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We investigate the geometric structure of a nonequilibrium process and its geodesic solutions. By employing
an exactly solvable model of a driven dissipative system (generalized nonautonomous Ornstein-Uhlenbeck
process), we compute the time-dependent probability density functions (PDFs) and investigate the evolution of
this system in a statistical metric space where the distance between two points (the so-called information length)
quantifies the change in information along a trajectory of the PDFs. In this metric space, we find a geodesic for
which the information propagates at constant speed, and demonstrate its utility as an optimal path to reduce the
total time and total dissipated energy. In particular, through examples of physical realizations of such geodesic
solutions satisfying boundary conditions, we present a resonance phenomenon in the geodesic solution and the
discretization into cyclic geodesic solutions. Implications for controlling population growth are further discussed
in a stochastic logistic model, where a periodic modulation of the diffusion coefficient and the deterministic force
by a small amount is shown to have a significant controlling effect.
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I. INTRODUCTION

A probabilistic description is essential for understanding
the dynamics of stochastic systems far from equilibrium,
given the uncertainty inherent in such systems. To compare
different probability density functions (PDFs), it is extremely
useful to quantify the differences among PDFs by assigning
an appropriate metric to probability. This metric structure
then provides a key link between stochastic systems and
geometry. Depending on the question of interest, different
metrics have been proposed (e.g., Refs. [1–10] and further ref-
erences therein). For instance, the Wasserstein metric has been
studied extensively by many authors in the optimal transport
problem [9] in which the key problem is to minimize transport
cost, which is typically taken to increase quadratically with the
distance between two locations. For Gaussian measures, the
Wasserstein metric is defined in the product space consisting
of Euclidean and positive symmetric matrices for the mean and
variance, respectively (e.g., see Ref. [4]). Compared with the
Wasserstein metric, whose application has established itself
as a branch of applied mathematics, the geometric structure
associated with the information change in the Fisher (or
Fisher-Rao) metric seems to be explored much less. Unlike the
Wasserstein distance, the Fisher metric provides a hyperbolic
geometry in the upper half plane (e.g., Refs. [2,7]) where
the distance is measured in units of the width of the PDF.
That is, the distance in the Fisher metric is dimensionless
and represents the number of different states in the statistical
space. Such a notion was proposed in the seminal work [11]
where statistical distance was introduced as the number of
distinguishable states between two PDFs. The purpose of our
paper is to generalize this concept to nonequilibrium systems
and to quantify the rate of information flow by computing the
change in the number of indistinguishable states within these
processes. This generalization will endow nonequilibrium
processes with geometric structure, providing an alternative
perspective on the link between stochastic processes and
geometry.

The Fisher metric for Gaussian measures is related to
the covariance, thereby also relating to fluctuations in the
systems. Specifically, Ref. [12] related the second moment
of fluctuations to the inverse of a metric tensor since strong
correlations between any point and its neighbors may emerge
from large fluctuations, resulting in shorter distances around
that point. In other words, the distance between different
thermodynamic states is normalized by the resolution (the
unit of distance) set by the strength of fluctuations. Such
fluctuation-based metrics in thermodynamic states have been
studied near equilibrium [11–14], for instance, in the compar-
ison of two equilibrium states via a statistical distance, or the
interpretation of the interaction in a system via the curvature of
the metric tensor (e.g., near phase transitions). A similar metric
structure was also utilized in quantum systems [11,15,16].
Generalization of this concept to nonequilibrium systems was
attempted by different authors, although they tend to be limited
to the analysis of systems in near equilibrium [14,17–19].
Recent efforts include the application of this concept to
minimize entropy production within a controlled system, or
even the experimental measurement of statistical distance as
a tool to validate theory [14,20–22]. As many systems in
nature are not near equilibrium due to intrinsic variability,
heterogeneity, or uncertainty in a system [23,34], our recent
work [23–25] focused on physical implications of the metric
for the structure of an attractor and the information flow in a
strongly out-of-equilibrium system (e.g., music). In particular,
Ref. [25] presents a mapping between the nonequilibrium
state and the distance to an attractor by information length;
Ref. [24] analyzed classical music by constructing time-
dependent PDFs from the music data stored in MIDI files.

The purpose of this paper is to investigate the information
change associated with nonequilibrium stochastic processes
by using the Fisher information metric and to provide a link
between geometric structure and a nonequilibrium process
within a strongly out-of-equilibrium system using an exactly
solvable model. We then examine implications of a geodesic
for which the information propagates at a constant speed.
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In particular, we show how our results can be utilized in
controlling a system. It is the aim of our work to inform
the potential utility of information length, which can provide
a powerful tool to unify different nonequilibrium processes.
The remainder of the paper is organized as follows. Section II
provides an information interpretation of out-of-equilibrium
processes. Section III introduces our model (the generalized
nonautonomous Ornstein-Uhlenbeck process) and provides
some important statistical relations. A general geodesic so-
lution is presented in Sec. IV, and specific solutions with
prescribed boundary conditions are investigated in Sec. V.
Section VI expands on physical realizability of a geodesic
solution. An example of controlling a system by utilizing
a geodesic motion is presented in Sec. VII. Conclusions
are provided in Sec. VIII. Appendixes A–E contain detailed
steps in deriving equations used in the text, as well as the
derivation of fluctuating Hamiltonian in relation to information
velocity and an equation of motion in the curved metric space,
the Christoffel and curvature tensors. Some of the included
derivations are quite basic and are similar to related analyses
by other researchers but are nevertheless included here to make
this paper self-contained.

II. INFORMATION CHANGE AND FLOW

As noted in Sec. I, the fluctuation-based Fisher metric
provides the number of states measured in units of the
resolution, which is set by the strength of fluctuations. To
elucidate the meaning of the resolution, it is worth recalling
that in equilibrium thermodynamics, the fluctuation of ran-
dom variables is determined by the properties of the heat
bath, which is assumed to be fixed with infinite capacity.
For instance, for the Maxwell-Boltzmann distribution, the
probability distribution function (PDF) of the state energy E

is given by

p(E) = βe−βE, (1)

where β = 1/kBT (kB is the Boltzmann constant, T the
temperature of the heat bath) is the inverse temperature. When
E ∝ x2 (where x is the velocity of a particle), fluctuations in
velocity x in the system are proportional to the thermal energy
kBT of the heat bath, which determines the variance (the width)
of the PDF in Eq. (1), and consequently the resolution on which
the state E is differentiated. The finer the resolution, the more
distinguishable different states are, and therefore the amount
of accessible information in the system increases. This can
alternatively be interpreted that the thermal energy of the heat
bath provides a unit of energy for the probability, setting the
unit of the information. This is consistent with the view that
the information increases with the increase in the gradient of
the PDF.

Many systems in nature are, however, far from equilibrium
and there is no fixed environment that can serve as a heat
bath for these systems [26–34]. In fact, one of the important
characteristics of these systems is that they are open and
continuously interact with their environment. The resolution of
the PDFs and thus the unit of information evolve dynamically
at the same time as the PDFs change with time. It is thus
important to model a system without advocating the presence
of an unphysical, artificial heat bath. One such method is to use

a stochastic forcing, for instance, via the following Langevin
equation:

dx

dt
= F (x) + ξ. (2)

Here, x is a random variable, and F is a deterministic force; ξ

is a stochastic forcing, which can for simplicity be taken as a
short correlated random forcing as follows:

〈ξ (t)ξ (t ′)〉 = 2D(t)δ(t − t ′). (3)

In Eq. (3), the angular brackets represent the average over
ξ , 〈ξ 〉 = 0, and D(t) is the strength of the forcing, which
can be prescribed as a function of time t . In this model, the
stochastic forcing ξ plays the role of heat reservoir in terms
of the maintenance of the fluctuations in the system, and in
equilibrium the energy provided by the stochastic forcing is
balanced by the energy dissipation (the so-called fluctuation-
dissipation theorem). This model permits us to investigate the
time evolution of a strongly out-of-equilibrium system and the
associated change in information.

