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Probability characteristics of nonlinear dynamical systems driven by δ-pulse noise
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For a nonlinear dynamical system described by the first-order differential equation with Poisson white noise
having exponentially distributed amplitudes of δ pulses, some exact results for the stationary probability density
function are derived from the Kolmogorov-Feller equation using the inverse differential operator. Specifically, we
examine the “effect of normalization” of non-Gaussian noise by a linear system and the steady-state probability
density function of particle velocity in the medium with Coulomb friction. Next, the general formulas for the
probability distribution of the system perturbed by a non-Poisson δ-pulse train are derived using an analysis of
system trajectories between stimuli. As an example, overdamped particle motion in the bistable quadratic-cubic
potential under the action of the periodic δ-pulse train is analyzed in detail. The probability density function and
the mean value of the particle position together with average characteristics of the first switching time from one
stable state to another are found in the framework of the fast relaxation approximation.

DOI: 10.1103/PhysRevE.93.062125

I. INTRODUCTION

As is well known, an adequate description for a broad class
of continuous random processes that are frequently met in
physical, biological, and chemical systems can be provided by
excitation in the form of Gaussian white noise. At the same
time, in electronics, optics, neurodynamics, and acoustics,
there are other stochastic processes that exhibit instantaneous
discrete jumps and therefore must be modeled differently in
terms of δ-pulse noise. In contrast to Gaussian white noise, the
statistical characteristics of these disturbances may be different
and are determined by the statistics of pulse amplitudes and
intervals between stimuli.

The well-known experimentally observed pulse noise is
so-called shot noise. Shot noise, first discovered in vacuum
tubes [1], is a basic manifestation of the discreteness of charge
carriers, and it occurs in many solid-state devices such as
tunnel junctions [2], Shottky barrier diodes, p-n junctions [3],
quantum point contacts [4], mesoscopic conductors [5], and
even thin-film metallic resistors [6]. It also occurs in photon
counting in optical devices, such as photomultiplier tubes
and avalanche photodiode detectors [7], where shot noise is
associated with the particle nature of light. This is therefore
another consequence of discretization, in this case of the
energy in the electromagnetic field in terms of photons.

To describe the shot noise, there is an appropriate math-
ematical model of a δ-pulse train, which occurs at times
forming a Poisson point process (Poisson white noise). The
probability characteristics of nonlinear dynamical systems
perturbed by Poisson white noise can be analyzed in the
framework of Markovian theory, and they are described by
the Kolmogorov-Feller equation [8], which is a generalization
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of the Fokker-Planck equation for Gaussian white noise.
Moreover, Gaussian white noise can be obtained as a limiting
case of Poisson white noise [9].

Processes driven by Poisson white noise have been studied
for various problems, such as parametric and nonlinear
oscillators [10–16], transport of Brownian particles in spatially
periodic potentials [17–19], thermal ratchets [20–22], active
Brownian motion [23,24], thermally activated switching [25],
energetics of classical stochastic systems [26], neocortical
model neurons [27], population dynamics [28–31], vibro-
impact Duffing systems [32], and a quantum absorption
refrigerator [33].

The analytical treatment of dynamical systems driven
by Poisson white noise poses more difficulties compared
to systems driven by Gaussian white noise. As a result,
the exact expressions for the probability characteristics of
these systems have been derived only for very limited cases,
particularly if the amplitudes of pulses are exponentially
distributed [9,17,34–36]. Also, analytical studies have been
pursued for dynamical properties such as mean first-passage
times [37]. It is worth mentioning some approximate methods
proposed for investigations of nonlinear systems driven by
Poisson white noise, such as the cumulant truncation proce-
dure [12], the exponential-polynomial closure method [13],
the generalized cell mapping method [30], the path-integral
approach [38], numerical integration schemes [19,39], and adi-
abatic elimination [40]. The famous Itó-Stratonovich dilemma
that arises when one examines a nonlinear dynamical system
with multiplicative Poisson white noise was discussed in the
literature as well [41].

