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Effect of crowding and confinement on first-passage times: A model study
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We study the “color dynamics” of a hard-disk fluid confined in an annulus, as well as the corresponding
hard-sphere system in three dimensions, using event-driven simulation in order to explore the effect of confinement
and self-crowding on the search for targets. We compute the mean first-passage times (MFPTs) of red particles
transiting from the outer to the inner boundary as well as those of blue particles passing from the inner to
the outer boundary for different packing fractions and geometries. In the steady state the reaction rate, defined as
the rate of collision of red particles with the inner boundary, is inversely proportional to the sum of the MFPTs. The
reaction rate is wall mediated (ballistic) at low densities and diffusion controlled at higher densities and displays a
maximum at intermediate densities. At moderate to high densities, the presence of layering has a strong influence
on the search process. The numerical results for the reaction rate and MFPTs are compared with a ballistic model
at low densities and a Smoluchowski approach with uniform diffusivities at higher densities. We discuss the
reasons for the limited validity of the theoretical approaches. The maximum in the reaction rate is qualitatively
well rendered by a Bosanquet-like approach that interpolates between the two regimes. Finally, we compute the
position-dependent diffusivity from the MFPTs and observe that it is out of phase with the radial density.
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I. INTRODUCTION

How does crowding affect the encounter rate of a particle
with a target? The answer to this question has great signifi-
cance, particularly in biophysics [1–6], but also in other fields
[7] such as ecology [8], finance, and computer science. An
important example is the cell cytoplasm, where crowding
agents typically occupy 20%–30% of the total volume and
strongly influence the kinetics and thermodynamics of cellular
reactions [9,10].

Smoluchowski theory provides a simple expression for the
rate of reaction between a diffusing particle and a sink but
is strictly valid only in the infinite dilution limit. Dzubiella
and McCammmon [11] developed a modified Smoluchowski
approach to describe systems with a low density of diffusing
particles and Kim and Yethiraj [12] incorporated structural
information to obtain quantitative agreement with molecular
dynamics simulations of an association reaction in a hard-
sphere fluid. Dorsaz et al. [13,14] extended this approach
in a study of the encounter rate of hard spheres with an
immobilized target (particles that touch the sink are absorbed
and repositioned to an outer buffer zone). By taking into
account density oscillations, they obtained good agreement
with event-driven Brownian dynamics simulations.

Confinement, in addition to crowding, is frequently present
in biological systems. For example, the cytoskeleton divides
the cell into compartments [9]. Schmit et al. [15] included both
effects in a lattice model consisting of one reacting particle and
a fixed number of inert particles contained in a circular domain.
The reaction rate is low in both large and small systems, where
concentration and crowding, respectively, are limiting, and is
maximized at an intermediate confinement when 50% of the
lattice sites are occupied.
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The structure of confined fluids may be strongly modified
compared with that of bulk systems [16–20]. For example, a
slit pore induces a spatially inhomogeneous density profile,
or “layering,” in a hard-sphere fluid, resulting in a position-
dependent diffusion coefficient [21]. This suggests that one
should not rely on lattice models [15], which cannot display
layering, to provide accurate descriptions at moderate to high
densities.

When a diffusing particle reacts instantaneously with a sink
the reaction rate is simply the inverse of the mean first-passage
time (MFPT). First-passage processes of diffusive trajectories
in a homogeneous environment are well understood [22] and
there are also a few studies in complex geometries [23]
and for swarms of independent searchers [24]. The majority
of published work addressing first-passage-time problems
considers model systems with a constant, uniform diffusivity.
In many applications, however, the diffusivity is not uniform.
The cellular content is obviously heterogeneous, as are larger
scale biological systems. For example, tumors generally
consist of distinct layers whose diffusion coefficients can differ
by factors of 3–4 and habitats in ecological applications are
typically heterogeneous [25,26].

First-passage processes may also involve ballistic trajec-
tories [22,27,28]. In the transport of dilute gases through
mesoporous materials, the usual diffusion process may be
replaced by the so-called “Knudsen regime,” where molecule-
wall, rather than gas-gas, collisions are dominant. Assuming
that the molecule-wall collisions are uncorrelated, the Knudsen
theory [29–33] implies that the direction of a rebounding
molecule is distributed according to a cosine law. As explained
below, this may help in modifying the usual diffusive MFPT
formulas to account for the ballistic trajectories for either a
low density or a strong confinement.

In this study we examine a model two-dimensional (2D)
system consisting of N hard disks confined in an annulus,
as well as the corresponding 3D system of hard spheres
confined between two concentric shells. These systems are
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dominated by ballistic and diffusive transport at low and high
densities, respectively. The hard particles collide elastically
with each other and with the boundaries and follow rectilinear
trajectories at a constant velocity between collisions. The inner
circle or sphere constitutes a target. We examine the passage
times of activated particles from the outer wall to the target,
as well as the reverse process of deactivated particles from the
inner to the outer boundary using a “color” labeling scheme
detailed below. We consider the reaction in this system to be the
arrival of activated particles at the target. Like the lattice model
studied previously [15], our model incorporates crowding and
confinement. Unlike this study, however, layering is present at
sufficiently high densities.

We chose to examine hard-particle fluids for two reasons.
First, despite the simplicity of the (purely repulsive) interaction
potential, the structure of these model fluids matches closely
that of real fluids in which attractive interactions are also
present. Second, the transport properties of the bulk fluids are
well known at intermediate and high densities, and accurate
interpolation formulas are available that cover the entire
density range.

The outline of the paper is as follows. In Sec. II, we detail
the model and the simulation methodology. In Sec. III, we
present simulation results for the steady-state reaction rate and
the MFPTs and their ratio. Insight into the system dynamics is
provided by examining the particle trajectories at different
packing fractions. In the following sections we present a
quantitative approach to the ballistic (Sec. V) and diffusive
(Sec. IV) regimes. In Sec. VI we propose a Bosanquet-like
approach with a view to providing a global description of
the reaction rate. Finally, we present preliminary results
for the position dependence of the diffusion coefficient in
Sec. VII. Section VIII reports our conclusions.