As a system evolves out of equilibrium, the PDF of the
state evolves in time, and subsequent information change in
the system is quantified by comparing the PDFs at different
times. In order to quantify the difference in PDFs, which are
changing with time, we use the rate at which fluctuations
change in time as the (time-dependent) resolution of the
PDFs. Specifically, the rate of change in PDFs defines the
following information velocity v(t):

v2(t) =
∫

dx
1

p(x,t)

[
∂p(x,t)

∂t

]2

. (4)

The velocity v in Eq. (4) has units of inverse time, and
quantifies the rate at which the (dimensionless) information
changes. As shown in Appendix A, the information velocity
is the rms of the fluctuating Hamiltonian in a stochastic
system, and τ = 1/v thus provides a dynamic time unit as
far as information is concerned. As shall be discussed shortly,
a geodesic is a special path that has a constant v where the
metric is locally flat with no net force acting on it. This is
reminiscent of the constant speed of light as a photon travels
along a geodesic in curved space time.

The total accumulated change in information is then
obtained by computing the total time between the initial and
final times t = 0 and t = tF in units of τ as:

L(tF ) =
∫ tF

0
dt

1

τ (t)
=

∫ tF

0
dt

√∫
dx

1

p(x,t)

[
∂p(x,t)

∂t

]2

.

(5)

The accumulated change in information given by Eq. (5)
provides the total change in the information, and is the total
distance between the initial and final PDFs in the statistical
space. We call L(t) in Eq. (5) the information length. The
utility of a geodesic as an optimal path that minimizes the
dissipated energy (or entropy production) has been previ-
ously invoked through the inequality relation between L
and J as J (tF )tF � [L(tF )]2 where J (tF ) = ∫ tF

0 dt [v(t)]2 =∫ tF
0 dt

∫
dx 1

p(x,t) [
∂p(x,t)

∂t
]
2

is the time integral of v2. Note that
this inequality follows from the Cauchy-Schwartz inequality
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∫
v2dt

∫
u2dt � (

∫
vudt)2 with u = 1. The equality holds for

the minimum path where v is constant (e.g., Refs. [22,35]),
and the deviation from this equality quantifies the amount
of disorder in an irreversible process [35], or deviation from a
geodesic. Given initial and final points in the parameter space, a
geodesic is an extreme path that minimizes L; this is discussed
in Sec. III in an exactly solvable model.

A clearer geometric interpretation of the information
velocity and length is possible when control parameters λi (i =
1,2,3, . . .) of a system are known, in which case Eqs. (4)–(5)
can be expressed in terms of the metric gij based on the Fisher
information (see, e.g., Refs. [14,36,37]) as follows:

v2(t) = E =
∫

dx
dλi

dt
gij

dλj

dt
, (6)

where

gij =
∫

dx p(x,t)
∂ ln p(x,t)

∂λi

∂ ln p(x,t)

∂λj
. (7)

In Eq. (6), the velocity is defined in the control parameter space
λi , where the metric tensor gij in Eq. (7) gives the Riemannian
metric [38]. For the Gaussian process that we will consider
later, λi represents the mean value and variance [see Eqs. (27)
and (28)]. That is, the evolution of a nonequilibrium system
can be viewed as the motion of a particle with unit mass
traveling in the parameter space with the velocity v(t). Here,
the distance the particle travels represents the information
change. This dimensionless distance represents the number
of indistinguishable states that a system undergoes during the
time evolution. As shown in Appendix A, the information
velocity is a measure of the rms value of fluctuating energy,
and the square of the information velocity is related to the
second derivative of the relative entropy (or Kullback-Leibler
divergence) (see Appendix in Ref. [25]).

While v2 is given either by Eq. (5) or Eq. (6), Eq. (5) has the
advantage of enabling the computation of information velocity
and length directly from experimental and observational data
as long as the time-dependent PDFs can be constructed,
even when control parameters or governing equations of
the system are not available. For instance, Ref. [24] has
analyzed the information flow and length in classical music by
computing time-dependent PDFs from the music MIDI files
while Ref. [23] investigated an attractor structure in a logistic
map by using numerically computed time-dependent PDFs.

III. A SOLVABLE MODEL

The numerical computation of time-dependent PDFs is
often extremely demanding. In order to gain a key insight into
the implication of information length and geodesics, it is thus
invaluable to utilize an exactly solvable model. To this end,
we consider a linear, driven-dissipative system for a stochastic
variable x, which damps due to a friction γ while driven by an
external stochastic forcing ξ as follows:

dx

dt
= −γ (t)[x − f (t)] + ξ. (8)

Here, γ (t) is a non-negative friction constant; f (t) is a deter-
ministic force, which controls the location of the equilibrium
position. γ (t) or f (t) will be prescribed as a time-dependent

function for our purpose of finding a geodesic motion later.
For simplicity, we take the stochastic forcing ξ to have a short
correlation time with the correlation function given in Eq. (2)
with the amplitude D = D(t), which can depend on time in
general. When f = 0 and γ and D are constant, Eq. (8) is the
Ornstein-Uhlenbeck process, which is a prototypical model for
a noisy relaxation system and has been utilized and extended
in many areas of physical science and financial mathematics
(e.g., Refs. [39,40]).

Given an initial condition x = x0 at t = 0, the solution to
the stochastic differential equation (8) is simply

x(t) = x0e
−G(t) +

∫ t

0
dt1e

−[G(t)−G(t1)] [γ (t1)f (t1) + ξ (t1)],

(9)
where G(t) = ∫ t

0 dt ′γ (t ′) and G(t1) = ∫ t1
0 dt ′γ (t ′).

For the assumed Gaussian process ξ , the transition proba-
bility between the position x0 at t = 0 and the final position x

at time t is given by

P (x,t ; x0,0) =
√

β1(t)

π
exp{−β1(t)[x − y1(t)]2}. (10)

Letting the angular brackets denote the average over ξ , we then
have for y1(t) and β1 as the mean values of x and the inverse
temperature, respectively:

y1(t) = 〈x〉 = x0e
−G(t) + F(t), (11)

1

2β1(t)
= 〈[x(t) − y1(t)]2〉 =

∫ t

0
dt1e

−2[G(t)−G(t1)] 2D(t1),

(12)

F (t) =
∫ t

0
dt1e

−[G(t)−G(t1)] γ (t1) f (t1). (13)

To facilitate the analysis in the general case where the initial
position x0 is random with the mean value μ, we assume the
initial distribution of x0 to be the Gaussian distribution with
the inverse temperature β0

P (x0,0) =
√

β0

π
exp[−β0(x0 − μ)2], (14)

which has a peak at x0 = μ. The PDF at a later time is obtained
by integrating the product of the transition probability (10) and
the initial PDF (14) over x0 as:

P (x,t) =
∫

dx0P (x,t ; x0,0)P (x0,0)

=
√

β(t)

π
exp[−β(t){x − y(t))2}. (15)

In Eq. (15), y(t) and β(t) are the mean values averaged over
x0 and ξ as:

y(t) = 〈〈x〉〉 = μe−G(t) + F (t), (16)

1

2β(t)
= 〈〈[x(t) − y(t)]2〉〉 = 〈〈(δx)2〉〉 = e−2G(t)

2β0
+ 1

2β1
.

(17)
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Here, β1 is given in Eq. (12); the double angular brackets
〈〈. . .〉〉 now denote the average over both x0 and ξ ; μ = 〈〈x0〉〉
and δx = x − 〈〈x〉〉. It is useful to note that β in Eq. (17)
satisfies the following relation:

β = β0β1

β1e−2G(t) + β0
= β0

e−2G(t) + q(t)
. (18)

q(t) = β0

β1
= −e−2G(t) + β0

β
. (19)

For simplicity, the average over both ξ and the initial x0 will
now be denoted by angular brackets (instead of double angular
brackets) unless there is ambiguity in their meaning.

