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The fermionic and Majorana edge mode dynamics of various topological systems are compared, after a sudden
global quench of the Hamiltonian parameters takes place. Attention is focused on the regimes where the survival
probability of an edge state has oscillations either due to critical or off-critical quenches. The nature of the wave
functions and the overlaps between the eigenstates of different points in parameter space determine the various
types of behaviors, and the distinction due to the Majorana nature of the excitations plays a lesser role. Performing
a sequence of quenches, it is shown that the edge states, including Majorana modes, may be switched off and on.
Also, the generation of Majoranas due to quenching from a trivial phase is discussed.
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I. INTRODUCTION

Quenching a quantum system raises interesting questions
[1], particularly when the evolution is unitary. When a sudden
quench takes place, the evolution is determined by the overlaps
between the eigenstates of the instantaneous Hamiltonians,
prior to and after the quench, expressed by a given change of
a set of parameters upon which the Hamiltonian depends.

An abrupt change of the state of an isolated quantum system
leads to a unitary time evolution, and, therefore, the issue
of thermalization has been addressed [2,3]. In general, it is
expected that correlation functions stabilize [4–23]. In the
cases of soluble and integrable systems, thermalization breaks
down as one approaches an integrable point. However, some
sort of thermalization is predicted for which an equilibrium-
like distribution is expected in terms of a generalized
Gibbs ensemble, of the (infinitely) many conserved quantities
[24–43].

An interesting case is the effect of a sudden quench of the
parameters of a Hamiltonian with topological properties, and,
in particular, a change of parameters that leads to a change of
topological properties, specifically how the topological prop-
erties and topological edge states respond to such quenches
and how robust they are. Topological systems have attracted
interest [44,45], specifically topological superconductors [46]
due to the prediction of Majorana fermions [47–51]. It has
been shown before that topological systems are quite robust
to a quantum quench, as exemplified by the toric code model
[52,53].

It has also been shown recently [54] that, in the case
of quenches in infinite-size topological superconductors, the
Chern number cannot be changed by a unitary evolution, since
it only changes from its initial value for times that scale with
the system size. The same result was shown more generally for
any topological system, even though it is possible to change
the Bott index and topology if the system has a finite size [55].
Therefore, in a finite system the Chern number may change
[54], and the response of the edge states to a time-dependent
perturbation in finite systems may not be protected by
topology. Furthermore, quenches in superconducting systems
with topological properties, performed self-consistently [56],
showed the importance of the topological properties in the
evolution of the system [57], and they raised questions
regarding the survival of the topological order to the quench

[41,52,58,59]. The issue, therefore, is not resolved and is
attracting considerable attention.

In general, quenches that lead the system from a topological
phase to a trivial phase imply a decay of the gapless edge
states, and, in the reverse quenching, the topological states are
not generated. However, since the systems have a finite extent,
a revival of the original states is observed with a revival time
that scales with the system size. Also, as will be shown here,
Majorana edge states may be generated from a trivial phase
under appropriate conditions.

The revival of a given state can be characterized by the
survival probability of the state, as a consequence of the
quantum quench. The survival probability is related to the
Loschmidt echo [60–62] and to the fidelity [63,64]. The revival
time is associated with the propagation of the state along the
system, with a velocity that, in the case of a free system, travels
at a velocity given by the quasiparticle slope [65]. In the case of
interacting systems, it generalizes to a limiting velocity value,
similar to a light-cone propagation [66–69].

The behavior of edge states under an abrupt quantum
quench has been considered very recently in the context of
a two-dimensional topological insulator [70], where it was
found that, in the sudden transition from the topological
insulator to the trivial insulator phase, there is a collapse and
revival of the edge states [71]. Similar results were obtained
for the one-dimensional Kitaev model [72], also studying the
signature of the Majoranas in the entanglement spectrum [73].
Their dynamical formation and manipulation were considered
in [74] and [58]. The robustness of edge states may also be
studied in the context of slow quenches from a topological
phase to a trivial phase [54,75,76].

The effect of parity blocking on the dynamics of the
edge modes has been considered recently, in which case the
dynamics is restricted if there is a change in fermion parity
across the quench [77]. On the other hand, the Majorana zero
modes lead to some universal nonequilibrium signature in the
Loschmidt echo with a universal exponent associated with the
algebraic decay [78]. Also, the dynamics of the tunneling into
nonequilibrium edge states has been proposed as a possible
signature of the existence of these states [79]. Nonequilibrium
situations may also allow the transport of Majorana edges
states using extended gapless regions with a small but finite
overlap with the Majoranas [80]. Their effect has also been
considered in [81] and [82].
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While quenches from a topological to a trivial phase lead to
decay of the edge states, quenches within the same topological
phase typically lead to a decrease of the revival probability,
but to a finite value. An intermediate case of a quench
between two topologically different phases and within the
same phase is a quench to a critical point or a critical line,
separating two different topological phases. At this point the
spectrum becomes gapless. In some appropriate conditions
the survival probability shows oscillations [72]. In this work,
particular attention will be paid to these oscillations in various
topological systems.