II. MODEL AND SIMULATION

The 2D model system consists of N hard disks of diameter
σ confined in an annulus of inner and outer radii R0 and R1,
respectively, corresponding to a packing fraction

η = Nσ 2

4
(
R2

1 − R2
0

) . (1)

In a bulk system of hard disks, the solid-fluid coexistence
region lies between 0.699 < η < 0.723 [34,35] and the max-
imum packing fraction is ηmax = π/(2

√
3) = 0.907 for a

close-packed hexagonal solid.
In the 3D system of N hard spheres of diameter σ confined

between concentric shells of inner and outer radii R0 and R1,
respectively, the packing fraction is

η = Nσ 3

8
(
R3

1 − R3
0

) . (2)

In the bulk hard-sphere system there is a first-order transition
with a coexistence region between 0.492 < η < 0.545 and, at
close-packing, ηcp = π/(3

√
2) = 0.740.

The hard particles undergo elastic collisions with each other
and with the walls so that the total energy

E = 1

2

N∑
i=1

mv2
i (3)

is constant. Since the collisions with the wall are specular, the
angular momentum

L =
N∑

i=1

r i × mvi (4)

is also a conserved quantity, while the linear momentum is not.
Between collisions the particles follow rectilinear trajectories.
When the number of confined particles is small, the statistical
properties of the system depend strongly on the total angular
momentum [36,37]. In this study all the reported results are for
L = 0. The particle behavior is similar for L = 0 and a random
distribution of L with zero mean only if N is large enough. For
very small values of N , some particular initial configurations
may lead to situations where the particles may not collide
each other or with the inner annulus or shell. In these cases,
τ1, τ0, and � may not possess a well-defined (mean) value.
The trajectories were obtained numerically using the standard
event-driven molecular dynamics (MD) algorithm [38]. Since
the interaction is hard core there is no potential energy, and
increasing the temperature is equivalent to speeding the system
up. More specifically, the time scales as

√
T , where T is the

temperature. For convenience we take kBT /m = 1, where kB

is the Boltzmann constant and m the mass of the disk or sphere.
The initial configurations were generated by placing

particles randomly without overlap between the confining
walls. The velocities were then rescaled to remove the total
angular momentum and impose that E/m = kBT /m = 1 (see
Appendix D). The system is allowed to equilibrate until a
steady state is obtained.

To investigate the effect of self-crowding on the dynamics
we consider the first-passage times between the inner and
the outer walls using a color labeling scheme [39]. Particles
are labeled either blue (activated) or red (deactivated). When
a blue particle touches the inner boundary, or target, it is
deactivated (and becomes red). See Fig. 1. We use τ1 to
denote the mean first-passage time of this process, i.e., the time
elapsed between the activation of a particle to its deactivation.
Similarly, τ0 denotes the MFPT associated with the passage
from the inner to the outer boundary, deactivated → activated.
These quantities are averaged over a large number of long
(typically >106 collisions per particle), independent runs, each
starting from a different random configuration.

Because of the system geometry, these two MFPTs are not
the same, as is the case for a slit pore. After a transient period
the composition of the system, i.e., the fraction of activated
particles, fluctuates around a steady-state value. Note that,
particularly at high densities, the steady state of the color
reaction is attained much more slowly than other properties
such as the velocity distribution.

We also examine a reaction rate associated with the MFPTs.
More specifically, let � denote the mean number of activated
(blue) particles colliding with the target (inner wall) per unit
time. In the steady state the reaction rate is related to the
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FIG. 1. The 2D system consists of N hard disks of diameter
σ confined between an annulus of inner and outer radii R0 and
R1, respectively. Disks are labeled either blue (activated) or red
(deactivated). A blue disk becomes red when it touches the inner
boundary (target) and a red disk becomes blue when it touches the
outer boundary. The MFPT τ1 is the mean time between activation
and deactivation (a complete trajectory of a blue particle), while τ0

is the mean time between deactivation and activation (a complete
trajectory of a red particle).

MFPTs as follows:

� = N

τ0(η) + τ1(η)
. (5)

III. PHENOMENOLOGY

In this section we provide a preliminary overview of the
simulation results. More detailed analysis is reserved for later
sections after the necessary theory is introduced.

Figure 2 shows a snapshot of a dense system in the steady
state. There are substantially more blue particles than red ones,
with the latter being largely confined to a region around the
target. At this relatively high packing fraction (0.635), the
presence of layers is clearly visible next to the outer wall. The
onset of layering can be quantified by examining the radial
density at different packing fractions as shown in Fig. 3. At a
low bulk density the radial density varies little with distance,
but marked oscillations appear as the number of confined
particles increases. The local density is maximum next to the
outer wall and there is another strong maximum at the inner
wall. At moderate densities the local density is nearly constant
in the middle region, but ordering finally propagates into this
region as the particle number increases.

Figures 4 and 5 show the reaction rate of confined hard
disks as a function of the packing fraction in the steady state
computed from simulation for different geometries of the
annulus. The reaction rate initially increases with an increasing
number of particles but then decreases due to self-crowding
effects, leading to a maximum value at an intermediate packing
fraction. The more confined the system, the more pronounced
the maximum in the reaction rate (sharper and more intense).
As the system size increases, the maximum shifts slowly to

FIG. 2. A configuration in the steady state for a system of hard
disks with R1 = 16, R0 = 0.5, N = 650 (η = 0.635). The presence
of layering is clearly evident at this density.

higher packing fractions. We also note the crossing of the
curves on the right-hand side. As we argue later, this effect
cannot be explained by assuming a Smoluchowski model with
uniform diffusivity. The 3D system of hard spheres confined
between two concentric shells shows a similar behavior. See
Fig. 6.

Figure 7 shows τ1 as a function of the packing fraction
for three geometries in two dimensions. At very low packing
fractions there are few disk-disk collisions and the particles
are constrained by the L = 0 condition to go directly back and
forth between the inner and the outer boundaries. This results
in a small τ1. As the density increases, the increasing frequency
of disk-disk collisions leads to a rapid increase in the MFPT.
Even after the initial extremely rapid increase we observe a
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FIG. 3. Radial density of N hard disks in an annulus of radii
R0 = 0.5 and R1 = 16 for N = 500, 550, 600, and 650, from bottom
to top (corresponding packing fractions: η = 0.196, 0.392, 0.510, and
0.588, respectively). For clarity, the curves for N = 550, N = 600,
and N = 650 are displaced in the vertical direction by 0.5, 1, and
1.5 units, respectively. The layering effect is most intense next to the
outer wall.

062120-3



C. ANTOINE AND J. TALBOT PHYSICAL REVIEW E 93, 062120 (2016)

0 0.1 0.2 0.3 0.4 0.5 0.6
η

0

0.1

0.2

0.3

0.4

0.5
Γ

FIG. 4. Reaction rate of confined hard disks (2D) in the steady
state as a function of the packing fraction. R0 = 0.5 (top) and R1 = 8,
R1 = 16, and R1 = 32 (from top to bottom). Dashed lines show the
predictions of the ballistic regime theory, Eq. (26); dashed-dotted
lines, the predictions of the Smoluchowski theory, Eq. (9), with the
Enskog diffusion coefficient.

superexponential dependence on the packing fraction that is
the direct result of crowding.