In this study, the case of external excitation by a sequence
of stimuli with non-Poisson statistics is extremely difficult,
because the resulting process is non-Markovian. Here, the
nonlinear dynamical system perturbed by the δ-pulse train
with arbitrary probability distributions of amplitudes and
time intervals between pulses is considered. In addition to
obtaining some exact results for the steady-state probability
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density function (PDF) in the case of a Poisson δ-pulse
train, we propose a general method to find the probability
characteristics. The paper is organized as follows. In Sec. II,
using the Markovian approach and the Kolmogorov-Feller
equation, we find the PDF in the case of exponential probability
distribution of spike amplitudes, and we consider a number of
examples. In Sec. III, the technique based on an analysis of
system behavior in the intervals between neighboring δ-pulses
and averaging is presented. As an example, a particle motion
in the bistable quadratic-cubic potential under the action of
the periodic δ-pulse train is investigated in detail in Sec. IV.
The probability density function and the mean value of
the particle displacement in conjunction with the first two
moments of the switching time from one stable state of a
bistable system to another are obtained in the framework of
the fast relaxation approximation, including the limit of large
observation times. A brief discussion of the main results is
presented in the Conclusions.

II. MARKOVIAN APPROACH FOR WHITE
SHOT NOISE EXCITATION

A. Probability characteristics of a nonlinear system
subject to white Poisson noise

We investigate the nonlinear dynamical system, which is
governed by the following stochastic first-order differential
equation:

ẋ = f (x) + ξ (t), (1)

where ξ (t) is an external noise in the form of a δ-pulse train,

ξ (t) =
∑

k

ak δ(t − tk). (2)

Next, we assume that the intervals between neighboring
pulses τk = tk − tk−1 (t0 = 0) of the additive noise (2) are
statistically independent and identically distributed with the
PDF w(τ ) (i.e., the moments of pulse appearance represent
the point renewal process [42]), and the amplitudes ak are
also statistically independent and have the same probability
distribution Wa(x). It should be noted that the problem of mean
first-passage times for such types of noise was analyzed in
Ref. [43], the closed set of integral equations for the character-
istic functional of the noise (2) was first obtained in Ref. [44]
(see the Appendix), and its spectral power density was found in
Ref. [45]. At the same time, the noise (2) is the first derivative of
the well-known continuous-time random-walk (CTRW) model
(see, for example, the review [46]).

In the case of exponentially distributed time intervals τk ,

w(τ ) = νe−ντ , τ � 0, (3)

the external perturbation ξ (t) transforms to the white shot
noise with Poisson statistics of spikes. As a result, the random
process x(t) in Eq. (1) becomes Markovian, and we can obtain
the following Kolmogorov-Feller integrodifferential equation
for its PDF P (x,t) corresponding to stochastic Eq. (1) (see [8]):

∂P

∂t
= − ∂

∂x
[f (x)P ]

+ ν

∫ ∞

−∞
Wa(z)[P (x − z,t) − P (x,t)]dz. (4)

It should be noted that Eq. (4) is a particular case of the
generalized Kolmogorov equation obtained in Ref. [47] for
arbitrary non-Gaussian white noise ξ (t). Taking into account
the following formula for the shift operator:

P (x − z,t) = e−z ∂
∂x P (x,t),

we can write Eq. (4) in the differential form

∂P

∂t
= − ∂

∂x
[f (x)P ] + ν

[
θa

(
i

∂

∂x

)
− 1

]
P, (5)

where θa(u) = 〈eiuak 〉 is the characteristic function of random
amplitudes ak .

Next, we demonstrate that for some probability distri-
butions of pulse amplitudes ak , the stationary solution of
Eq. (4) can be found exactly. So, for the one-sided exponential
distribution

Wa(x) = λ e−λx, x > 0 , (6)

where λ is a positive parameter, Eq. (4) takes the following
form with the inverse differential operator:

∂P

∂t
= − ∂

∂x

[
f (x)P + ν

λ + ∂/∂x
P

]
. (7)

Assuming the existence of a steady-state probability distribu-
tion Pst(x) and applying the conditions of zero probability flux
at x = ±∞, we arrive from Eq. (7) at the first-order differential
equation

d

dx
[f (x)Pst] + [λf (x) + ν]Pst = 0,

the solution of which reads [48]

Pst(x) = e−λx

f (x)
exp

{
−ν

∫
dx

f (x)

}
. (8)

The exact result (8) corresponds to the excitation (2) with
positive pulses.