We will consider sudden quantum quenches in one-
dimensional systems and focus on the oscillations at critical
quenches and noncritical quenches. The survival probability
will be studied taking into account finite-size effects. A period
doubling is observed as the initial state of the quench is
moved sufficiently far from the critical region. The dynamics
of Majorana zero-energy states is compared with that of
finite-energy excited states, and the dynamics of Majoranas is
also compared with that of fermionic zero-energy modes. The
importance of overlaps and the spectrum of the final eigenstates
is shown. It is shown that an appropriate sequence of quenches
may lead to an on/off process of the existence of Majorana
states, with potential application in their manipulation and
storing of information. Also, it is shown that states of a
trivial phase may lead after a quench to a topological phase to
Majorana states.

Universal single-frequency oscillations in the entanglement
spectrum of two Kondo impurities coupled to leads have been
discovered recently [83]. These are the result of an off-critical
quench across the phase transition to a Kondo screened regime
where all the spins are coupled to the impurity spins. The
frequency scales with the inverse of the system size. In the
systems considered here, the oscillations in general are a
superposition of different frequencies.

The paper is organized as follows. In Sec. II a discussion
of the quantities calculated after a sudden quench of the
parameters of the Hamiltonian is presented. In Sec. III the
topological models considered are briefly discussed. In Sec. IV
the dynamics of the edge modes of Kitaev’s model is studied
for the case of a single quench, and the generation of Majorana
modes due to a quench, or sequence of quenches, is discussed.
In Sec. V the dynamics of the edge modes of some multiband
systems is discussed, and the dynamics of Majorana modes
and fermionic zero-energy modes are compared. In Sec. VI
the conclusions are presented.

II. SINGLE-PARTICLE STATES AND QUANTUM
QUENCHES

Let us consider a Hamiltonian defined by an initial set of
parameters ξ0 for times T < 0. The single-particle eigenstates
of the Hamiltonian are given by

H (ξ0)|ψm0 (ξ0)〉 = Em0 (ξ0)|ψm0 (ξ0)〉, (1)

where m0 are the quantum numbers. At time T = T0, a sudden
transformation of the parameters is performed, ξ0 → ξ1. The
eigenstates of the new Hamiltonian are given by

H (ξ1)|ψm1 (ξ1)〉 = Em1 (ξ1)|ψm1 (ξ1)〉. (2)

The time evolution of a single-particle state, with quantum
number m0, is given by∣∣ψ I

m0
(T )

〉 =
∑
m1

e−iEm1 (ξ1)(T −T0)

×|ψm1 (ξ1)〉〈ψm1 (ξ1)|ψm0 (ξ0)〉 (3)

for times T � T0 (T0 = 0 is chosen hereafter). The survival
probability of the initial state |ψm0 (ξ0)〉 is, as usual, defined by

Pm0 (T ) = ∣
∣〈ψm0 (ξ0)

∣∣ψ I
m0

(T )
〉∣
∣2. (4)

We may as well consider further quenches defined in a
sequence of times and sets of parameters as T0 < T1 < T2 <

T3 < · · · and ξ0,ξ1,ξ2,ξ3, . . . , respectively. These intervals
define regions as I(T0 � T < T1),II(T1 � T < T2),III(T2 �
T < T3), . . . . The case of a single quench is clearly obtained
taking T1 → ∞, and so on for further quenches.

Consider now a case for which we have two quenches in
succession. In this case, we have that the evolution of the initial
state with quantum number m0 is∣∣ψ II

m0
(T )

〉 = e−iH (ξ2)(T −T1)
∣∣ψ I

m0
(T1)

〉
=

∑
m2

e−iEm2 (ξ2)(T −T1)

×|ψm2 (ξ2)〉〈ψm2 (ξ2)
∣∣ψ I

m0
(T1)

〉
=

∑
m2

∑
m1

e−iEm2 (ξ2)(T −T1)e−iEm1 (ξ1)T1

×|ψm2 (ξ2)〉〈ψm2 (ξ2)|ψm1 (ξ1)〉〈ψm1 (ξ1)|ψm0 (ξ0)〉.
(5)

Choosing ξ2 = ξ0, we get that for T1 � T < ∞ (T2 → ∞)
the overlap with an initial state, n0, is given by〈

ψn0 (ξ0)
∣∣ψ II

m0
(T )

〉 =
∑
m1

e−iEn0 (ξ0)(T −T1)e−iEm1 (ξ1)T1

×〈ψn0 (ξ0)|ψm1 (ξ1)〉〈ψm1 (ξ1)|ψm0 (ξ0)〉.
(6)

Therefore, the probability to find a projection to an initial state,
n0, given that the initial state is m0 is given by

Pn0m0 (T ) = ∣
∣
〈
ψn0 (ξ0)

∣∣ψ II
m0

(T )
〉∣
∣2 =

∣∣∣∣∑
m1

e−iEm1 (ξ1)T1

×〈ψn0 (ξ0)|ψm1 (ξ1)〉〈ψm1 (ξ1)|ψm0 (ξ0)〉
∣∣∣∣
2

,

(7)

which is independent of time.
We may now at some given finite time, T2, change the

parameters from ξ2 → ξ3. As before, we may now find that
for T2 � T < ∞ the same probability as in Eq. (7) is given by

Pn0m0 (T ) = ∣
∣
〈
ψn0 (ξ0)

∣∣ψ III
m0

(T )
〉∣
∣2, (8)

where ∣∣ψ III
m0

(T )
〉 = e−iH (ξ3)(T −T2)

∣∣ψ II
m0

(T2)
〉
. (9)

The probability is now a function of time, T .
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In this work, only unitary evolution of single-particle states
is considered, and the effects of dissipation are neglected.