Figure 8 shows the ratio of the MFPTs, τ1/τ0. Except at
very low packing fractions this is a decreasing function of the
packing fraction. For moderate values of η the ratio attains
a nearly constant value. We attribute the sharp drop-off at
small packing fractions to the imposition of zero total angular
momentum. This condition implies strong constraints on the
dynamics when there are few particles. For example, when
N = 1, it imposes that τ1/τ0 = 1, but for N = 2, it tends
to decrease the probability of a disk’s directly hitting the
target from the initial random configuration of positions and
velocities. For N � 2, the system is chaotic and the disks
always end up colliding with the inner wall.

In Fig. 9 we show some sample trajectories for systems of
different packing fractions. Four regimes can be identified:
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FIG. 5. Reaction rate of confined hard disks (2D) in the steady
state as a function of the packing fraction for R1 = 8 and, from top to
bottom, R0 = 1.5, 1, and 0.5. Dashed lines show the predictions
of the ballistic regime theory, Eq. (26); dashed-dotted lines, the
predictions of the Smoluchowski theory, Eq. (9), with the Enskog
diffusion coefficient.
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FIG. 6. Reaction rate of confined hard spheres in the steady state
as a function of the packing fraction for various values of the external
boundary radius R1 (with a constant internal boundary R0 = 0.5).
From top to bottom (on the left): R1 = 4, R1 = 6, and R1 = 8. Dashed
lines show the predictions of the kinetic theory, Eq. (30). Also shown
are the predictions of the Smoluchowski theory, Eq. (14), with a
constant diffusion coefficient using the results of the Enskog theory
(dotted lines) and Enskog theory with the correction proposed by
Heyes et al. (dash-dotted lines) [41].

(i) At very low particle numbers, the dynamics is clearly
dominated by ballistic trajectories. Disk-disk collisions are
rare and a particle typically collides many times with the walls
before encountering another particle. As a consequence, τ0

is of the order of (R1 − R0 − σ )/〈v〉, where 〈v〉 is the mean
velocity of the particles, whereas τ1 is much larger since the
probability of hitting the central target is low. (ii) For a slightly
higher value of η, interparticle collisions cause τ0 and τ1 to
increase, but also facilitate the collision of blue particles with
the target, leading to a decrease in the ratio τ1/τ0. (iii) At
higher densities, the trajectories are dominated by diffusive
motion and τ1/τ0 tends to a constant value for a broad range
of η. (iv) Finally, for very large packing fractions, τ1/τ0 tends
to decrease with η due to the layering effect, which is more

0 0.1 0.2 0.3 0.4 0.5 0.6
η

10

100
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τ 1

FIG. 7. MFPT for a particle to transit from the outer boundary
at R1 to the inner boundary (target) at R0, τ1, as a function of the
packing fraction η in two dimensions. From top to bottom: R1 = 16,
R1 = 8, and R1 = 4 (R0 = 0.5). Arrows show the prediction of the
kinetic theory, Eq. (25).
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FIG. 8. Ratio of the MFPTs τ1/τ0 as a function of the packing
fraction η for various values of the external boundary R1 in two
dimensions. From top to bottom: R1 = 16, R1 = 8, and R1 = 4.
Dashed lines correspond to the theoretical estimate, Eq. (10), within
the diffusive approach and arrows show the predictions of the kinetic
theory, Eq. (27).

pronounced near the outer wall (creating a higher barrier for
red particles).

If the fluid density is not too low and the confinement not
too strong, one can attempt to use the Smoluchowski equation
within a diffusive approach to determine τ0 and τ1 [40]. For
either a low density or a strong confinement the diffusive
approach is no longer valid, as the dynamics are controlled by
a wall-mediated ballistic regime. Note that this is distinct from
a wall-mediated diffusive, or Knudsen, regime. In our system
we assume specular reflections that prevent thermalization due
to the collisions with the walls. The system geometry is thus
expected to play a crucial role in determining both the mean
distance traveled by the disks between the inner and the outer
boundaries and the associated reaction probability.

Finally, we develop a global description of the kinetics
by making use of a Bosanquet-like formula that effectively
interpolates between the ballistic and the diffusive regimes.
Some discrepancies are expected at intermediate and high
densities due to the layering effects close to R1 and R0 that are
not incorporated in the theoretical description.

IV. DIFFUSIVE REGIME

If we assume diffusive motion with a uniform coefficient
of diffusion D0, the mean first-passage time obeys the Poisson
equation D0∇2τ (r|r0,r1) = −1, where τ (r|r0,r1) denotes the
MFPT for a particle starting from r with an absorbing boundary
at r0 and a reflecting boundary at r1. The boundary conditions
are τ (r0|r0,r1) = 0 and dτ (r|r0,r1)

dr
|r=r1 = 0.

A. Two dimensions: Hard disks

In two dimensions, the solution of the Poisson equation
with absorbing and reflecting boundary conditions is

τ (r|r0,r1) = 1

D0

[
r2

1

2
ln(r/r0) − r2

4
+ r2

0

4

]
, (6)

from which we deduce

τ1 = τ (r = r1|r0,r1) = 1

D0

[
r2

1

2
ln(r1/r0) − r2

1

4
+ r2

0

4

]
, (7)

and for the reverse process

τ0 = τ (r = r0|r1,r0) = 1

D0

[
r2

0

2
ln(r0/r1) − r2

0

4
+ r2

1

4

]
, (8)

where we have introduced r0 = R0 + σ/2 and r1 = R1 − σ/2
to account for the finite size of the diffusing disks. We note
that the system geometry leads to an asymmetry in the MFPTs
(that is not present in a slit-pore system). From Eq. (5) we
obtain a simple expression for the steady-state reaction rate:

�D0 = 2D0N(
r2

1 − r2
0

)
ln(r1/r0)

. (9)

The diffusion coefficient that appears in this equation is
strongly density dependent. We can estimate it using known
results for hard disks [42,43]. See Appendix A for the corrected
Enskog expression of D0. The approach is no longer valid
when the mean free path exceeds the system size, i.e., when
either the number of disks is very low or the confinement is very
strong. Indeed, D0 approaches a nonphysical infinite value for
η −→ 0 (unlike colloid particles, for which the self-diffusion
tends to a finite value in the low-density limit). This implies
that the reaction times τ1 and τ0 cannot display a minimum
for a particular system density or size in a purely diffusive
description. In any case, we do not expect the Smoluchowski
approach to be valid at low to intermediate densities [44].