A. Energy budget

In order to understand the role of D(t), f (t), and γ (t) in
relation to information length, it is useful to examine energy
relations involving the second moment of x for macroscopic
energy y2 = 〈x〉2 and fluctuating energy 〈(δx)2〉, where δx =
x − y. From Eq. (8), we obtain by using the Stratonovich
calculus [39–41]:

d

dt

(
x2

2

)
= −γ (t)x[x − f (t)] + ξx. (20)

The total work Wξ by the external forcing between the initial
time t = 0 and final time t is obtained by the time integral of
the last term in Eq. (20). This is computed by using Eqs. (9)
and (3):

〈ξ (t)x(t)〉 = 〈ξ (t)δx(t)〉 =
∫ t

0
dt1e

−[G(t)−G(t1)]〈ξ (t)ξ (t1)〉
= D(t), (21)

Wξ =
∫ t

0
dt1〈ξ (t1)x(t1)〉 =

∫ t

0
dt1D(t1). (22)

The average of the first term on the right-hand side of Eq. (20)
gives us

〈γ (x − f )x〉 = γy2 + γ 〈(δx)2〉 − γfy

= γy(y − f ) + γ

2β
. (23)

Noting that the first and second terms on the right-hand side of
Eq. (23) are due to the mean and fluctuations, we can separate
the time integral of the average of Eq. (20) as

1

2
(y2 − μ2) =

∫ t

0
dt1γ (t1)y(t1)[y(t1) − f (t1)], (24)

1

2

(
1

β
− 1

β0

)
= −Wγ + Wξ, (25)

where Wγ is the frictional energy loss from fluctuations to the
environment:

Wγ =
∫ t

0
dt1

γ (t1)

2β(t1)
, (26)

and μ = y(t = 0) = 〈x(t = 0)〉 and β0 = β(t = 0). When
β(t) = β0 at some time t , the left-hand side of Eq. (25)
vanishes, therefore Wξ = Wγ . That is, when the temperature is
equal at the initial and final times, the work Wξ is balanced by

the total energy dissipation Wγ . Alternatively, if Wξ and Wγ

are not equal, then (Wξ − Wγ ) and (β0 − β) having the same
sign implies that the temperature, and hence the PDF width,
will increase or decrease according to whether Wξ is greater
or less, respectively, than Wγ .

IV. GEODESIC MOTION

For the PDF in Eq. (15), a lengthy but straightforward
algebra yields the information velocity in Eq. (4) in the
following form [25]:

v2 = E = 1

2β2
β̇2 + 2βẏ2, (27)

where β̇ = dβ

dt
and ẏ = dy

dt
. By comparing Eq. (27) with Eq. (6),

we can easily read off the metric tensor and control parameters
as follows:

gij =
( 1

2β2 0
0 2β

)
, λi =

(
β

y

)
. (28)

By using the Euler-Lagrange equations

dE
dβ

− d

dt

dE
dβ̇

= 0, (29)

dE
dy

− d

dt

dE
dẏ

= 0, (30)

we obtain the coupled equations for the geodesic motion

β̈ − β̇2

β
− 2β2ẏ2 = 0, (31)

d

dt
[βẏ] = 0. (32)

Here, Eq. (32) can be written as

βẏ = c, (33)

where c is constant. When c = 0, the geodesic becomes y =
const and β ∝ ln t . By using Eq. (33) in Eq. (31) and after some
straightforward manipulation (see Appendix B), we obtain

β̇2 = −4c2β + αβ2, (34)

where α is another constant. To understand its physical
meaning, we use Eq. (33) and Eq. (34) in Eq. (31) to obtain:

v2 = 1

2β2
β̇2 + 2c2β = α

2
. (35)

Thus, Eq. (35) implies that α is related to the information
velocity as

v =
√

α

2
. (36)

A solution to Eq. (34) is found after some lengthy algebra
(see Appendix B) as

β(t) = 2c2

α
[cosh

√
α(t − A) + 1]

= 4c2

α
cosh2

[
1

2

√
α(t − A)

]
, (37)
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where A is constant. By using Eqs. (37) in (33), we then find
the solution for y (see also Appendix B):

y(t) = −
√

α

c

1

1 + e
√

α(t−A)
+ B

=
√

α

2c
tanh

[
1

2

√
α(t − A)

]
−

√
α

2c
+ B, (38)

where B is another constant.
The identity sech2θ + tanh2 θ = 1 permits us to derive a

useful relationship between β(t) and y(t) from Eqs. (37)
and (38) as follows:

(
y + s√

β∗
− B

)2

+ 1

β
= 1

β∗
. (39)

Here

β∗ = 4c2

α
, s = c

|c| , (40)

where s represents the sign of c. That is, if we think of y

and 1√
β

being the variables, they are related via a circle, with

radius 1
β∗

and centered at (0,B − s√
β∗

). Geodesic motions are
then along portions of this circle. This is a reflection of a
hyperbolic geometry (the upper half Poincaré model) formed
by y and the square root of the temperature 1√

β
where the

center of the circle Eq. (39) is at the boundary (i.e., on the
axis where 1/

√
β = 0) of the upper half plane. The location of

the center and the radius of the circle depend on the particular
problem of interest (see the next section).

To summarize, Eqs. (37)–(38) are general solutions for the
geodesic, and the values of the four constants c,α,A, and B

are to be fixed by the boundary conditions at the initial t = 0
and final time tF , depending on the problem of interest. A few
specific examples are shown in the following sections.

V. GEODESIC EXAMPLES AND SIGNIFICANCE

We now consider specific cases of the geodesic Eqs. (37)–
(38) and examine the implications for the total time required
for the system to reach the final state, and the total amount
of work required. As an illustration, we consider the time
evolution of a nonequilibrium state shown in Fig. 1(a), where
the mean position starts with the initial value y = y0 = μ

and approaches another nonequilibrium state y = yF , which is
closer to the equilibrium. As boundary conditions, we consider
the case where the initial and final temperatures are equal. In
terms of the PDFs, the width of the initial and final PDFs is
thus the same, as shown in Fig. 1(a), while the mean position of
the PDF moves to the final point y = yF . The key question of
interest would be to find a path connecting the initial and final
states, which minimizes the total information change, and to
examine whether this path also minimizes the time in addition
to total energy dissipation. For instance, such minimization
will be particularly useful when the initial state is very harmful,
causing a lot of damage (e.g., a large population of bacteria,
etc., causing illness).

x 
0 5 10

P
(x
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0.4
(a) Problem

x (β=β
0
)
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(b) Natural path

FIG. 1. (a) A sketch illustrating the problem of moving a PDF
from a larger (y0) to smaller mean position (yF < y0), where the
temperature (width) of the PDF is the same at the initial and final
times t = 0 and t = tF . (b) A natural path with the same temperature
β = β0 for all time between t = 0 and t = tF . The units of x are
arbitrary.

A. Nongeodesic: β(t) = β0, γ (t) = γ0, and f = 0

As illustrated in Fig. 1(b), one possible and perhaps natural
path connecting the initial and final points would be to decrease
the mean position while keeping the same temperature as
β(t) = β0 for all time. This is achieved by using a constant
D = γ0/2β0 and f = 0 while decreasing y exponentially in
time through the constant frictional force as y = y0 exp(−γ t).
For a specific example, we consider the situation where
y = y0 = μ at the initial time t = 0 and y = yF at the final
time t = tF . As β is the same at the initial and final times,
Eq. (25) gives a simple relation that the work done by ξ is
dissipated by the frictional force, that is Wγ = Wξ . These
enable us to compute the total time tF and energy dissipation
Wξ in Eq. (22) simply as

tF = 1

γ
ln

y0

yF

, (41)

Wξ = Wγ =
∫ tF

0
dtD = DtF = 1

2β0
ln

y0

yF

. (42)

We can also compute the total information length using the
result in Ref. [25] as follows:

L =
√

2β0(y0 − yF ). (43)

Solid black curves in Figs. 2(a), 2(b), and 2(c), respectively,
show the total time tF , L and Wξ in Eqs. (24)–(43) against β0.
These will be compared with results obtained for the geodesic
path.

