysRevLett.88.228305
http://dx.doi.org/10.1103/PhysRevLett.88.228305
http://dx.doi.org/10.1103/PhysRevLett.88.228305
http://dx.doi.org/10.1103/PhysRevA.75.063424
http://dx.doi.org/10.1103/PhysRevA.75.063424
http://dx.doi.org/10.1103/PhysRevA.75.063424
http://dx.doi.org/10.1103/PhysRevA.75.063424
http://dx.doi.org/10.1126/science.1179546
http://dx.doi.org/10.1126/science.1179546
http://dx.doi.org/10.1126/science.1179546
http://dx.doi.org/10.1126/science.1179546
http://dx.doi.org/10.1103/PhysRevA.82.023607
http://dx.doi.org/10.1103/PhysRevA.82.023607
http://dx.doi.org/10.1103/PhysRevA.82.023607
http://dx.doi.org/10.1103/PhysRevA.82.023607
http://dx.doi.org/10.1103/PhysRevA.84.043617
http://dx.doi.org/10.1103/PhysRevA.84.043617
http://dx.doi.org/10.1103/PhysRevA.84.043617
http://dx.doi.org/10.1103/PhysRevA.84.043617
http://dx.doi.org/10.1038/ncomms10440
http://dx.doi.org/10.1038/ncomms10440
http://dx.doi.org/10.1038/ncomms10440
http://dx.doi.org/10.1038/ncomms10440
http://dx.doi.org/10.1073/pnas.95.5.2039
http://dx.doi.org/10.1073/pnas.95.5.2039
http://dx.doi.org/10.1073/pnas.95.5.2039
http://dx.doi.org/10.1073/pnas.95.5.2039
http://dx.doi.org/10.1021/jp403056h
http://dx.doi.org/10.1021/jp403056h
http://dx.doi.org/10.1021/jp403056h
http://dx.doi.org/10.1021/jp403056h
http://dx.doi.org/10.1021/cr1002672
http://dx.doi.org/10.1021/cr1002672
http://dx.doi.org/10.1021/cr1002672
http://dx.doi.org/10.1021/cr1002672