Figures 4 and 5 show the comparison of Eq. (9) using
the Enskog theory for D0. The theory correctly predicts that
the reaction rate decreases with increasing density, but the
agreement is not quantitative. Using the corrected Enskog
theory (Appendix B) does not improve the prediction, except
at very high densities. This hints at the strong influence
of confinement and layering, effects that are not taken into
account in the modified Enskog theories.

Within the framework of the Smoluchowski theory with a
constant coefficient of diffusion the ratio τ1/τ0 depends only
on the system geometry,

τ1

τ0
= 2(r1/r0)2 ln(r1/r0) − (r1/r0)2 + 1

(r1/r0)2 − 2 ln(r1/r0) − 1
, (10)

and converges slowly to 2 ln(r1/r0) for large values of r1/r0

due to the asymmetry between τ1 and τ0 when r1 � r0:
τ1 scales as 2r2

1 ln(r1/r0), whereas τ0 scales as r2
1 only.

Comparison with the simulation results shows that Eq. (10)
is only valid in a narrow range of packing fractions. At high
packing fractions it overestimates the ratio, while for small
to intermediate packing fractions, the simulated ratio is much
higher than predicted by the theory. In the latter regime where
the friction is low, the Smoluchowski theory is no longer valid
[44]. More quantitatively, the Stokes-Einstein relation in two
dimensions implies that the diffusive time scale (inverse of the
friction coefficient) scales as (πD0)/(kBT ) [45,46]. For the
Smoluchowski approach to be valid for describing a process,
this time scale must be much smaller than the duration of
the process itself, namely, τ0 in the present case. Due to
confinement, τ0 is larger than 1% of the diffusive time scale for
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FIG. 9. Some illustrative first-passage trajectories of hard disks in an annulus with R0 = 0.5 and R1 = 8. Each line shows an independent
trajectory for a particle starting in contact with the outer boundary until it reaches the inner (target) boundary. Left to right and top to bottom:
N = 5 (η = 0.02), N = 50 (η = 0.196), N = 100 (η = 0.392), and N = 150 (η = 0.588). Inner and outer full circles of radii R0 + 0.5 and
R1 − 0.5 show the limits of the disk centers. Dashed circles in the densest configuration show the locations of the maxima in the radial density.

the following configurations (R0 = 0.5 in all cases): η < 0.5
if R1 = 4, η < 0.4 if R1 = 8, η < 0.3 if R1 = 16, and η < 0.2
if R1 = 32. These limiting values conform well with the
crossovers observed between numerical data and theoretical
predictions, Eqs. (7) and (8).

B. Three dimensions: Hard spheres

In a 3D system of hard spheres confined between two
concentric shells the solution of the Poisson equation is

τ1 = τ (r = r1|r0,r1) = 1

3D0

[
r3

1

(
1

r0
− 1

r1

)
+ 1

2

(
r2

0 − r2
1

)]
,

(11)

τ0 = τ (r = r0|r0,r1) = 1

3D0

[
r3

0

(
1

r1
− 1

r0

)
+ 1

2

(
r2

1 − r2
0

)]
,

(12)

where D0, the self-diffusion coefficient of hard spheres,
can be approximated by a corrected Enskog expression (see
Appendix B for more details).

The ratio of MFPTs is

τ1

τ0
= 1 + 2β−1

1 + 2β
(13)

and the expression for the rate of reaction in the diffusive
regime is

�D0 = 3D0N

r2
0 [β−2(β−1 − 1) + β − 1]

. (14)

Similarly to what was observed in the 2D system, this
expression is unable to provide a quantitatively accurate
description of the simulation results when D0 is approximated
by the Enskog theory or the corrected version, although the
latter does a better job at high densities. See Fig. 6. Again, we
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conclude that layering and confinement strongly influence the
dynamics.

As for the composition of the system in the steady state, we
can use the same approach as in two dimensions. Like the ratio
τ1/τ0, it is independent of the diffusion coefficient. Details are
given in Appendix C.

V. BALLISTIC REGIME

In this section we develop a kinetic theory for the reaction
rate in the ballistic regime, i.e., for low to intermediate packing
fractions, for which the diffusive (Smoluchowski) approach
is expected to be invalid. For a small number of particles
the dynamics is dominated by trajectories between the outer
and the inner walls. The trajectory of a single particle can
be defined by θ , the angle of incidence with respect to an
inward normal on the outer wall (see Fig. 10). If θ < θc, where
sin θc = r0/r1, a particle following this trajectory collides with
the inner wall (target) at an angle of incidence φ. Elementary
trigonometry shows that these angles are related by

r0 sin φ = r1 sin θ. (15)

The distance traveled by the particle between two consecutive
collisions with the outer and inner walls is

x∗(φ) =
√

1 − β2 sin2 φ − β cos φ (16)

in terms of φ and

x∗(θ ) = cos θ −
√

β2 − sin2 θ (17)

in terms of θ . Distances have been adimensioned with r1,
x∗ = x/r1, and

β = r0/r1. (18)

If θ > θc, the particle misses the target and recollides with the
outer wall, and the distance traveled between two consecutive
collisions is x∗

miss = 2 cos θ .
We now consider the situation with more than one particle.

If N is not too small, the dynamics consists primarily of ballis-
tic trajectories between the walls, occasionally interrupted by

FIG. 10. Geometric quantities for ballistic trajectories.
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FIG. 11. Distribution of the takeoff angles θ (black lines) and φ

(red lines) (see Fig. 10) for different numbers of hard disks in an
annulus of dimensions R0 = 0.5 and R1 = 8. The blue line shows
cos θ , the expected result for a bulk ideal gas colliding with a planar
wall.

collisions with another disk. For a semi-infinite ideal gas next
to a planar wall the incidence angle, ψ , is distributed as cos ψ .
For example, for the system R0 = 0.5,R1 = 8, simulations in
two dimensions show that this is the case for the angle φ for
all values of N and is adequate for θ for N � 10 (see Fig. 11).

A. Two dimensions: Hard disks

Let us first consider a particle leaving the inner wall. It will
collide with the outer wall regardless of the takeoff angle φ

(assuming that it does not first collide with another disk).
Assuming a cosine distribution [29,31,33] we find that the

average (adimensioned) length traveled by such a disk before
collision with the outer wall is

x∗
0=

∫ π/2

0
x∗(φ) cos(φ)dφ = −βπ

4
+

√
1 − β2

2
+ arcsin β

2β
.