In a more interesting (from a physical point of view)
situation of spikes of both polarities, the random amplitudes
of which are distributed according to the Laplace law

Wa(x) = β

2
e−β|x|, (9)

from Eq. (5) we get

∂P

∂t
= − ∂

∂x

[
f (x)P + ν

∂2/∂x2 − β2

∂P

∂x

]
. (10)

Corresponding to Eq. (10), the equation for the steady-state
PDF takes the form

d2

dx2
[f (x)Pst] + ν

dPst

dx
− β2f (x)Pst = 0. (11)

Unfortunately, the second-order differential equation (11)
cannot be solved analytically in the general case.

B. Transformation of pulse noise by a linear system

Let us analyze the case of linear system (1). Substituting in
Eq. (11) f (x) = −kx, we arrive at

d2Pst

dx2
+ 1

x

(
2 − ν

k

)
dPst

dx
− β2Pst = 0. (12)
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FIG. 1. The steady-state PDF of the random process (15) at the
output of the linear system for different values of parameter β: curve
1, β = 7; curve 2, β = 2; curve 3, β = 0.7.

Equation (12) can be solved exactly in the case k = ν, when
it takes the form of the modified Bessel differential equation
after replacing the independent variable y = βx. As a result,
the solution of Eq. (12) can be written as

Pst(x) = c1 I0(βx) + c2 K0(β|x|), (13)

where I0(x) is the modified Bessel function of the first kind of
zero order, and K0(x) (x > 0) is the modified Bessel function
of the second kind of zero order (MacDonald function). Taking
into account the behavior of functions I0(x) and K0(x) for large
arguments x → +∞,

I0(x) � ex

√
2πx

, K0(x) �
√

π

2x
e−x,

one needs to set c1 = 0 and to find the constant c2 from the
normalization condition. Finally, we obtain

Pst(x) = β

π
K0(β|x|). (14)

The result (14) demonstrates how a linear system can
provide the normalization of input noise. As follows from
Eq. (1), the random process x(t) in this case represents the
integral sum of statistically independent variables,

x(t) = x(0) +
∫ t

0
e−k(t−τ )ξ (τ )dτ, (15)

and, according to the central limit theorem, its PDF should be
close to the Gaussian distribution in the limit of large times.
Indeed, the wide probability distribution of white shot noise
ξ (t) having the infinite variance transforms to something like
the Gaussian probability density function but with singularity
at zero point: Pst(x) ∼ − ln|x| when x → 0 (see Fig. 1).

C. Inertial particle in the medium with Coulomb friction
under the action of a δ-pulse train

Let us consider, as in Ref. [49], the random motion of
a particle with unit mass in a medium with Coulomb friction
caused by white Poisson noise (2). The corresponding equation
for the particle velocity v(t) reads

v̇ = −γ sgn v + ξ (t), (16)

where sgn v is the sign function. Substituting, in accordance
with Eq. (16), f (v) = −γ sgn v in Eq. (11), we arrive at

d2

dv2
(Pst sgn v) − ν

γ

dPst

dv
− β2Pstsgn v = 0. (17)

In view of the obvious symmetry of the stationary PDF
Pst(v) of the particle velocity, we can solve Eq. (17) only
for positive arguments. As a result, we have the following
homogeneous linear second-order differential equation with
constant coefficients:

P ′′
st − ν

γ
P ′

st − β2Pst = 0. (18)

The general solution of Eq. (18) takes the form

Pst(v) = C1e
λv + C2e

−μv, (19)

where the positive parameters λ and μ are

λ = ν

2γ

(√
1+4γ 2β2

ν2
+1

)
, μ = ν

2γ

(√
1+4γ 2β2

ν2
−1

)
.