B. Geodesics

The natural path discussed above is not a geodesic as it
does not satisfy Eq. (39). For a circular geodesic motion, the
change in y in time should be compensated by the change
in β. Specifically, since the initial and final β are equal, β

should decrease in time initially and then eventually increase
back to the initial value β0 at the final time. That is, temperature
increases from 1/β0 to 1/β∗ > 1/β0 initially, and then at some
point should decrease back to recover the value 1/β0 at the
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FIG. 2. (a) Total time; (b) information length; (c) Wξ against β0 in the nongeodesic case (in solid black) and geodesic I (in dashed blue)
and II (in dash-dotted red); y(t = 0) = y0 = 5/6 and y(t = tF ) = yF = 1/30. Geodesic II (dash-dotted red) is shown for the value of β0 where
the diffusion (DII ) is non-negative. A distinct minimum in the total time is observed in geodesic I caused by the resonance (the matching of
� = �m).

final time, and furthermore the system may need to go through
several cycles of periodic increase and decrease in temperature
to satisfy a physical realizability [e.g., see Fig. 5(d)].

It is useful to start with the simplest case of one cycle. To be
specific, we take the total time along the path to be tF = 2A,
and the values of the temperature and y at the midpoint t =
A to be β(t = A) = β∗ = 4c2/α < β0 and y(t = A) = (y0 +
yF )/2 ≡ yM , respectively. Then, from Eqs. (37) and (38), we
obtain

β(t) = β∗ cosh2

[
1

2

√
α(t − A)

]
, (44)

y(t) = − 1√
β∗

tanh

[
1

2

√
α(t − A)

]
+ yM, (45)

where we used c < 0 (as y0 > yF ) and
√

α/2c = −1/
√

β∗.
Therefore, the conditions y(t = 0) = y0, y(t = tF ) = yF ,
β(t = 0) = β(t = tF ) = β0 give us the following relations:

y0 − yF ≡ � = 2√
β∗

tanh

[
1

2

√
αA

]
, (46)√

β0

β∗
= cosh

[
1

2

√
αA

]
. (47)

Typical behavior of y and β−1/2 against time are shown in
Fig. 3(a) and Fig. 3(c) for β0 = 0.3 and 3, respectively, where
we use y(t = 0) = y0 = 5/6 and y(t = tF ) = yF = 1/30 and
the value of α obtained in Sec. IV B1. Note that throughout the
paper, we will use these same values y0 = 5/6 and yF = 1/30
to facilitate comparison among different cases.

We recast Eq. (46) by using Eq. (47) to eliminate β∗:

� = 2√
β0

sinh

[
1

2

√
αA

]
. (48)

Equations (47)–(48) then give us

A = 2√
α

sinh−1

[
�

√
β0

2

]
= 2√

α
cosh−1

√
β0

β∗
, (49)√

β0

β∗
= cosh

[
sinh−1

(
�

√
β0

2

)]
. (50)

In order to determine the total time 2A and associated
energy dissipation, we will shortly find the value of α and
choose γ (t), D(t), and f (t) in Eq. (8) to satisfy our derived
equations above. Before doing this through specific examples,
it is useful to visualize the time evolution of general geodesic
solutions. To this end, we note that β(t) and y(t) in Eqs. (44)
and (45) satisfy Eq. (39) where B − s/

√
β∗ is replaced by

(y0 + yF )/2 as

(y − yM )2 + 1

β
= 1

β∗
, (51)

where yM = 1
2 (y0 + yF ). As Eq. (51) only depends on y0, yF ,

� = y0 − yF , β0 through Eq. (50), Eq. (51) is independent
of the information velocity (

√
α/2). Without specifying the

value of α, we can plot the geodesic motion from Eq. (51)
in Figs. 3(b) and 3(d) by using our fixed parameter values
y(t = 0) = y0 = 5/6 and y(t = tF ) = yF = 1/30 for the two
different values of β0 = 0.3 and 3, respectively. They clearly
show the part of a circular motion in the upper half plane y and
β−1/2. Although α does not change the shape of the geodesic
circular motion, it affects the speed at which a trajectory travels
along it. That is, the time scale on which y and β in Fig. 3(a)
and 3(c) evolve depends on α (i.e., larger α, faster evolution).

For completeness, the corresponding time evolution of the
PDFs is shown in Figs. 4(a) and 4(b) where the initial and
final PDFs are plotted in red on the right and blue on the left.
The increase followed by decrease in the width of the PDFs
(∝ β−1/2) with time is clearly seen. Figs. 4(c) and 4(d) are
shown for larger value of β0 to highlight the effect of β0.
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1. Geodesic I: Time varying D(t) and f (t) �= 0 with
constant friction γ (t) = γ0

The total time tF = 2A depends on the value of α (or c),
which is in turn determined by the condition on f . Specifically,
we require f (t = 0) = 0 at t = 0 in the following.

Since ẏ = −γ0(y − f ) and βẏ = c, we recast f as

f = y + 1

γ0
ẏ = y + c

γ0β
. (52)

Thus, using f (t = 0) = 0 in Eq. (52) fixes the value of c as

c = −γ0y0β0. (53)

By using Eq. (53) in Eq. (40), we obtain the value of α as

√
α = 2γ0β0y0√

β∗
. (54)

Thus, from Eqs. (46), (49), (50), and (54), we obtain the
total time tF = 2A for the geodesic

2A = 2

γ0
√

β0y0

Q

cosh Q
, (55)

where

φ =
√

β0(y0 − yF ), Q = sinh−1

[
φ

2

]
. (56)

To compute the total work done by ξ , we observe that
when γ (t) = γ0 is constant, G(t) = γ0t and G(t) − G(t1) =
γ0(t − t1). By using them in Eqs. (12) and (17) and letting
D = DI (t) for geodesic I, we obtain

2e2γ0tDI (t) = d

dt

(
e2γ0t

2β

)
, (57)

and thus

2DI (t) = γ0

β
+ 1

2

d

dt

(
1

β

)

= 1

β

[
γ0 −

√
α

2
tanh

[
1

2

√
α(t − A)

]]
. (58)

There is no contribution from the second term on the right-hand
side of Eq. (58) to Wξ for our prescribed boundary condition
β = β0 at t = 0 and tF ; the contribution from the first term is
found by using 1

β
= 1

c

dy

dt
[Eq. (33)] in Eq. (58):

Wξ =
∫ tF

0
dtDI (t) =

∫ 2A

0
dt

γ0

2c

dy

dt
= 1

2β0

(
1 − yF

y0

)
.

(59)

While Eq. (59) is correct, a careful examination of the value
of DI (t) in Eq. (58) reveals an interesting aspect about the
information velocity

√
α/2. That is, when α in Eq. (54) is used

in Eq. (58), DI can be shown to be negative for approximately
the second half of the time interval when the initial β0

is sufficiently large, specifically, when β0 > 3 for y0 = 5/6
and yF = 1/30 and for the fixed value γ0 = 1. The detailed
discussion regarding the origin of a negative DI is provided
in Sec. VII. In order to satisfy a physically realistic condition
that DI is non-negative, we need to impose the constraint that

the maximum value that tanh θ [θ =
√

α

2 (t − A)] can take as

(tanh θ )max = γ0√
α/2

=
√

β∗
β0y0

. (60)

On the other hand, since Eq. (45) implies that the maximum
value of tanh θ is

√
β∗(yM − yF ), we have

(tanh θ )max = 1

2

√
β∗�, (61)

where we used yM = 1
2 (y0 + yF ) and � = y0 − yF .