III. MODELS

Various models have topological properties and, due to
the bulk-edge correspondence, gapless edge modes. Here
we consider a few one-dimensional systems with nontrivial
topological properties.

A. One-band superconductor: The Kitaev model

The Kitaev one-dimensional superconductor with triplet
p-wave pairing is described by the Hamiltonian [84]

H =
N̄∑

j=1

[−t(c†j cj+1 + c
†
j+1cj ) + �(cj cj+1 + c

†
j+1c

†
j )]

−
N∑

j=1

μ

(
c
†
j cj − 1

2

)
, (10)

where N̄ = N if we use periodic boundary conditions (and
N + 1 = 1) or N̄ = N − 1 if we use open boundary condi-
tions. Here N is the number of sites. t is the hopping amplitude
taken as the unit of energy, � is the pairing amplitude, and μ

is the chemical potential. The operator cj destroys a spinless
fermion at site j . Using a Jordan-Wigner transformation
defined by

cj = eiπ
∑j−1

l=1 S+
l S−

l S−
j , c

†
j = S+

j e−iπ
∑j−1

l=1 S+
l S−

l , (11)

where S±
j are the raising and lowering spin operators at site j ,

this model is equivalent to a spin-1/2 model,

H = −1

4

N∑
j=1

[(JX − JY )(S+
j S+

j+1 + S−
j S−

j+1)

+ (JX + JY )(S+
j S−

j+1 + S−
j S+

j+1)]

−
N∑

j=1

hZSZ
j . (12)

Here JX,JY are the exchange constants in the X and Y

directions, and hZ is a magnetic field along the Z direction.
The connection between the two models satisfies

t = 1

2
(JX + JY ), � = 1

4
(JX − JY ), (13)

and the chemical potential, μ, is the magnetic field along Z.
In momentum space, the model is simply written as

Ĥ = 1

2

∑
k

(c†k,c−k)Hk

(
ck

c
†
−k

)
, (14)

where

Hk =
(

εk − μ i� sin k

−i� sin k −εk + μ

)
(15)

with εk = −2t cos k. Here ck is the Fourier transform of cj .

In general, a fermion operator may be written in terms of
two Hermitian operators, γ1,γ2, in the following way:

cj,σ = 1

2
(γj,σ,1 + iγj,σ,2),

c
†
j,σ = 1

2
(γj,σ,1 − iγj,σ,2). (16)

The index σ represents internal degrees of freedom of the
fermionic operator, such as the spin and/or sublattice index,
and the γ operators are Hermitian and satisfy a Clifford
algebra,

{γm,γn} = 2δnm. (17)

In the case of the Kitaev model, it is enough to consider cj =
(γj,1 + iγj,2)/2, since the fermions are spinless. In terms of
these Hermitian (Majorana) operators, we may write that the
Hamiltonian is given by, using open boundary conditions,

H = i

2

N−1∑
j=1

[(−t + �)γj,1γj+1,2 + (t + �)γj,2γj+1,1]

− i

2

N∑
j=1

μγj,1γj,2. (18)

The chemical potential term involves all Majorana opera-
tors. Taking μ = 0 and selecting the special point t = �, the
Hamiltonian reduces considerably to

H (μ = 0,t = �) = it

N−1∑
j=1

γj,2γj+1,1 = −it

N−1∑
j=1

γj+1,1γj,2.

(19)

It is easily seen that the operators γ1,1 and γN,2 are missing
from the Hamiltonian. Therefore, there are two zero-energy
modes. Defining from these two Majorana fermions a single
usual fermion operator (non-Hermitian), taking one of the
Majorana operators as the real part and the other as the
imaginary part, its state may be either occupied or empty
with no cost in energy. Defining dj = 1/2(γj,2 + iγj+1,1) and
dN = 1/2(γN,2 + iγ1,1), we can write the Hamiltonian as

H = t

N−1∑
j=1

(2d
†
j dj − 1) + εN (2d

†
NdN − 1) (20)

with εN = 0. Therefore, the fermionic mode dN does not
appear in the Hamiltonian, and the state may be occupied
or empty (d†

NdN = 1,0, respectively) with no energy cost.
These two states are therefore degenerate in energy. Solving
the Bogoliubov–de Gennes (BdG) equations of the Kitaev
Hamiltonian using open boundary conditions leads to two
zero-energy modes that at the special point are perfectly
localized at the edges of the chain as δ-function peaks (with
exponential accuracy as the system size grows).

The phase diagram of the Kitaev model has four types of
phases: two topological phases in which there are gapless edge
modes if the system is finite, and two trivial phases with no
edge modes. In the various phases the system is gapped, and at
the transition lines the gap closes, allowing the possibility of a
change of topology. The transition lines are located at � = 0
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Trivial phase

Topological phase

j=1 j=2 j=3 j=4

FIG. 1. Phases of the Kitaev model, Eq. (10). At each lattice site,
j , the two dots represent the two Majorana operators, γj,1 and γj,2 (real
and imaginary parts of cj ), defined after Eq. (17). The lines represent
the links between Majorana operators at given points in parameter
space. Trivial phase with parameters: � = 0,|μ| > 2t and topological
phase with μ = 0,� = t . In the trivial phase, the two Majoranas at
each site are linked in the Hamiltonian and they constitute usual
fermionic modes. In the topological phase, the Majoranas are linked
at nearest-neighbor sites and the first and last Majorana operators are
decoupled, and therefore they have zero energy.

and at |μ| = 2t . In terms of the spin model, the transition
line � = 0 is just the isotropic XY model, which is known
to be gapless. Positive values of � imply that the exchange
interaction is preferred along the X direction, and if � < 0 the
preferred direction is along Y . The three phases of the Kitaev
model have a direct correspondence with the phases in the spin
model: the topological phases have as duals two phases with
ordering along the X or Y directions, and the trivial phase
has as dual a trivial paramagnetic phase in the spin model.
There is therefore a duality between the topological properties
in the fermionic Kitaev model and Landau-like ordering in
the dual spin model, as a result of the exact Jordan-Wigner
noncanonical nonlocal transformation [85,86].