(20)

From the condition of the limited solution (19) and Eqs. (20),
we need to set the constant C1 equal to zero. Finally, taking
into account the normalization condition, we get the following
exact formula for the stationary PDF of the particle velocity:

Pst(v) = μ

2
e−μ|v|. (21)

It is interesting to note that the probability distribution (21)
follows the distribution of pulse amplitudes (9) and differs
from the Maxwell distribution. Finally, in the limiting transi-
tion from the white Poisson noise to the white Gaussian noise
with intensity D [9],

ν → ∞, β → ∞,
ν

β2
= D,

Eq. (21) transforms to the well-known result (see [49])

Pst(v) = γ

2D
e−γ |v|/D. (22)

III. GENERAL METHOD TO CALCULATE THE
PROBABILITY DENSITY FUNCTION

To find the probability characteristics of the nonlinear
dynamical system (1) with non-Poisson pulse excitation, we
apply another approach, namely, we rely on the fact that in the
interval between the kth and (k + 1)th pulses, the behavior of
the system (1) can be described by the following equation:

ẋ = f (x) (23)

with the initial condition x(tk + 0) = xk + ak [xk = x(tk)],
taking into account the jump ak at the time tk . After integration,
the solution of Eq. (23) in the time interval tk < t � tk+1 can
be written in the form

x(t) = h(−1)[h(xk + ak) + t − tk] ≡ g(xk + ak,t − tk), (24)

where h′(x) = 1/f (x), and h(−1)(x) denotes the inverse func-
tion. Setting in Eq. (24) t = tk+1, we find the value of random
process x(t) at the time of the next pulse,

xk+1 = x(tk+1) = g(xk + ak,τk+1). (25)
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Equation (25) is a recursive formula for the values of the
random process x(t) at the moments of the neighboring pulses,
which includes pulse amplitudes and intervals between them.

From Eq. (25) we can derive the recurrence relation for
the probability distributions of random variables xk and xk+1.
Since all the variables xk , ak , and τk+1 in Eq. (25) are
statistically independent, the PDF Pk+1(x) of the random
variable xk+1 satisfies the following equation:

Pk+1(x) =
∫ ∞

0
w(τ )dτ

×
∫ ∞

−∞
δ(x − g(y,τ ))[Pk(y) ∗ Wa(y)]dy, (26)

where ∗ denotes the convolution. Solving Eq. (26), we can find
the probability distribution of random process x(t) at any time
t (tk < t � tk+1) using the equation

P (x,t) =
∫ ∞

0
[w(τ ) ∗ w(τ ) ∗ · · · ∗ w(τ )︸ ︷︷ ︸

k

] dτ

×
∫ ∞

−∞
δ(x − g(y,t − τ ))[Pk(y) ∗ Wa(y)]dy. (27)

Next, we analyze the case of a periodic pulse train when
w(τ ) = δ(τ − T ). In this situation, from Eq. (26) we arrive at

Pk+1(x) =
∫ ∞

−∞
δ(x − g(y,T ))[Pk(y) ∗ Wa(y)]dy. (28)

Integrating into Eq. (28), we get

Pk+1(x) =
∑

j

∣∣∣∣∣∂g
(−1)
j (x,T )

∂x

∣∣∣∣∣
× [

Pk

(
g

(−1)
j (x,T )

) ∗ Wa

(
g

(−1)
j (x,T )

)]
, (29)

where g
(−1)
j (x,T ) is the j th branch of the inverse function with

respect to x = g(y,T ). Taking into account Eq. (24), we arrive
at

Pk+1(x) =
∑

j

∣∣∣∣∣f
(
h

(−1)
j [h(x) − T ]

)
f (x)

∣∣∣∣∣
× [

Pk

(
h

(−1)
j [h(x) − T ]

) ∗ Wa

(
h

(−1)
j [h(x) − T ]

)]
.

(30)

Calculating from the recurrence relation (30) the probability
distribution Pk(x), we find the PDF of the random process x(t)
of the nonlinear dynamical system (1) as [see Eq. (27)]

P (x,t) =
∑

j

∣∣∣∣∣f
(
h

(−1)
j [h(x) − t + kT ]

)
f (x)

∣∣∣∣∣
× [

Pk

(
h

(−1)
j (z)

) ∗ Wa

(
h

(−1)
j (z)

)]
z=h(x)−t+kT

,

(31)

where kT < t � (k + 1)T .