By equating Eqs. (60) and (61), we obtain the maximum
value, say �m, of � as

�m = 2

β0y0
= 4σ 2

0

y0
, (62)

where σ0 = 1/
√

2β0 is the standard deviation of the initial
and final PDF. �m is the largest displacement in y that can be
made before bringing the temperature back to the initial value,
and is referred to as the length of one cycle. The physical
meaning of �m as the maximum variation in y for a geodesic
subject to the boundary conditions of the equal temperature
β = β0 at the initial and final time is provided in Sec, VII.
When �m is smaller than � = y0 − yF , we will shortly show
how to construct a geodesic solution that satisfies boundary
conditions. In a very special case where �m exactly matches
�—the so-called resonance between two length scales—we
obtain an interesting relation

� = 2

β0y0
= 4σ 2

0

y0
. (63)

At this resonant point, tF takes the minimum value [see
Fig. 2(a)], as discussed later.

We now present some detailed analysis on how to construct
a geodesic solution when �m < �. Leaving the most general
analysis for future work, for the purpose of this paper it suffices
to consider a simple quantized case where there are an integer
number of cycles of length �m in �:

N = �

�m

= �β0y0

2
, (64)

and divide the path between y0 and yF into N small cycles of
length �m. For example, the geodesic for N = 10 is shown
in Figs. 5(c)–5(d) together with the case where N = 1 in
Figs. 5(a)–5(b) for comparison. Since all the cycles have the
same time evolution of β while the mean position of the ith
cycle changes as

y
(i)
M =

[
(N − i) + 1

2

]
�m, (65)

where i = 1,2,3, . . . ,N , we can write down the geodesic
equation for the ith cycle by using Eqs. (44), (45), and Eq. (65):

β(i)(t) = β∗ cosh2

[
1

2

√
α(t (i) − Am)

]
, (66)

y(i)(t) = − 1√
β∗

tanh

[
1

2

√
α(t (i) − Am)

]
+ y

(i)
M , (67)

where t (i) = [0,2Am]; 2Am in Eqs. (66) and (67) is the time
duration of the ith cycle, which can easily be found from
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FIG. 5. y and β−1/2 against time in (a) and (c); The circular geodesics in the upper half plane y and β−1/2 in (b) and (d) for β0 = 3 and 30,
respectively. In both cases, y0 = 5/6 and yF = 1/30.

Eq. (46) by replacing � by �m and by using Eq. (54) as

Am = 2
√

β∗
β0y0γ0

sinh−1

(
�m

√
β0

2

)
. (68)

Note that the time t in β(t) and y(t) in Eqs. (66) and (67) is
the cumulative time over all the cycles, computed as:

t = t (i) + (i − 1)(2Am), (69)

for i = 1,2,3, . . . ,N .
Figure 5(c) shows the time history of β and y, which

undergo ten small-amplitude periodic modulations; this mod-
ulation is more visible in Fig. 5(d). We note that the parameter
values in this figure were chosen to ensure an integer number
of (specifically, ten) cycles.

By using these results, we now compute the total informa-
tion length and total time by adding the contributions from all
i paths (i = 1,2,3, . . . ,N ) as follows:

tF = 2AmN =
√

β∗�
γ0

sinh−1

(
1√
β0y0

)
, (70)

L = tF

√
α

2
=

√
2�β0y0 sinh−1

(
1√
β0y0

)
. (71)

To present results, we compute tF , L, and Wξ by varying the
value of β0 for y0 = 5/6 and yF = 1/30, noting that for these
values, � = 0.8 and resonance � = �m occurs when β0 = 3
for geodesic I. Thus, when β0 < 3, N = 1 and we use results
obtained for one cycle where � = 0.8 [e.g., Eqs. (44)–(51)].
When β0 > 3, we use the integer N number of cycles for
geodesic I, by using Eqs. (70)–(71), and Eq. (59), together
with Eqs. (64)–(69). Results in Fig. 2 reveal a very interesting
utility of geodesic I. First, we observe that geodesic I results
in much smaller values not only for L and Wξ but also for tF ,
compared with the nongeodesic case. Furthermore, a distinct
minimum in the total time is observed in geodesic I around
β0 = 3 due to the aforementioned resonance (�m = �). A
corresponding time evolution of the PDFs for this resonant

case is shown in Fig. 4(b). This implies that for the given
initial y0 and final yF mean position, there exists an optimal
initial temperature (β0), which moves the PDF from y0 to yF

in the least time. These results imply the interesting possibility
of utilizing a geodesic to optimize total time in addition to total
dissipated energy. Recalling that these results are obtained for
a particular realization of a geodesic consisting of a number
of cycles with shorter length, further investigation into other
realizations would clearly also be worthwhile.

Finally, the time evolution of DI (t) and f (t) in Eqs. (58)
and (52) are shown in Fig. 6(a) for β0 = 30, respectively. We
see ten cycles (N = 10) of periodic modulation in DI and f (t).
The sign of f remains negative, the significance of which will
be discussed in a specific problem in Sec. VI.

2. Geodesic II: Time-varying friction γ = γ (t) and f (t) = 0

To determine the value of γ (t) that is consistent with
Eqs. (44) and (45), we utilize Eq. (8) and β

dy

dt
= c in Eq. (33):

γ = − 1

y

dy

dt
= − c

βy
. (72)

Then, the use of the condition γ (t = 0) = γ0 in Eq. (72) gives
us the value of c as

c = −γ0y0β0. (73)

By using Eq. (73) in Eq. (40), we obtain the value of α as

√
α = 2γ0β0y0√

β∗
, (74)

which is the same as Eq. (54). As in the case of geodesic
I in Sec. V B1, the diffusion D(t) can also become negative
for sufficiently large β0. For the purpose of formulating a
theoretical framework in this paper, in the following, we
limit our study to the one-cycle case for small β0 where
DII is positive between t = 0 and tF . In this case, from
Eqs. (46), (49), (50), and (74), we obtain the total time tF = 2A
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FIG. 6. (a) The blue upper curve shows DI (t), and the red lower curve shows f (t). (b) The blue lower curve shows DII (t), and the red
upper curve shows γ (t). For both panels β0 = 30, y(t = 0) = y0 = 0.08, and y(t = tF ) = yF = 0.05.

for the geodesic

2A = 2

γ0
√

β0y0

Q

cosh Q
, (75)

where Q is defined as

φ =
√

β0(y0 − yF ), Q = sinh−1

[
φ

2

]
. (76)

The information length for the geodesic motion then simply
follows from Eqs. (36), (74), and (55) as:

L =
∫ 2A

0
dtv =

√
2αA. (77)

The computation of the total dissipated energy Wξ requires
lengthier algebra. We refer D as DII for geodesic II and obtain
from Eqs. (12) and (17) the following:

2e2G(t)DII (t) = d

dt

(
e2G(t)

2β

)
, (78)

which essentially leads to the same equation (58) as,

2DII (t) = γ

β
+ 1

2

d

dt

(
1

β

)

= 1

β

[
γ −

√
α

2
tanh

[
1

2

√
α(t − A)

]]
. (79)

We again note that there is no contribution from the second
term on the right-hand side of Eq. (79) to Wξ for the same
β = β0 at t = 0 and tF , and the contribution from the first
term depends on γ (t). By using Eq. (72) in Eq. (79), we can
rewrite Wξ as:

Wξ =
∫ tF

0
dtDII (t) = −

∫ tF

0
dt

c

β2y
. (80)

By using Eqs. (44), (45), and (73) in Eq. (80), and after further
lengthy algebra (see Appendix E), we obtain

Wξ = 1

2

[
1

β0
− y0yF

]
ln

y0

yF

+ 1

4

(
y2

0 − y2
F

)
. (81)

Time evolution of DII (t) and γ (t) for geodesic II is shown
in Fig. 6(b) for β0 = 30, by using the same values of y0 and
yF as previously. We observe that the increase in the frictional
energy loss by larger γ is now responsible for reducing the
temperature back to the smaller value (larger β) during the
second half of the time evolution. Figure 2 showsL, tF , and Wξ

against β0, where they are seen to take small values compared
to the nongeodesic case. Information length for geodesic I
and II is observed to be small for sufficiently small β0. Note
that in this figure, geodesic II (in dash-dotted red) is shown
for sufficiently small value of β0 where the diffusion (DII )
is non-negative. These results again point to the interesting
possibility of its application in optimization.