The structure of the phases can be understood in terms of the
Majorana representation of the fermionic operators, and two
phases are illustrated in Fig. 1. The structure is particularly
clear at these special points, but due to the topologically
protected nature of the Hamiltonian (BDI class) their nature is
not changed as long as the gap does not close.

B. Multiband system: Two-band Shockley model

The Shockley model is a model of a dimerized system of
spinless fermions with alternating nearest-neighbor hoppings,
given by the Hamiltonian (see, for instance, [87])

H =
N∑

j=1

ψ†(j )[Uψ(j ) + V ψ(j − 1) + V †ψ(j + 1)],

(21)

where the 2 × 2 matrices U and V are given by

U =
(

0 t∗1
t1 0

)
, V =

(
0 t∗2
0 0

)
(22)

and the spinor ψ represents two orbitals that are hybridized by
the matrices U and V ,

ψ(j ) =
(

cj,A

cj,B

)
. (23)

t1 and t2 are hoppings and cj,A (cj,B) destroy spinless fermions
at site j belonging to sublattice A (B), respectively.

We may as well define Majorana operators, γ1,γ2, as

cj,A = 1

2
(γj,A,1 + iγj,A,2),

cj,B = 1

2
(γj,B,1 + iγj,B,2). (24)

Taking t∗1 = t1,t
∗
2 = t2, the Hamiltonian may be written as

H = it1

2

N∑
j=1

(γj,A,1γj,B,2 + γj,B,1γj,A,2)

+ t2

4

N∑
j=2

(γj,A,1γj−1,B,1 + γj,A,2γj−1,B,2)

+ it2

4

N∑
j=2

(γj,A,1γj−1,B,2 − iγj,A,2γj−1,B,1)

+ t2

4

N−1∑
j=1

(γj,B,1γj+1,A,1 + γj,B,2γj+1,A,2)

+ it2

4

N−1∑
j=1

(γj,B,1γj+1,A,2 − iγj,B,2γj+1,A,1). (25)

Taking t1 = 0, we find that the Majorana fermions
γ1,A,1,γ1,A,2,γN,B,1,γN,B,2 do not contribute and are zero-
energy modes.

In Fig. 2 the structure of the Hamiltonian terms is presented
for two points in parameter phase that correspond to the trivial
and the topological phases. In the topological phase, there are
decoupled zero-energy modes that are, however, fermionic in

A

B

B

A

Topological phase

Trivial phase

j=1 j=2 j=3 j=4

FIG. 2. Phases of the Shockley model, Eq. (21). The symbols
have the same meaning as in Fig. 1. Trivial phase with t2 = 0 and
topological phase with t1 = 0. In the trivial phase, the Majorana
fermions are coupled to form fermionic modes at the same site. In the
topological phase, the links are between nearest-neighbor sites and
there are four Majorana operators decoupled at the edges. However,
these give origin to zero-energy fermionic modes, one at each end of
the system.
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nature, since the decoupled Majoranas are located at the two
end sites, A and B, respectively.

C. Multiband system: SSH model with triplet pairing

This model may be viewed as a dimerized Kitaev super-
conductor [88]. The dimerization is parametrized by η and the
superconductivity by �.

This model is given by the Hamiltonian

H = −μ
∑

j

(c†j,Acj,A + c
†
j,Bcj,B)

− t
∑

j

[(1 + η)c†j,Bcj,A + (1 + η)c†j,Acj,B

+ (1 − η)c†j+1,Acj,B + (1 − η)c†j,Bcj+1,A]

+�
∑

j

[(1 + η)c†j,Bc
†
j,A + (1 + η)cj,Acj,B

+ (1 − η)c†j+1,Ac
†
j,B + (1 − η)cj,Bcj+1,A] (26)

(t is the hopping, � is the pairing amplitude, and μ is the
chemical potential). The model with no superconductivity
(� = 0) is related to the Shockley model taking t1 = t(1 + η)
and t2 = t(1 − η). The region of η > 0 corresponds to t1 > t2
and vice-versa for η < 0. The Hamiltonian in real space mixes
nearest-neighbor sites and also has local terms. The local terms
can be grouped in the matrix

Hj,j

=

⎛
⎜⎝

−μ −t(1 + η) 0 −�(1 + η)
−t(1 + η) −μ �(1 + η) 0

0 �(1 + η) μ t(1 + η)
−�(1 + η) 0 t(1 + η) μ

⎞
⎟⎠.