(19)

For β < 1 a Taylor-series expansion yields

x∗
0 = 1 − π

4
β − β2

6
+ O(β3). (20)

We estimate the average time to reach the outer wall as τ0b =
x0(β)/〈v〉, where 〈v〉 =

√
π
2

kBT
m

is the mean velocity of a 2D
gas.

Now consider a particle rebounding from the outer wall at
a normal angle θ . The probability of hitting the target is

phit =
∫ θc

0
cos(θ )dθ = β. (21)

If θ < θc, the particle collides with the inner wall and the
average distance traveled is

x∗
hit =

∫ θc

0
x∗(θ ) cos(θ )dθ

/∫ θc

0
cos(θ )dθ

= −πβ

4
+ arcsin(β)

2β
+

√
1 − β2

2
= x∗

0 . (22)
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If θ > θc, the particle misses the target and travels an average
distance

x∗
miss =

∫ π/2

θc

2 cos2(θ )dθ

/∫ π/2

θc

cos θdθ

= arccos(β) − β
√

1 − β2

1 − β
(23)

before recolliding with the outer wall. The target may be hit
directly or after k rebounds. Assuming that the successive
takeoff angles are uncorrelated we estimate

τ1 =
∞∑

k=0

(1 − phit)
kphit(ktmiss + thit), (24)

where, e.g., thit = xhit/〈v〉. Evaluating the sum yields

τ1 = thit +
(

1 − β

β

)
tmiss. (25)

From Eq. (5) we estimate the rate of reaction in the ballistic
regime as

�b =
√

8π
(
R2

1 − R2
0

)
r1(x∗

0 + x∗
hit + (1/β − 1)x∗

miss)
η

=
√

8π
(
R2

1 − R2
0

)
r1

β

[
2

π
+ O(β)

]
η, (26)

where we have set kBT /m = 1 as in the simulations. This
formula is in good agreement with the simulation results (see
Figs. 4 and 5). Similarly, the ratio of the MFPTs can be obtained
as

τb1

τb0
= x∗

hit + (1/β − 1)x∗
miss

x∗
0

= π

2β
+ π2

8
− 1 + O(β).

(27)

This expression conforms well with the small packing fraction
peak of τ1/τ0 (see Fig. 8) but naturally underestimates the
value of MFPTs since the above calculations do not account
for disk-disk collisions. The increase in the path length due to
these collisions can be simply implemented by assuming the
independence of the collisions and considering a sum similar to
Eq. (24). We do not, however, develop these calculations here,
as they require us to make assumptions about the distribution
of disk-disk collision angles.

B. Three dimensions: Hard spheres

In the ballistic regime phit = β2 and the mean velocity
〈v〉 = √

8kBT /(πm). The average (adimensioned) distances
are

x∗
0 = x∗

hit = 2

3β2
(1 − β3 − (1 − β2)3/2) (28)

and

x∗
miss = 4

3

√
1 − β2, (29)

leading to the expression for the ballistic reaction rate

�b = 8
√

8/π
(
R3

1 − R3
0

)
r1(x∗

0 + x∗
hit + (1/β2 − 1)x∗

miss)
η

= 8
√

8/π
(
R3

1 − R3
0

)
r1

(
3

4
β2 + O(β4)

)
η, (30)

and the ratio of the MFPTs is given by

τb1

τb0
= x∗

hit + (1/β2 − 1)x∗
miss

x∗
0

= 4

3β2
+ 8

9β
− 2

27
+ O(β). (31)

Figure 6 shows that the kinetic theory, Eq. (30), provides
an accurate description of the simulation at low densities.
The Smoluchowski theory, Eq. (14), with a uniform diffusion
coefficient, describes only qualitatively the behavior of �(η)
at very high densities. Going beyond the Enskog theory by
accounting for the hydrodynamic and finite-size effects (as
did Heyes et al. [41]) simply amounts to getting better slopes
at high densities. At intermediate to high densities, neither the
ballistic nor the diffusive regime is able to account for the
particular bell shape of �(η) for such self-crowding systems.

VI. BOSANQUET APPROACH

Several formulas have been proposed to account for these
different (ballistic and diffusive) regimes over the whole
density range [30,47,48]. Assuming that the frequencies of
various kinds of collisions are additive, Bosanquet developed
a particularly simple interpolation formula for the global
diffusion coefficient D,

1

D
= 1

DK

+ 1

D0
, (32)

which has proved to be accurate to a few percent [30,49].
In this expression, DK is the diffusion coefficient cor-

responding to the Knudsen regime, obtained for strong
confinement and diffusive wall-particle interactions [29,30].
For hard disks, for example, if the wall-disk interactions were
diffusive, the Knudsen diffusion coefficient for our particular
geometry would be given by DK = 2

π
vλK , with the Knudsen

mean free path [50,51] λK = πA
P = π

2 (r1 − r0), where A and
P are, respectively, the area and perimeter of the 2D zone
where the Knudsen regime would take place.

It is interesting to compare λK with the mean free path
λ2D of a 2D Boltzmann gas [52]: λ2D = πσ

8
√

2ηg2(η)
. As is well

known, λ2D diverges when η approaches 0, whereas λK does
not depend on the packing fraction. On the other hand, λ2D

does not depend on the system geometry, contrary to λK ,
which decreases with R1. Consequently, as noted previously,
the Boltzmann mean free path λ2D may become larger than
λK if the confinement is too strong or if the density is too low,
thereby invalidating the use of the Smoluchowski equation.

To devise a global expression for �(η), we follow the
approach of Bosanquet [19,20,47,49] by assuming that the
frequencies of the ballistic and diffusive collisions are additive:

1

�Bos
= 1

�b

+ 1

�D0

. (33)
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FIG. 12. Steady-state reaction rate, �, as a function of the packing
fraction η for (a) R1 = 32 and (b) R1 = 8 in two dimensions (with
a constant internal boundary R0 = 0.5). Black circles: �(η) from
MD simulation. Solid lines: �(η) from the Bosanquet-like formula
Eq. (33), with D0 from [43]. From bottom to top: blue lines, for �b

given by Eq. (26); and red lines, for �b,N=2 (see text). Dashed blue line:
�b given by Eq. (26). Black dot-dashed line: diffusive reaction rate,
Eq. (9), with D0 from [43] (see Appendix A). Green dotted line:
Enskog diffusive reaction rate.