VI. PHYSICAL REALIZABILITY OF A
GEODESIC SOLUTION

In Sec. V B1, we noted that the diffusion coefficient can
become negative as the initial inverse temperature β0 becomes
too large for fixed parameter values γ0, y0, and yF . In this
section, we expand on its physical meaning and realizability
of a geodesic solution.

We begin by looking at the meaning of �m = 2/β0y0 =
4σ 2

0 /y0 in Eq. (62) in relation to the information transfer by
expressing the information velocity in Eq. (36) in terms of �m

as

v =
√

α

2
= γ0y0σ∗

σ 2
0

= γ0(2σ∗)

�m/2
. (82)

Here, σ0 = √
1/2β0 is the standard deviation of the initial

and final PDF and σ∗ = √
1/2β∗ is the largest standard

deviation (width) of the PDF when t = Am, where the inverse
temperature takes the smallest value β∗. Recall that the
radius of the geodesic circle is 1/

√
β∗ = √

2σ∗. Equation (82)
illustrates that the rate of information propagation across �m/2
is balanced by the frictional dissipation rate across the width of
the PDF (2σ∗) at the middle point. Alternatively, �m/2 is the
largest distance over which the information can be transferred
physically for a given γ0.
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In order to highlight the effect of β0 on cyclic solutions,
it is useful to find an approximate expression for σ∗ from
Eq. (51) evaluated for the first cycle at β = β0, y = y0, and
�m/2 = y0 − yM : (

�m

2

)2

+ 2σ 2
0 = 2σ 2

∗ , (83)

which gives

σ∗ = σ0

[
1 + 2

σ 2
0

y2
0

] 1
2

, (84)

where Eq. (62) was used. We define the change in σ0 and y0

for the first half cyclic motion as

Dσ0 ≡ σ∗ − σ0, Dy0 = −�m

2
= −2σ 2

0

y0
, (85)

and examine how they are related to each other in the two cases
depending on the relative ratio of the width σ0 of the initial
PDF to y0.

In the first case where σ0 > y0/
√

2, Eq. (84) is approxi-
mated as

σ∗ ∼
√

2
σ 2

0

y0

 σ0, (86)

leading to Dσ0 ∼ σ∗. Thus, Eqs. (85)–(86) give us

Dσ0

Dy0
∼ − 1√

2
. (87)

Note that this limit supports a geodesic solution with N = 1.
In the opposite limit of σ0 < y0/

√
2, Eq. (84) is approximated

as

σ∗ ∼ σ0 + σ 3
0

y2
0

, (88)

which leads to Dσ0 ∼ σ 3
0

y2
0
, and thus

Dσ0

Dy0
∼ − σ0

2y0
= Dy0

4σ0
, (89)

where Eq. (85) is used (e.g., to eliminate y0 in place of Dy0).
It is intriguing that Eqs. (87) and (89) suggest very different
scaling relations between Dσ0 and Dy0 depending on whether
the initial PDF has a width much narrower or wider than y0.
Specifically, Eqs. (87) gives a simple linear relation as

Dσ0

σ0
∼ − 1√

2

Dy0

σ0
, (90)

where the normalization of Dσ0 and Dy0 was made by the
resolution σ0. In comparison, Eq. (89) gives an interesting
power-law relation, which can be expressed as follows:∣∣∣∣Dy0

2σ0

∣∣∣∣ ∼
(

Dσ0

σ0

)1/2

, (91)

where the normalization by the resolution σ0 was again made.
In comparison with Eq. (90), Eq. (91) implies a much smaller
change in σ0 than y0 as a power law. This is suggestive of a
fractal structure for small σ0 (near 1/β = 0 axis, which is the
lower boundary of the Poincaré half plane).

To examine the physical realizability of a geodesic solution,
we rewrite Eqs. (91) and (90) in terms of Dy0 = −�m/2 as

|Dσ0| ∝
{
�m if σ0 
 y0

�m

(
�m

σ0

)
if σ0 � y0

, (92)

where �m/σ0 is factored out to highlight that for small σ0,
|Dσ0| is larger than �m by this factor �m/σ0 
 1. If �m were
to be the whole interval � = y0 − yF , |Dσ0| ∝ �2/σ0, which
becomes very large for small σ0. Although a geodesic solution
is permitted for any value of |Dσ0|, too large |Dσ0| can be
problematic in its physical realization in a particular model.
To see this, we recall that from Sec. III, the change in the PDF
width is due to the competition between Wξ and Wγ . According
to Eq. (92), when the total distance (� = y0 − yF ) that the PDF
needs to move is too large compared to the narrow width of
the initial PDF, the required change in σ becomes large; the
PDF needs to become much wider than the initial one along
the geodesic (e.g., at the midpoint) and then become narrow
to recover β0. In order for the PDF to become narrower, the
fluctuating energy (which is large for a broad PDF at the middle
point) needs to be removed by Wγ via frictional damping γ0,
which transfers the energy to the environment. For a fixed γ0

and y0 and yF , there is a critical value of β0, above which
the frictional damping is insufficient to accomplish this task,
causing a negative diffusion D. Alternatively, for the given
initial β0 and y0, there is upper bound �m on � for a physically
realizable geodesic solution.

VII. APPLICATION TO POPULATION GROWTH

A logistic-type equation is a popular model for population
growth, which has been widely used to understand nonlinear
equilibration in many different systems. The merit of this
model is the simplicity in incorporating two conflicting effects
of the positive feedback (promoting the growth) and of
the negative feedback (inhibiting the growth) via nonlinear
damping. In a stochastic internal environment, the logistic
model can be written in the following form [32]:

du

dt
= γ u − (ε − ξ )u2 − g(t)u2. (93)

Here u � 0 is a non-negative random variable for the
population; the terms involving γ > 0 and ε > 0 represent
linear positive and nonlinear negative feedbacks, responsible
for the linear growth and the nonlinear saturation through
competition, respectively. ξ is the stochastic random part
of the negative feedback, which accounts for a stochastic
component of competition. For simplicity, ξ is assumed to
be a short-memory noise given by Eq. (3). The nonlinear
term −g(t)u2 represents the reduction of the population by a
prescribed deterministic force, which preferentially decreases
larger populations, specifically, as a quadratic power of u. Note
that −εu2 represents the internal damping (negative feedback)
mechanism while −g(t)u2 is damping by an external force,
which can be controlled for a geodesic solution. Since time and
u can always be normalized by γ and ε, respectively, we fix
the value of γ = 1 and ε = 1 while varying other parameters
for our study in this paper.
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FIG. 7. Time evolution of PDFs of x over the first cycle for β0 = 30 and 300 in (a) and (b), respectively. (c)–(d) are the evolution of PDFs
over the first and the last cycles [tenth and hundredth cycle for (c) and (d), respectively] shown at the same time. y0 = 5/6 and yF = 1/30.

We envision the situation where we can control the time
dependence of the prescribed forcing g(t) and the strength
of the stochastic noise ξ between the initial and the final
states and are interested in finding a best treatment protocol,
which reduces the population size in the least time. This
could potentially be very beneficial when a fast reduction

of the population (e.g., treatment of disease) is desired.
This optimal protocol is provided by a geodesic found in
Sec. V.