(27)

The nonlocal terms to the nearest neighbors can be written as

Hj,j+1 =

⎛
⎜⎝

0 0 0 0
−t(1 − η) 0 −�(1 − η) 0

0 0 0 0
�(1 − η) 0 t(1 − η) 0

⎞
⎟⎠ (28)

and

Hj,j−1 =

⎛
⎜⎝

0 −t(1 − η) 0 �(1 − η)
0 0 0 0
0 −�(1 − η) 0 t(1 − η)
0 0 0 0

⎞
⎟⎠. (29)

In momentum space, this model is given by a Hamiltonian
matrix of the form

Hk =

⎛
⎜⎝

−μ z(k) 0 w(k)
z∗(k) −μ −w∗(k) 0

0 −w(k) μ −z(k)
w∗(k) 0 −z∗(k) μ

⎞
⎟⎠, (30)

where this matrix acts on the spinors⎛
⎜⎜⎜⎝

cA(k)
cB(k)

c
†
A(−k)

c
†
B(−k)

⎞
⎟⎟⎟⎠ (31)

and

z(k) = −t[(1 + η) + (1 − η)e−ik],

w(k) = −�[(1 + η) − (1 − η)e−ik]. (32)

In terms of Majorana operators, the Hamiltonian is written
as

H = −μ

2

N∑
j=1

(2 + iγj,A,1γj,A,2 + iγj,B,1γj,B,2)

− it

2
(1 + η)

N∑
j=1

(γj,B,1γj,A,2 + γj,A,1γj,B,2)

− it

2
(1 − η)

N−1∑
j=1

(γj+1,A,1γj,B,2 + γj,B,1γj+1,A,2)

+ i�

2
(1 + η)

N∑
j=1

(γj,A,1γj,B,2 + γj,A,2γj,B,1)

+ i�

2
(1 − η)

N−1∑
j=1

(γj,B,1γj+1,A,2 + γj,B,2γj+1,A,1).

(33)

Taking as before μ = 0, we have a couple of special points:
(i) Taking η = −1 and � = 0, we have a state similar to the
SSH or Shockley models with two fermionic-like zero-energy
edge states, since the four operators γ1,A,1,γ1,A,2; γN,B,1,γN,B,2

are missing from the Hamiltonian. (ii) η = 0 and t = � is
a Kitaev-like state since there are two Majorana operators
missing from the Hamiltonian, γ1,A,1 and γN,B,2, one from
each end. (iii) An example of a trivial phase is the point η =
1 and � = 0 in which case there are no zero-energy edge
states. In Fig. 3 the phases with edge modes are presented
for special points in parameter space. This model provides a
testing ground for the comparison of fermionic and Majorana
edge modes. Also, in some regimes it displays finite energy
modes that are localized at the edges of the chain, as obtained
before in other multiband models [89].

In addition to direct measurements of the tunneling density
of states of Majorana edge states, measurements of the
differential conductance at the interface between a lead and
a topological superconductor have been proposed as a way
to detect Majorana modes. In particular, with a metallic lead
one expects a zero-bias peak in the differential conductance,
if zero-energy modes are present in the superconducting side.
In the presence of Majorana modes, one expects a vanishing
conductance if the number of Majorana modes is even and
a quantized value of 2e2/h if the number of modes is odd
[90,91]. These may be due to edge chiral modes, or, in a p-wave
superconductor, they may be associated with a vortex [90]. In
the case of the dimerized SSH model considered herein, it
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A

B

B

A

j=1 j=2 j=3 j=4

η=−1, Δ=0

η=0, Δ=t

FIG. 3. Phases of the SSH-Kitaev model, Eq. (26). The symbols
have the same meaning as in Fig. 1. When � = 0 the model reduces
to the SSH model, and for negative η the model is topologically
nontrivial with edge states represented by the decoupled Majorana
operators. As in the Shockley model, since at each end site
there are two decoupled Majoranas, these combine to form edge
fermionic modes. This constitutes phase SSH2 with η = −1,� = 0
and two edge modes. If superconductivity is present, and there is
no dimerization η = 0, the model reduces to the Kitaev model. The
phase K1 with η = 0,� = t has two decoupled Majorana operators,
one at each end, and therefore there is one Majorana mode at each
edge. The model interpolates between Majorana modes and fermionic
modes as the parameters change. There is also a trivial phase with
no zero-energy modes denoted SSH0, which is similar to the trivial
phase of the Shockley model.

has been shown [88] that the fermionic edge modes do not
contribute to the conductance, and, therefore, they provide a
method to distinguish the various phases, since in the regime
that is Kitaev-like the conductance is quantized, as expected,
while in the SSH regimes it vanishes. However, other types of
zero-energy states due, for instance, to disorder or temperature
effects also give origin to zero-bias peaks in the conductance
[92]. A possible way to clearly identify a zero mode as a
Majorana has been proposed [93] selecting a superconducting
lead with the prediction of peaks at the value of the gap of the
conventional superconductor with a quantized conductance of
the form (4 − π )2e2/h. In this work, we will analyze possible
distinctive signatures of the edge modes in the dynamics
following a sudden quantum quench.