This amounts to rewriting �b as in Eq. (9) with a hypothet-
ical Knudsen diffusion coefficient DbK defined as DbK =
(r2

1 −r2
0 ) ln(r1/r0)

2(τ0b+τ1b) . Let us emphasize that, in the present work, a
Knudsen regime is not present since the disk-wall collisions
are specular. Consequently, the ballistic regime described in
Sec. V cannot strictly correspond to this Knudsen regime.
Nevertheless, it can be seen as a useful, limiting behavior
within the Bosanquet approach. Another limiting behavior can
be contemplated by considering the ballistic value of �b,N=2,
obtained for the smallest relevant value of N , i.e., N = 2
in two dimensions, for which the distribution of the takeoff
angle θ significantly deviates from the cosine distribution (see
Fig. 11), and relation (24) is no longer valid since the wall-disk
collisions are highly correlated. If it existed, the Knudsen
reaction rate would be expected to lie between these two
extreme values, �b and �b,N=2.

In Fig. 12 we show �(η) and �Bos(η) for weak (R1 = 32)
and strong (R1 = 8) confinement in two dimensions. Two
kinds of Bosanquet formulas have been considered: the first
one (in blue) for �b given by Eq. (26) and the other (in
red) for �b,N=2. These account well for the reaction rate
maximum and bound the numerical MD values (black circles)
at low to moderate densities, as expected. The agreement with
numerical data is relatively good at low densities whatever
the confinement but is only qualitative beyond η = 0.2 for
strong confinement. Also shown are the ballistic reaction rate,
Eq. (26), and the diffusive reaction rate, Eq. (9), with D0

0

1

2

Γ

0 0. 1 0. 2 0. 3 0. 4 0.5

0 0. 1 0. 2 0. 3 0. 4 0.5
0

1

2

3

Γ

(a)

(b)

η

FIG. 13. Steady-state reaction rate � as a function of the packing
fraction η for (a) R1 = 8 and (b) R1 = 4 in three dimensions (with
a constant internal boundary R0 = 0.5). Black circles: �(η) from
MD simulation. Solid lines: �(η) from the Bosanquet-like formula,
Eq. (33), with D0 from [41] (see Appendix B). From bottom to top:
blue lines, for �b given by Eq. (30); and red lines, for �b,N=3 (see
text). Dashed blue line: �b given by Eq. (30). Black dot-dashed line:
diffusive reaction rate, Eq. (14), with D0 from [41] (see Appendix B).
Green dotted line: Enskog diffusive reaction rate.

given either by the Enskog expression or by the modified
Enskog expression from [41]. We clearly see that the density
and finite-size effects cannot be ignored (see Appendix A),
especially at high densities, where there is a nonphysical
crossover between the Enskog diffusive reaction rate and the
numerical MD values.

In Fig. 13 we show predictions obtained using the Bosan-
quet approach in three dimensions. As in two dimensions,
we used the limiting formulas: the first one (in blue) for �b

given by Eq. (30) and the other (in red) for �b,N=3 (the value
N = 3 being the smallest N value for which the hard-sphere
trajectories are truly 3D when the total angular momentum is
null). The expression of the 3D diffusion coefficient D0 is given
by Eq. (B3) (see Appendix B) and accounts for hydrodynamics
and finite-size effects. We draw the same conclusions as for
the hard-disk systems, the global agreement being better when
the confinement is reduced.

The discrepancy between the theoretical (with �D0 ) and
the simulation results confirms that the confinement effects
are not well captured by a model with a uniform diffusion
coefficient. As previously noted, the confining boundaries
induce a layer structure in their vicinity which may drastically
reduce the local self-diffusion coefficient, driving up the mean
passage times τ0 and τ1 and reducing � accordingly. As a first
approximation we can consider the system as being composed
of three annular regions: two quasicrystalline layered parts
near R1 and R0, surrounding an effective “bulk” phase. A
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higher density can be associated with the two layered parts,
whereas the bulk density is accordingly reduced compared
with that of the (ideal) nonlayered system. While the times
τi are slightly reduced by the bulk phase, they are greatly
enhanced by the two layered parts, which act like “molasses”
on the incoming or departing particles. Another consequence
of this layering is that it effectively creates a repulsive potential
close to the boundaries at R1 and R0 that incoming particles
have to overcome, leading to a further increase in the times τi .
In Fig. 2 one can observe a few red disks that are effectively
blocked from approaching the outer boundary by a dense layer
of blue disks.

VII. POSITION-DEPENDENT DIFFUSIVITY

Similarly to what has been done above at low packing
fractions, one can also question the application of the Smolu-
chowski approach leading to Eq. (9) since the necessary
conditions for it to be valid may not be fulfilled at high η. As
recalled in Refs. [53,54], these conditions are the following:
(i) the target must be fixed at the center of the system; (ii) the
reactive disks must not interact; and (iii) the dynamics of the
disks must be purely diffusive and Markovian.

The first condition is respected here since r0 acts as the
main target of the problem (τ1, the time needed to reach r0

from r1, is usually much larger than τ0, the time needed to
reach r1 from r0). The second condition is also respected since
the only disk-disk interaction is the hard-core one, which is
accounted for in the self-diffusion coefficient D0.

The third condition is more complex to assess. It has
been shown in Ref. [55] that a condition equivalent to (iii)
is that the space and time variations of both the potential
energy and the diffusion coefficient must be negligible on
the scale of the characteristic length

√
m/(kBT )D0. As a

consequence, the higher the density, the smaller this length,
and the Smoluchowski equation may lose its validity because
of the density oscillations due to the layering, which is
characterized by a length scale approximately equal to σ , the
hard-particle diameter. Since the diffusion coefficient D0 is
smaller than

√
kBT /mσ for packing fractions η higher than

0.2, the Smoluchowski approach with a uniform diffusion
coefficient is not rigorously relevant for describing the disk
dynamics in layered areas where η exceeds this value.

In bulk, dense, homogeneous fluids, diffusion coefficients
can be estimated from the mean-squared displacement. But
in confined environments it is not clear how to calculate the
diffusion coefficient. In a slit pore, for example, motion parallel
to the walls is diffusive. One can then use the mean-squared
displacement to evaluate D‖. But in the transverse direction
the confining boundaries and the spatially varying density
profile prevent the use of the mean squared displacement route
to the diffusion coefficient D⊥. Mittal et al. [21] studied the
diffusive dynamics of a hard-sphere fluid confined between
parallel walls. They determined the position-dependent collec-
tive diffusion coefficient normal to the walls using a Bayesian
inference method. Surprisingly, they observed that it is larger
in regions of a high local packing density, whereas D is a
monotonically decreasing function of the density in the bulk
fluid.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r

0

0.25

0.5

0.75

1

D
(r

)

FIG. 14. Radial density (blue) and position-dependent diffusivity
D(r) (red) computed from Eq. (36) for a 2D system with R0 = 0.5,
R1 = 16, and N = 650 (η = 0.6354). The dashed line shows the bulk
diffusivity computed from the Enskog theory.