In order to utilize the results obtained in previous sections,
we transform the nonlinear equation (93) into the form of
Eq. (8) by using the change of variable x = −1/u + ε/γ as
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FIG. 8. Time evolution of PDFs of the population u for β0 = 30 and 300, corresponding to Fig. 7. 〈u(t = 0)〉 = 6xs〈u(t = tF )〉 = 1.0345,
which is close to the carrying capacity u∞ = 1 (γ = 1, ε = 1). (a)–(b) show the PDF during the first cycle as in Figs. 7(a)–7(b), where the
PDF at t = 0 can be identified with the peak at u = 6. (c)–(d) are the evolution of PDFs over the first and the last cycles [tenth and hundredth
cycle for (c) and (d), respectively] shown at the same time.
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FIG. 9. (a) The red lower curve shows DI (t), and the blue upper curve shows g(t). (b) The red lower curve shows y (the mean value of
x), and the blue upper curve shows u. For both panels β0 = 30, the carrying capacity γ /ε = u∞ = 1, y(t = 0) = y0 = 〈x(t = 0)〉 = 5/6, and
y(t = tF ) = yF = 〈x(t = tF )〉 = 5/6.

follows:

dx

dt
= −γ

(
x + g

γ

)
+ ξ. (94)

By comparing with Eqs. (8) and (94), we identify that f

is replaced by −g(t)/γ . Therefore, very conveniently, if
we assume that x = −1/u + ε/γ has the initial Gaussian
distribution with inverse temperature β0 and that the mean
position y = 〈x〉 takes the value of y0 and yF at the initial and
final times t = 0 and tF , respectively, the inverse temperature
β(t) and the mean position y(t) satisfy the same equations as
in Eqs. (64)–(68). We recall that the mean value denoted by
the angular brackets is obtained by the average over both ξ and
initial position x0. Furthermore, by considering the situation
where the objective is to reduce the average population by
keeping the same inverse temperature β = β0 at the initial and
final times and the constant growth rate γ = γ0, we can find
the best treatment protocol, which minimizes the time and
the associated dissipated energy by using a geodesic solution
(geodesic I) for N cycle. We consider β0 = 30 and β0 = 300
for the fixed values of y0 = 5/6 and y = 1/30, as in previous
sections. Therefore, N = 10 and 100 for β0 = 30 and 300,
respectively. (Modest values of β0 are used for this model to
ensure a negligible escape rate of the population to +∞.) The
optimal treatment schedule g(t) is obtained from the geodesic
solution via Eq. (52):

g(t) = −γ0f (t) = −γ0

(
y + c

γ0β

)
. (95)

Results are shown in Figs. 7–9 for the case where the
carrying capacity u∞ = 1 and y0 = 〈x(t = 0)〉 = 5/6 and
yF = 〈x(t = tF )〉 = 1/30, the same values used in all other

figures. Figure 7 shows time-dependent PDFs of x = 1 − 1/u

for β0 = 30 and 300 where a geodesic consists of 10 (N = 10)
and 100 (N = 100) cycles, respectively. Specifically, the time
evolution of PDFs of x over the first cycle for β0 = 30 and
300 are shown in Figs. 7(a) and 7(b), respectively, while the
evolution of PDFs over the first and the last cycles (tenth
and hundredth cycle for β0 = 30 and 300) are shown in
Figs. 7(c) and 7(d), respectively. The corresponding time
evolution of PDFs of the population u is shown in Fig. 8. We
note that the PDF of u at t = 0 has a peak at 〈u(t = 0)〉 = 6,
corresponding to y0 = 5/6; 〈u(t = tF )〉 = 1.0345, which is
close to the carrying capacity u∞ = 1 (γ = 1, ε = 1). Finally,
Fig. 9 shows DI (t), g(t), mean values of x and u against time
for β0 = 30, where the sign of g(t) is seen to be positive.
Interestingly, the observation that the total change in g(t) is
comparable to � = y0 − yF in Fig. 9 reveals how the geodesic
solution is established by slowly moving the PDF peak by the
deterministic force.

VIII. CONCLUSION

Far from equilibrium, the level of fluctuations in a system
changes with time and becomes a dynamical variable itself,
and the importance of a full knowledge of the evolution
of PDFs cannot be overemphasized. As the computation of
time-dependent PDFs is highly demanding and expensive
numerically, we utilized one analytically solvable model of
a driven dissipative system (a generalized nonautonomous
Ornstein-Uhlenbeck process) by including the time-dependent
deterministic forcing and time-dependent strength of the
stochastic noise (diffusion). By generalizing our familiar
concept of distance by using a dynamical ruler whose
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resolution is set by time-dependent fluctuations, we mapped
the time evolution of our system onto the trajectory in the
statistical metric space given by the Poincáre upper half plane
consisting of the mean position and the standard deviation
1/

√
β. We computed the information velocity and length and

found geodesic solutions for which the information propagates
at constant speed to be either in the form of a line of a
constant mean position or a circle. We then demonstrated
how to construct a particular realization of a geodesic, which
satisfies boundary conditions at the initial and final times in
the two specific cases of geodesic I and II and showed that
in both cases, our realization of a geodesic provided a path
that ensures not only small information length and dissipated
energy but also smaller total time along the path in comparison
with a nongeodesic path. A resonance phenomenon in the
geodesic solution due to the matching of � = �m was
reported. Application of our results to a stochastic logistic
model demonstrated a significant improvement in controlling
population growth by a periodic modulation of diffusion
coefficient and deterministic force by a small amount. This
optimization can have a significant implication for damage
control where the prolongation of a system near an initial
condition (e.g., a large population of harmful bacteria, a strong
tornado, etc.) is harmful.

Although we utilized an exact solution in this paper, our
methodology is general and does not rely on the existence
of exact PDFs, nor even the existence of basic equations,
which govern the evolution of systems. This is because the
information velocity and length can be computed directly from
Eqs. (4) and (5) by constructing time-dependent PDFs from
experimental, observational, and numerical data. For instance,
Ref. [23] numerically computed PDFs by simulating a logistic
map and the information velocity and length for the purpose of
investigating the attractor structure (e.g., stable and unstable
points); Ref. [24] studied the information velocity and length
in classical music by computing time-dependent PDFs from
the music MIDI files, elucidating different classical music in
terms of the information flow and the role of geodesics in
classical music. Application of our methodology to other data
(e.g., heart rhythm) is under progress. A geodesic solution can
also be implemented numerically, for instance, as has been
done in Ref. [10]. In addition to this very applicability to
a variety of systems whose evolution is far too complex to
be modeled by a system of equations, our methodology will
provide a unifying framework for understanding seemingly
different phenomena by using system-independent variables
(information length and geodesics).

In summary, this paper provides a key theoretical frame-
work for understanding nonequilibrium processes in terms
of information change and a scope for investigation and
application of a geodesic to different nonequilibrium sys-
tems, particularly for the purpose of optimization. Given our
discovery of a resonance phenomenon, further investigation
into different realizations of a geodesic solution would be of
great interest. Detailed analysis on different realizations and
different situations with appropriate boundary conditions is
a subject for future work. Further application and extension
of this work to different systems is also a subject for future
research.