IV. DYNAMICS OF EDGE MODES OF THE
KITAEV MODEL

A. Single quench

In Fig. 4 we show the phase diagram of the Kitaev model as a
function of the chemical potential μ and the pairing �. Regions
I and II are topologically nontrivial, and regions III are trivial,
as discussed above. Consider first μ = 0 and quenches where
one varies �, or a fixed � and changing μ. The points separate
the regions where one does or does not find oscillations in the
survival probability of a Majorana state of a topologically
nontrivial phase after a quench to a critical point for a given
system size. In the case of μ = 0 the critical point is located
at μ = 0,� = 0, and in the second case there is a line of
critical points at μ = 2t . For instance, in the quench from the
topological phase I to the critical point at μ = 0,� = 0, the
point is located as N = 100,� = 0.34, N = 200,� = 0.18,

-3 -2 -1 0 1 2 3
μ

-2

-1

0

1

2

Δ Oscillations

Oscillations

No oscillations

No oscillations

I

II

IIIIII

FIG. 4. Phase diagram of the Kitaev model. Regions I and II are
topologically nontrivial, and region III is trivial. The points separate
regions where critical quenches do or do not lead to oscillations in
the survival probability of a Majorana state of region I.

N = 400,0.05 < � < 0.1. The points at μ = 2 separate two
regions for which making a quench from region I to the critical
line μ = 2, one may find oscillations if the initial point is not
very far from the critical line. In the vicinity of the two critical
lines of points (around μ = 2t,� = 0), no matter how close the
initial point is to the critical line, one does not find oscillations.

In Fig. 5 is shown the absolute value squared of the lowest
energy eigenvector for N = 200 for different values of � and
keeping μ = 0. Note that if one is very close to the transition
point, the wave functions are not very localized. A fit of
the wave-function dependence with distance, x = j , from the
edge of the system is of an exponential form |ψ |2(2n + 1) =
ψ0e

−x/ξ (here x = 2n + 1 since |ψ |2 oscillates), with ξ the
decay length. At � = 0 the state is extended since the system
is gapless. A similar behavior is observed for small values of �,
and, as � increases, the decay length decreases significantly.
The decay length as a function of � is shown in the last panel.

In Fig. 6, the survival probability, P (T ), of a Majorana
mode as a function of time for various critical quenches is
presented. In the first panel are shown the oscillations of P (T )
as one quenches from a given value of � to the critical point
μ = 0,� = 0 maintaining μ = 0. For small deviations of the
initial value of � from the critical point, P (T ) is close to 1,
and as one increases the distance from the critical point, the
amplitude decreases considerably. The oscillations are quite
smooth and clear until the amplitude has decreased enough
to reach zero. Beyond this point there is a periodicity but no
longer oscillations since there are increasing regions where
P (T ) basically vanishes. In this case, it seems more like
the revival times of noncritical quenches, even though the
curves are still smooth. Beyond a given value of �d , there is a
period doubling. Also, after this period doubling the survival
probability loses its regular periodic behavior and shows more
oscillations of smaller periods and amplitude decays that are
similar to results previously found in quenches away from
critical points [54,72]. In the second panel are shown quenches
to the critical line μ = 2 keeping � = 0.5 and decreasing the
chemical potential. The behavior is similar to the first panel.
In the third panel is shown in greater detail the crossover to
period doubling for the transition to the critical point. In the
fourth panel we show the scaling of the point of crossover, �d ,
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FIG. 5. Zero-energy mode wave functions of the Kitaev model for different points approaching the critical point at μ = 0. In the last panel
we show the dependence of the decay length of the wave functions as a function of � and 1/�. The results are for a system size of N = 200.
At the point � = 1 the wave function is strictly local at one edge of the system. Each Majorana state is perfectly localized with a decay length
ξ = 0. For � = 0.5 the decay length is also very small and the two Majorana modes (in black, left edge, and in red, right edge) are decoupled.
For smaller values of �, the two Majorana modes are coupled and each is peaked at both ends of the chain. For very small values of � the
modes get extended as one tends to the gapless regime at � = 0.
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FIG. 6. In the first two panels the survival probability, P (T ), of a Majorana mode in the Kitaev model is shown as one approaches critical
points. In the third panel the crossover to period doubling is shown as one approaches the critical region. In panels (a), (b), and (c) N = 100.
In (a) μ = 0, in (b) δ = 0.5, and in (c) μ = 0. In panel (d) the linear dependence of the point of crossover, �d , on 1/N is shown taking μ = 0.
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FIG. 7. (a) At finite chemical potential, μ = 0.5, the critical
quench to the line � = 0 does not lead to oscillations of the survival
probability of the Majorana mode. Close to the intersection of the
two critical lines near μ = 2t,� = 0 there are no oscillations as well
as shown in (b) for μ = 1.9.

when the period doubling takes place. It scales linearly with
1/N .

In the first panel of Fig. 7 are shown quenches, keeping
μ = 0.5, to the critical line � = 0. In this case there are no
oscillations. In the second panel the quench to the critical line
μ = 2 from the initial point μi = 1.9 is shown for different
values of �. For small values of � there are no oscillations,
and as � increases the oscillations appear. The results in this
figure are for a system size N = 100.