To properly account for the layering effect in a dense,
confined system it is necessary to introduce a position-
dependent diffusivity: either by using a simple model with
shells with different diffusion coefficients [56,57] or by
considering a heterogeneous Smoluchowski equation with
a position-dependent diffusion coefficient. We now present
some preliminary results for the latter case.

If the diffusion coefficient is taken as position dependent,
the MFPT for a particle starting from r to reach the target at
r0 is given by

τ1(r) =
∫ r

r0

dx

D(x)peq(x)

∫ r1

x

dy peq(y), (34)

where peq(r) is the equilibrium density at radial position r

[40].
Now let ψ(x) = ∫ r1

x
dy peq(y) so that the first-passage time

becomes

τ1(r) = −
∫ r

r0

dx

D(x) d ln ψ(x)
dx

, (35)

where τ1(r) is the MFPT for a particle to reach the inner
boundary starting from r . Differentiating with respect to r

yields

1

D(r)
= −dτ1(r)

dr

d ln ψ(r)

dr
. (36)

This equation provides a route to the diffusion coefficient from
the MFPTs and the densities determined in the simulations
[58]. It is a simpler alternative to the Bayesian inference
method of Hummer [59], but since it involves numerical
derivatives it may be less accurate than that method.

We have applied this method to the dense system
R0 = 0.5, R1 = 16, N = 650 (snapshot shown in Fig. 2).
Figure 14 shows that D(r) oscillates around the Enskog value
and is out of phase with ρ(r). That is, the diffusion coefficient
is relatively large where the density is relatively low. This is
seemingly consistent with the trajectories shown in Fig. 9,
where the particle spends more time near the density maxima,
but is in contradiction with the results of Mittal et al. [21] for a
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slit pore. More extensive simulations are needed to understand
the origin of this difference.

VIII. CONCLUSION

We have examined a simple model system of hard disks
confined in annuli of varying sizes to investigate the effect of
crowding and confinement on first passage times. The steady-
state rate of the “color” reaction displays a maximum for a
packing fraction between 0.2 and 0.3, depending on the system
geometry. This is also observed in the corresponding 3D
system of hard spheres confined between two concentric shells.
It is interesting to note that in biological cells macromolecules
typically occupy 20%–30% of the available volume [9]. In
the ballistic regime at low densities the MFPTs and reaction
rate are well described by a kinetic theory model. At higher
densities we observe the onset of a diffusive regime that is
only qualitatively described by a Smoluchowski-like theory
with a constant coefficient of diffusion. The discrepancy
is due, in part, to a layering phenomenon that becomes
more and more pronounced with increasing density and
confinement.

Surprisingly, the ratio τ1/τ0 is well described at interme-
diate and high densities by a formula assuming a constant
diffusion coefficient, although neither τ1 nor τ0 is quantita-
tively well described by a diffusive approach which does not
account for the layering effect. It may, however, be possible
to capture the layering effect using a model with two or more
shells with different diffusion coefficients [56,57] or within
a Smoluchowski approach with a true position-dependent
diffusivity.

We conclude that layering strongly affects the search for a
target in a confined (self-)crowded medium since it hinders
hard-core particles from reaching or leaving the confining
boundaries. One can, however, imagine some situations where
this effect might help a searcher to find a target more efficiently.
For example, if the target is close to, or on, the boundary, the
layering may facilitate the search.

APPENDIX A: DIFFUSION COEFFICIENT
OF THE HARD-DISK FLUID

The diffusion coefficient D0 that appears in Eqs. (6)–(9)
refers to the self-diffusion coefficient of the hard-disk fluid of
interest [60]. For infinite systems, this transport coefficient
does not exist because of the well-known divergence of
the long-time tail of the velocity autocorrelation function
appearing in the Green-Kubo relation [61]. For finite systems,
however, the asymptotic logarithmic tail is integrable and leads
to a well-defined, finite value of the self-diffusion coefficient.
It has even been shown that, in practice, this long-time tail
problem is physically irrelevant for small enough systems
like ours [62] and, consequently, can be ignored (or, at least,
considered from the finite-size effects point of view; see
below).

Like all diffusion coefficients, the self-diffusion coefficient
is strongly density dependent and the usual Boltzmann-Enskog
formula DE has to be corrected by a factor h(η) to account for
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FIG. 15. Self-diffusion coefficients for hard-disk fluids from
simulation scaled by the Enskog value. Adapted from Fig. 2 in
Ref. [43]. These curves were obtained for a fixed number N of
disks in a cell with periodic boundary conditions. Red squares and
blue circles correspond to N = 625 and N = 169, respectively, and
purple stars are associated with an N −→ 0 interpolation. Note that
in the present study the area is kept fixed while the number of disks
is varied, contrary to [43].

the hydrodynamic and caging or crowding effects,

D0 = DEh(η) = π1/2σ

8ηg2(η)

(
kBT

m

)1/2

h(η), (A1)

in the first Sonine approximation for DE , and where the pair
distribution function at contact g2(η) can be estimated using
Henderson’s equation, g2(η) = (1 − 7η/16)/(1 − η)2 [43], in
two dimensions.

Even though the factor h(η) does not qualitatively modify
the behavior of D0(η)—namely, a strong decrease with η

and a divergence to infinity at η = 0—it may dramatically
change its value at intermediate and high densities (by more
than a factor of 2; see Fig. 15, adapted from Ref. [43]).
No approximate analytical expression of h(η) is known for
the moment, although a polynomial expression has been
numerically established for packing fractions below 0.5 [43].
Its zero density value is estimated as h(0) � 1.027 in the
ninth Sonine approximation [42]. For packing fractions below
the Alder transition ηc � 0.7, h(η) is larger than 1 due to
hydrodynamic effects, while for packing fractions above ηc,
crowding and caging effects result in an abrupt collapse of D0

compared with the smooth decrease in DE(η).
Finite-size effects have also been shown to greatly affect

the factor h(η) [42,43]. At a fixed density, in a square box with
periodic boundary conditions, Garcia-Rojo et al. have shown
[43] that the factor hN (η) increases in a nontrivial way with
the number N of disks present in the simulation for η � ηc.
In our case, it is pretty hard to estimate this size effect since
(i) the total area π (R2

1 − R2
0) of the system is obviously not

relevant for the diffusion of disks between the r1 and the r0

boundaries; (ii) the system size is kept fixed, while it is the
density that is varied; and (iii) the boundaries are not periodic
and modify both the structure and the dynamics of the nearby
hard-disk fluid.