APPENDIX A: FLUCTUATING HAMILTONIAN E

To appreciate the relation between information velocity or
energy E and fluctuating energy, we express the PDF p(x,t) as

p(x,t) =
√

β

π
e−SA ≡ e−SA+F . (A1)

Here, F = 1
2 ln β

π
is the free energy; SA is the effective action,

which can be related to the Hamiltonian H of the stochastic
system (see Ref. [42]) as

H = −∂SA

∂t
, (A2)

which is a stochastic analogy to the Hamilton-Jacobi rela-
tion [42,43]. Specifically, it was shown in Ref. [42] by a path
integral formulation that H is given in terms of

H (t) = −∂SA

∂t
= D

2
�2 − μ�x,

where � is the conjugate momentum. Note that � stems from
the stochastic noise. Taking the time derivative of Eq. (A1)
gives us

∂p(x,t)

∂t
= (Ḟ + H )p(x,t), (A3)

where Ḟ = dF
dt

. First, we integrate both sides of Eq. (A3) over
x and use the conservation of the total probability as follows:

0 =
∫

dx
∂p

∂t
=

∫
dx(Ḟ + H )p(x,t) = Ḟ + 〈H 〉, (A4)

where 〈H 〉 is the mean (average) value of the Hamiltonian.
Therefore,

Ḟ = −〈H 〉. (A5)

That is, the mean value of the Hamiltonian compensates for
the change in free energy to conserve the total probability. We
now compute the second moment, which is related to E in
Eq. (6) as

E =
∫

dx
1

p

(
∂p

∂t

)2

=
∫

dx(H + Ḟ)2p(x,t)

= 〈(H + Ḟ)2〉 = 〈(δH )2〉, (A6)

where δH = H − 〈H 〉 = H + Ḟ is the fluctuating Hamilto-
nian. By using Eq. (A5), it is interesting to observe that

〈(δH )2〉 = 〈H 2〉 + 2〈H 〉Ḟ + Ḟ2 = 〈H 2〉 − 〈H 〉2.

APPENDIX B: DERIVATION OF EQS. (34), (37), AND (38)

By using Eq. (33) in (31), we obtain

β̈ − 1

β
β̇2 = 2c2, (B1)

which can be written as

β2 ∂

∂β

[
β̇2

β2

]
= 4c2. (B2)

Dividing Eq. (B2) by β2 and integrating over β gives us

β̇2

β2
= −4c2

β
+ α, (B3)
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where α is an integration constant. The rearrangement of
Eq. (B2) gives Eq. (34) in the text.

From Eq. (34), we obtain

dβ

dt
= √

α

√
β2 − 4c2

α
β, (B4)

which can be integrated as

√
α

∫
dt =

∫
dβ√

β2 − 4c2

α
β

, (B5)

to obtain

√
αt = A + cosh−1

(
αβ

2c2
− 1

)
, (B6)

where A is constant. Solving Eq. (B6) for β gives us Eq. (37)
in the text.

To find the solution for y, we solve Eq. (33) for y by using
Eq. (33) as follows:

1

c
y(t) =

∫
dt

1

β
= α

2c2

∫ t

0

dt

cosh θ + 1

= α

c2

∫
2eθdt

(eθ + 1)2

= −
√

α

c2

1

eθ + 1
+ B, (B7)

where θ = √
αt − A and B is constant.

APPENDIX C: CHRISTOFFEL AND
RICCI-CURVATURE TENSORS

This Appendix is included for completeness of our paper.
From Eq. (27), the metric tensor gij and its inverse gij can be
found as:

gij =
( 1

2β2 0
0 2β

)
, gij =

(
2β2 0

0 2
2β

)
. (C1)

The connection tensor �ijk = 1
2 [∂igjk + ∂jgik − ∂kgij ] (�i

jk =
gim�jkm) can be found to have the following nonzero compo-
nents

�1
11 = − 1

β
,�1

22 = −2β2,�2
12 = �2

21 = 1

2β
. (C2)

The Riemann curvature tensor Ri
kmn = ∂m�i

nk + �i
mp�

p

nk −
∂n�

i
mk − �i

np�
p

mk can then be shown to have the following
nonvanishing components:

R1
212 = −R1

221 = −β, R2
112 = −R2

121 = 1

4β2
. (C3)

As the curvature tensors do not vanish for certain components,
the metric space is not flat but curved. The Ricci tensor is then
computed by contracting the curvature tensor as Rij = Rk

ikj :

R11 = − 1

4β2
, R22 = −β, R12 = R21 = 0, (C4)

leading to the Ricci scalar

R = gijRij = −1. (C5)

We now make an analogy to the Einstein field equation where
Gij = 8πTij (where Tij is the stress-energy tensor). By using
R = −1 for Gij

Gij = Rij − 1

2
R gij

=
(− 1

4β2 0
0 −β

)
+ 1

2

( 1
2β2 0
0 2β

)
= 0. (C6)

Therefore, the stress-energy tensor Tij = 0.

APPENDIX D: GEODESIC EQUATION

It is worth noting that the Euler-Lagrange equations (29)–
(30) can also be derived from the following geodesic motion
for E in Eq. (27) by using the Christoffel tensors in Eq. (C3):

d2λi

dt2
+ �i

mk

dλm

dt

dλk

dt
, (D1)

where λi = (β,y). Specifically, Eq. (D1) becomes

0 = β̈ + �1
11β̇

2 + �1
22ẏ

2, (D2)

0 = ÿ + �2
12β̇ẏ + �2

21β̇ẏ. (D3)

Using Eq. (C2) in Eqs. (D2)–(D3) gives us Eqs. (31)–(33).

APPENDIX E: DERIVATION OF EQ. (81)

By using Eqs. (44), (45), and (73) in Eq. (80) and by letting
θ = 1

2

√
α(t − A), we can derive

2β∗Wξ =
∫

dθ
1

cosh4 θ (b − tanh θ )

= −
∫

dθ [ln (b − tanh θ )]sech2θ

=
[
− ln (b − tanh θ )

cosh2 θ

]θF

θ0

− 2J

≡ I (t = 2A) − I (t = A). (E1)

Here, b = √
β∗yM and yM = 1

2 (y0 + yF ); θ0 and θF are the
values of θ at t = 0 and t = 2A, respectively; I (t = 0) and
I (t = 2A) are the value of integral evaluated at t = 0 and
t = 2A, respectively. J is defined as follows:

J =
∫

dθ ln (b − tanh θ ) tanh θ sech2θ

= −
∫

dw(ln w)(b − w)

=
[

− b[w ln w − w] + 1

2
w2 ln w − 1

4
w2

]wF

w0

=
[

− 1

2
(b2 − tanh2 θ ) ln (b − tanh θ )

+ 1

4
(b − tanh θ )(3b + tanh θ )

]θF

θ0

, (E2)

where w = (b − tanh θ ) was used; w0 and wF are evaluated
at t = 0 and t = 2A, respectively. In order to compute Wξ in
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Eq. (E1), we need to evaluate the various terms at t = 0 and
t = 2A. For t = 0, we can show that

b − tanh θ = y0

√
β∗, b + tanh θ = yF

√
β∗,

3b + tanh θ = (2yF + y0)
√

β∗, cosh2 θ = β0

β∗
,

b2 − tanh2 θ = y0yF β∗,

(b − tanh θ )(3b + tanh θ ) = β∗y0(2yF + y0), (E3)

leading to

I (t = 0) = − ln (y0
√

β∗)

β0/β∗
+ y0yF β∗ ln (y0

√
β∗)

− 1

2
β∗y0(2yF + y0). (E4)

Similarly, at t = 2A, we can show that

b − tanh θ = yF

√
β∗, b + tanh θ = y0

√
β∗,

3b + tanh θ = (yF + 2y0)
√

β∗, cosh2 θ = β0

β∗
,

b2 − tanh2 θ = y0yF β∗,

(b − tanh θ )(3b + tanh θ ) = β∗yF (yF + 2y0), (E5)

leading to

I (t = 2A) = − ln (yF

√
β∗)

β0/β∗
+ y0yF β∗ ln (yF

√
β∗)

− 1

2
β∗yF (yF + 2y0). (E6)

Therefore, by using Eqs. (E4) and (E6) in Eq. (E1), we obtain
Eq. (81) in the main text.
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