The survival probability is determined by the various
energies of the final Hamiltonian eigenstates and their overlaps
to the initial single-particle state. In Fig. 8 the overlaps between
the initial lowest-energy state (Majorana mode) and all the
final-state eigenvectors are shown, as a function of their
energies, for the cases of Fig. 6, for N = 200. In general,
the overlaps are peaked at the lowest energies. There is a
clear separation of regimes as one reaches the crossover
region where the period doubling occurs. At small values
of � the overlaps oscillate between finite values and zero
values, as we move across the energy eigenvalues. This is
probably a parity effect distinguishing even and odd numbers
of sites. This is confirmed in the third panel where the
cases of N = 100 and 101 are compared. If N = 101 the
oscillations in the overlaps are absent. It can be noted that the
overlaps are very sharp around the lowest energy states. As
the crossover occurs, the overlaps are no longer zero at some
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FIG. 8. Overlaps for the Kitaev model as a function of energy.
(a) The critical point is μ = 0,� = 0 and in (b) it is μ = 2,� = 0.5.
In the third panel, (c), the even-odd effect in the overlaps is shown
considering μ = 0.

energy eigenvalues and actually become very smooth. This
means that the contributions from the various energy states
change, the time behavior is affected, and the clean oscillations
are no longer observed. To have clean oscillations one needs
contributions from a few energy levels. A perfect oscillation
requires finite overlaps to two states, and the frequency of
the oscillations is the difference in their energy values. In
general, the overlaps have very different magnitudes to the two
states, and the period of oscillations shown in P (T ) depends
on their magnitudes. Adding significant contributions from
other energy eigenstates leads first to modulated oscillations
and then to a complicated time dependence.

It was argued before [72] that the energy spectrum of the
final state of the quench is important to determine if there are
oscillations. In some cases there is indeed a regular spacing of
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FIG. 9. Solitonic-like vs constructive interference behavior of the
wave functions in the Kitaev model. In (a) the initial state is far from
the critical point (CP), and in (b) one is close to the CP. In (a) the
quench takes place from μ = 0,� = 0.5 to μ = 0,� = 0 and in (b)
from μ = 0,� = 0.1 to the same CP. The results are for a system size
N = 100. In (a) the sequence of times is T = 2,10,20,26,30,40 and
in (b) T = 2,10,20,25,30,40.

the final-state energies, and in others there is not. If the regular
spacing is observed, we should find a dominant frequency but
also many harmonics. However, the role of the overlaps is
more significant because it clearly selects which energy states
actually contribute [94].

The origin of the period doubling is understood in the
following way. In Fig. 9 the time evolution of the Majorana
state is shown for a critical quench from the region of
oscillations, close to the critical point, and a quench from
a region where the period has doubled. In the first case the
wave functions at each edge are separated in two energy
modes, while for the second they are mixed. This is due
to the long-range correlations close to the critical point that
effectively decrease the system size and lead to the coupling
of the two edge modes. In the first case the time evolved states
from each edge cross each other in a solitonic-like behavior,
while in the second case there is a constructive interference
when the peaks of the evolved state meet at the center of the
wire. Consistently with the results for the overlaps, in this
regime the energy spectrum between states with high weight
halves, and the period doubles.
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FIG. 10. Top panel: work distribution for the Kitaev model.
Lower panel: survival probability and its Fourier analysis for the
Kitaev model.

The distribution of the overlaps may be parametrized by the
work distribution, P (W ), given by [95]

P (W ) =
∑
m

Pmδ(W − Wm), (34)

where

Pm = |〈ψm(ξ1)|ψm=0(ξ0)〉|2,

Wm = Em(ξ1) − Em=0(ξ0). (35)

In Fig. 10(a) we show the work distribution associated with
critical quenches for μ = 0 to the critical point μ = 0,� = 0
starting from different initial points. Close to the critical point
the distribution is quite sharp, but it becomes very broad as
� increases. The δ-function peaks have been broadened for
clarity. A similar conclusion is obtained performing a Fourier
analysis of the time evolution of the survival probability. This
is shown in the lower panel. While for small initial values of
� the distribution is quite narrow around low frequencies, it
changes significantly as � grows, becoming quite extended.
In the Fourier decomposition, the amplitudes, un, are for the
frequencies with values ωn = π (n − 1)/NT , where NT is the
number of time points considered.

It is also interesting to study the survival probability of
excited states, which in this problem are extended states
throughout the chain. This is shown in Fig. 11. Here we
show the survival probability of different initial states, includ-
ing the Majorana states, for two cases of � = 0.01,0.1. Close
to the critical point, the survival probability of most states is
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FIG. 11. Survival probability of different initial single-particle
states, labeled by n, where n = 200,201 are the Majorana zero-energy
modes. In the top panel the case of initial � = 0.01 is shown, and in
the middle panel the case of � = 0.1 is shown. In the lower panel, a
low-energy zoom is shown of the case with � = 0.1.

close to 1 except near the low-energy modes. Further away
from the critical point, the deviation of the survival probability
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FIG. 12. Overlap of states in trivial phase to the Majorana final
state in the topological phase far and close to the critical line,
respectively.

from unity is larger due to broader orthogonality between the
eigenstates of the original and final Hamiltonians. In the third
panel, the low-energy region is enhanced showing the complex
behavior as a function of time and eigenstate, n.

B. Generation of Majorana states

While quenches, either abrupt or slow, in general desta-
bilize the edge states, topological phases can be induced
by periodically driving the Hamiltonian of a nontopological
system. The periodic driving leads to new topological states
[96], and to a generalization of the bulk-edge correspondence,
that reveals a richer structure [97,98] as compared with the
equilibrium situation [99], such as shown before in topological
insulators [96,100,101] and in topological superconductors,
with the appearance of Majorana fermions [102–105]. Their
appearance in a one-dimensional p-wave superconductor was
studied in Ref. [106] and in Ref. [107]; the case of intrinsic
periodic modulation was also considered [59] and new phases
may be induced and manipulated due to the presence of
the periodic driving [106,108,109] or inducing spontaneous
currents [110].