One can nevertheless assume, in a first approximation, that
the relevant number N ′ of disks corresponds roughly to the
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disks contained in a virtual square box of side R1 − R0: N ′ �
4(R1−R0)2

πσ 2 η, finally yielding the self-diffusion coefficient D0 �
DEhN ′(η).

APPENDIX B: DIFFUSION COEFFICIENT
OF THE HARD-SPHERE FLUID

In three dimensions, the Boltzmann-Enskog formula of the
self-diffusion coefficient reads [63,64]

DE = π1/2σ

16ηg2(η)

(
kBT

m

)1/2

, (B1)

where g2(η), the pair distribution function at contact, can be es-
timated using different expressions, e.g., the virial expansion,
g2,virial(η) � 1 + 2.5η + 4.5904η2 + 7.36η3, or the simple,
but accurate, Carnahan-Starling [65] expression, g2,CS(η) =
1−η/2
(1−η)3 .

The DE expression extends the kinetic theory of (infinitely
diluted) gases to finite packing fractions but neglects correlated
motions between collisions since it relies on the molecular
chaos approximation. As in two dimensions, a correction factor
h(η) can be introduced,

D0 = DEh(η), (B2)

to account for these particular hydrodynamic effects (which
can modify DE by up to 40%). The two main correlation
effects are the density and finite (domain) size.

The density effect is linked to a delayed back-scattering
process which leads to an increase in the diffusion coefficient
at intermediate packing fractions (due to extended vortex flows
around a moving hard sphere) and a strong decrease at high
packing fractions (due to caging effect). Since the pioneering
work of Alder et al. [61], several empirical or semiempirical
expressions have been devised for h(η) (e.g., see [66–69] and
[64] for a recent review).

The finite size of the computational domain or cell leads
to a significant N dependence of D0 when η is fixed. At
intermediate packing fractions, hydrodynamic arguments lead
to a correction in N−1/3 for D0, which has been confirmed
by extensive MD simulations for a large set of finite periodic
systems and various geometries [41,70–73]. At low and high
packing fractions, however, a correction in N−1 has been
conjectured [41], and a global, accurate fit over a wide range
of packing fractions has been obtained,

D0 = DEh0(η) − A(η)N−α(η), (B3)

where the expressions of h0(η), A(η), and α(η) are explicitly
given in Ref. [41].

As in two dimensions, it is hard to devise the finite-size
correction for our system since it is not a finite periodic system.
It is particularly difficult to estimate the relevant number of
hard spheres to be used in Eq. (B3), the total number of hard
spheres of the simulation clearly providing an upper limit only.

APPENDIX C: COMPOSITION OF THE
STEADY-STATE SYSTEM

Let ρ1(r) and ρ0(r) denote the radial density of activated
(blue) and deactivated (red) particles, respectively. Assuming
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FIG. 16. Steady-state composition of the hard-disk system R0 =
0.5, R1 = 8 as a function of the packing fraction. The dashed line
shows the value computed assuming that the diffusivities are uniform.

that the Fokker-Planck equation with constant diffusivities can
be applied, these densities evolve as

∂ρk(r,t)

∂t
= 1

rd−1

∂

∂r

[
Drd−1 ∂ρk(r,t)

∂r

]
, k = 0,1, (C1)

in a d-dimensional system. The boundary conditions are

ρ1(r0,t) = ρ0(r1,t) = 0 (C2)

and

∂ρ1(r0,t)

∂t
= −∂ρ0(r0,t)

∂t
,

∂ρ0(r1,t)

∂t
= −∂ρ1(r1,t)

∂t
. (C3)

In the steady state for d = 2 we find

n1(r) = c ln(r/r0), n0(r) = c ln(r1/r), (C4)

where the constant c can be determined by calculating the total
number of particles:

N =
∫ r1

r0

(ρ1(r) + ρ0(r))rdr = c

2
ln(r1/r0)

(
r2

1 − r2
0

)
. (C5)

Similarly, we find

N1 = c

4

(
r2

0 − r2
1 + 2R2

1 ln(r1/r0)
)

(C6)

and the ratio is

N1

N
= β2

β2 − 1
− 1

2 ln β
. (C7)

Figure 16 compares this formula with the composition
found in the simulation. For low densities, the simulated
composition exceeds the theoretical value. There is a crossover
at η ≈ 0.15 beyond which there are fewer active particles than
predicted by a uniform diffusion model.

For d �= 2 the equations are

ρ1(r) = c

2 − d

(
r2−d − r2−d

0

)
, ρ0(r) = c

2 − d

(
r2−d

1 − r2−d
)

(C8)
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and

N = c

d(2 − d)

(
rd

1 − rd
0

)(
r2−d

1 − r2−d
0

)
, (C9)

N1 = c

2 − d

(
(1/d − 1/2)r2

0 + (1/2)r2
1 − (1/d)r2−d

0 rd
1

)
.

(C10)

For example, for d = 3 the fraction of active particles is

N1

N
= (1 + 2β)β

2(β2 − β + 1)
. (C11)

APPENDIX D: INITIAL CONFIGURATION FOR
EVENT-DRIVEN SIMULATIONS

Here we detail the procedure for generating the initial
configuration. The hard-core particles are placed randomly and
sequentially, without overlap in the annulus. This is an efficient
method when η < 0.45 in two dimensions and η < 0.25 in

three dimensions. To generate higher density systems either
we start from an equilibrated large system with a low density
and then gradually reduce the outer radius R1 or we start
from a regularly spaced, quasicrystalline configuration and
let the system reach equilibrium. Random velocities, either
uniformly, −1 < vk,i < 1, k = x,y, or Gaussianly distributed,
are assigned to a subsystem of N − 1 particles giving an
angular momentum

LN−1 =
N−1∑
i=1

r i × mvi . (D1)

The position vector of the last particle is selected so that it is
perpendicular to LN−1 and its velocity, vN , is chosen so that
the total angular momentum is 0:

LN = LN−1 + rN × mvN = 0. (D2)

Finally, all the velocities are rescaled, v′
i = αvi , so that Eq. (3)

is satisfied.
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