IV. OVERDAMPED DIFFUSION OF A PARTICLE IN
BISTABLE QUADRATIC-CUBIC POTENTIAL

As an example of the approach proposed, we analyze the
overdamped diffusion of a particle in the following bistable
potential:

U (x) = γ

(
x2|x|

3
− bx2

2

)
(b,γ > 0). (32)

This motion is governed by the following Langevin equation
for the particle position x(t):

ẋ = γ x(b − |x|) + ξ (t) (33)

with additive noise ξ (t) in the form of a δ-pulse train with the
period T and random amplitudes ak . It should be emphasized
that the “modulus” approximation as in Eq. (32) has been
applied in Ref. [50] to find the exact solutions of nonlinear
systems described by both ordinary and partial differential
equations without noise arising from the analysis of some
physical problems, while in Ref. [51] the probability and
spectral characteristics of nonlinear oscillator with “modulus”
potential perturbed by white Gaussian noise have been found.

As seen from Fig. 2, the nonlinear dynamical system (33)
has two stable states x = ±b. Substituting f (x) = γ x(b − |x|)
in Eq. (23) and solving the equation, we get

x(t) = b(xk + ak)

b e−γ b(t−tk ) + |xk + ak|[1 − e−γ b(t−tk )]
. (34)

Setting in Eq. (34) t = (k + 1)T , tk = kT , we arrive at

xk+1 = b(xk + ak)

be−γ bT + |xk + ak|(1 − e−γ bT )
. (35)

In the approximation of a fast relaxation of the system
between pulses, γ bT � 1, Eq. (35) gives

xk+1 = b
xk + ak

|xk + ak| = b sgn(xk + ak), (36)

i.e., the nonlinear system (33) is in one of the stable states
before the appearance of the next pulse. As a result, the PDF of
the random process x(t) at time t = (k + 1)T is a superposition
of two δ functions,

Pk+1(x) = pk+1δ(x − b) + qk+1δ(x + b), (37)

where, in accordance with Eq. (36), the probabilities pk and
qk can be found as

pk+1 = Prob{xk + ak > 0}, pk+1 + qk+1 = 1, (38)

-1 1

U(x)

x

FIG. 2. The bistable quadratic-cubic potential (32). The parame-
ters are γ = 1, b = 1.
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where the symbol Prob{A} denotes the probability of the event
A. From Eqs. (37) and (38), we obtain the mean value of the
particle position at time t = (k + 1)T ,

〈xk+1〉 = b(2pk+1 − 1). (39)

To calculate the probability in Eq. (38), we have to
find the PDF of the sum xk + ak , which is the convolution
of corresponding probability distributions because of the
statistical independence of random variables,

Pk(x) ∗ Wa(x) =
∫ ∞

−∞
Pk(y)Wa(x − y)dy,

or, in accordance with Eq. (37),

Pk(x) ∗ Wa(x) = pkWa(x − b) + qkWa(x + b). (40)

As a result, from Eqs. (38) and (40) we have

pk+1 = pk

∫ ∞

−b

Wa(x)dx + qk

∫ ∞

b

Wa(x)dx

= pk

∫ b

−b

Wa(x)dx +
∫ ∞

b

Wa(x)dx. (41)

Thus, Eq. (41) gives the following simple recurrence relation
for the probabilities pk:

pk+1 = Prob{|a| < b}pk + Prob{a > b}. (42)

It is not difficult to solve the recurrence relation (42).
Indeed,

pk+1 = Prob{|a| < b}pk + Prob{a > b}
= Prob{|a| < b}(Prob{|a| < b}pk−1

+ Prob{a > b}) + Prob{a > b}
= Prob2{|a| < b}pk−1 + Prob{a > b}(1

+ Prob{|a| < b}) = · · · = Probk{|a| < b}p1

+ Prob{a > b}(1 + Prob{|a| < b} + · · ·
+ Probk−1{|a| < b}). (43)

Applying in Eq. (43) the formula for the sum of geometric
progression and taking into account that p1 = Prob{x(0) > 0},
we arrive finally at

pk+1 = Prob{x(0) > 0}Probk{|a| < b}

+ Prob{a > b}1 − Probk{|a| < b}
1 − Prob{|a| < b} . (44)

It is interesting to note that in the limit k → ∞, the
nonlinear system (33) forgets about the initial conditions, and
Eq. (44) becomes

p∞ = Prob{a > b}
1 − Prob{|a| < b} = Prob{a > b}

Prob{|a| > b} . (45)

From Eqs. (37), (39), and (45), we find the PDF of the particle
position and the mean value in asymptotics,

P∞(x) = Prob{a > b}
Prob{|a| > b} δ(x − b)

+ Prob{a < −b}
Prob{|a| > b} δ(x + b), (46)

〈x∞〉 = b
Prob{a > b} − Prob{a < −b}

Prob{|a| > b} . (47)

The mean switching time from one stable state to another
caused by an external pulse perturbation is one of the important
characteristic of multistable nonlinear systems. The above-
mentioned approximation of the fast relaxation of bistable
system (33) allows us to calculate the mean crossing time of
the potential barrier by a particle, which coincides in such a
situation with the mean switching time of the system between
two stable states.

To be specific, we assume that the initial value of the particle
position is positive: x(0) > 0. As a result, before the first
δ-pulse, a particle would occupy the stable state x = b. At
the same time, by virtue of the δ-pulse train excitation, the first
switching of the bistable system from the stable state x = b to
the stable state x = −b can only occur at the times of external
stimuli. Thus, the first switching time τ is a discrete random
variable that takes the values τ = nT , n = 1,2,3, . . . with
probabilities Pn = p qn−1, where p = Prob{a < −b} is the
probability of switching at the first stimulus and p + q = 1. In
the probability theory, this distribution is known as geometric
and is associated with the number of independent (Bernoulli)
trials needed to achieve success with probability p of success
on each trial (see, for example, [52]).

To find the mean value and the variance of the first switching
time, we calculate its characteristic function. In accordance
with the definition, we have

θτ (u) = 〈eiuτ 〉 =
∞∑

n=1

pqn−1eiunT = p

e−iuT − q
, (48)

and, consequently,

ln θτ (u) = ln p − ln(e−iuT − q). (49)

By definition, the nth-order cumulant of random variable τ

can be found from Eq. (49) as

κn = 1

n!

dn ln θτ (u)

d(iu)n

∣∣∣∣
u=0

. (50)

For the mean first switching time (n = 1), Eqs. (49) and (50)
give

〈τ 〉 = T

p
. (51)

As seen from Eq. (51), the mean first switching time increases
with decreasing probability of switching at first stimulus. For
the variance (n = 2) from Eqs. (49) and (50), we obtain

σ 2
τ = q T 2

2 p2
. (52)

It should be emphasized that all results obtained in
this section in the framework of the approximation of fast
relaxation γ bT � 1 depend only on one of the parameters of
the nonlinear system (33). Upon increasing this parameter b,
i.e., both the distance between the potential barrier and wells
and the height of the barrier, the probability p decreases. As a
result, the mean value of the first switching time (51) and its
variance (52) increase.
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V. CONCLUSIONS

Based on the Kolmogorov-Feller equation, some exact
results for the steady-state probability distributions of a
nonlinear dynamical system perturbed by white shot noise
with exponentially distributed amplitudes have been obtained.
Using the reverse differential operator, we have found the
stationary probability distribution of white Poisson noise after
its transformation by a linear system and the steady-state PDF
of particle velocity in the medium with Coulomb friction. This
method can be effectively applied to the analysis of stationary
spectral-correlation characteristics of these systems as well.
For the case of a non-Poisson δ-pulse train, a general approach
to probability analysis of this system, which is based on the
study of system dynamics in the intervals between neighboring

δ-pulses, has been offered. The proposed method has been
demonstrated in detail on an example of overdamped motion
of a particle in the bistable quadratic-cubic potential under the
action of the periodic δ-pulse train. The probability distribution
and the mean value of the particle position have been obtained
in the framework of the fast relaxation approximation. The
mean value and the variance of the first switching time from
one stable state of a bistable system to another have been found
as well.
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