On the other hand, due to the finiteness of a system,
we may generate Majorana states through a sudden quench
starting from a trivial phase. Even though, as stated above,
in the thermodynamic limit the topological properties cannot
be changed by a unitary transformation, as shown in Fig. 12
the probability that a given initial state in a trivial phase III
may collapse to a Majorana of the final-state Hamiltonian in
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FIG. 13. Probability to find the original Majorana state, n0 = m0,
due to quench ξ2 → ξ3 as a function of T2 and T , described by Eq. (8).
The sequence of quenches is such that at T0 = 0 there is a quench
ξ0 → ξ1. At time T1 there is a quench to ξ2 = ξ0. The time T1 is chosen
such that the survival probability of the original Majorana vanishes.
At time T2 there is a new quench to ξ3 in the topological region, close
to but different from ξ0. The survival probability is finite, and similar
results are obtained for other levels.

phase I is finite. We have a finite although small overlap to
the Majorana state of the topological phase. This probability
is given by

∣
∣
〈
ψm1=0(ξ1)

∣∣ψI
m0

(T )
〉∣
∣2 = |〈ψm1=0(ξ1)|ψm0 (ξ0)〉|2 (36)

and is independent of time, as expected. Quenching to a state
close to the transition line, the overlaps of several (extended)
states are considerable due to the spatial extent of the Majorana
states. If the quench is deeper into the topological phase, these
become more localized and the overlap decreases. Interestingly
the larger overlap is found for higher-energy, extended states.

A sequence of quenches allows for the manipulation of the
states, as shown in Eq. (9). A possibility to turn off and on
Majoranas can be trivially seen in the following way. Consider
starting from a state inside region I of the phase diagram
Fig. 4. Perform a critical quench to the line � = 0 and then a
quench back to the original state. Choosing appropriately T1,
we may get a state with no overlap with the initial Majoranas,
as illustrated in Fig. 6. So we are back to a topological phase
but with no edge states. But Majoranas may be switched back
on if at a time T2 > T1 we perform another quench to a state
in region I. This is illustrated in Fig. 13, where the survival
probability is shown as a function of time and intermediate
time T2 for a given time T1 of the first quench. Due to the
quench to ξ3, a finite probability to find the Majorana state is
found even if no quench from ξ2 = ξ0 → ξ3 was performed,
and having chosen appropriately T1, the survival probability of
the Majorana states was tuned to vanish. Note that the overlap
of the Majorana state of H (ξ3) with a Majorana state of H (ξ0)
is finite, since the states are chosen to be close by.

V. DYNAMICS OF MULTIBAND SYSTEMS

While in the previous sections Majorana edge states
were considered, edge states in other systems, including
topological insulators, have also been considered and show
similar properties. In this section, we consider two topological
systems: the Shockley model [87], which has fermionic edge
states and no Majoranas, and the SSH-Kitaev model [88],
which displays both types of edge states in different parts of the
phase diagram, allowing a comparison of different edge states.
Similarities and differences will be addressed, and oscillations
are also seen (i) due to off-critical quenches (across a quantum
phase transition) similarly to those seen in the Kondo model
[83], and (ii) due to edge states associated with high-energy
gaps in the spectrum, due to the multiband structure of these
models.

A. Shockley model

Figure 14(a) considers an off-critical quench from the
topological phase with t1 = 1,t2 = 2 to the trivial phase
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FIG. 14. Survival probability of edge modes of the Shockley
model. Top panel: off-critical quench from the topological region
(t1 = 1,t2 = 2) to the trivial region (t1 = 1,t2 = 0.5). In the lower
panel, critical quenches are considered from the topological region to
the transition point (t1 = t2).
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FIG. 15. Phase diagram of the SSH-Kitaev model for μ = 0.

t1 = 1,t2 = 0.5. In the first panel, the fermionic (not Majorana)
very localized state of the initial phase and the lowest energy
state of the final-state wave functions are shown. In the lower
panel, the survival probability is shown. It is very similar to
the case of a noncritical quench in the Kitaev model with
a rapid decrease of the survival probability, and a revival
(with small amplitude) due to the finiteness of the system,
with many frequency modes contributing to the dynamics,
as characteristic of a quench far from the critical point
(t1 = t2).

In Fig. 14(b) we show critical quenches to a final state
with t2 = t1 = 1 starting from different initial points in the
topological region (t2 > t1). The cases of N = 100 and 200
are shown. As in the Kitaev model, the period scales with the
system size. The behavior is very similar to the Kitaev model.
We see the period doubling for both cases for t2 = 1.5. For
t2 = 2.0 the smoothness of the oscillations is replaced by a
superposition of many frequencies. From the point of view of
edge state dynamics, the behavior of Majoranas and fermionic
edge states is similar.

B. SSH-Kitaev model

The similarities are further shown considering the SSH-
Kitaev model. In Fig. 15 we show the phase diagram of the
SSH-Kitaev model [88] in the case of μ = 0. In phase K1 we
are in the Kitaev regime with one zero-energy edge mode at
each edge (Majoranas). In the SSH regimes we are closer to
the behavior of the SSH model with fermionic modes. In SSH
0 there are no edge modes. In SSH 2 there are two zero-energy
fermionic modes.

In Fig. 16 we consider off-critical quenches in the SSH
model. In this figure we compare two quenches, one from K1
to SSH 0 and the other to SSH 2. There are no oscillations.
In the first case there are no matching states in the final state,
and in the second case there is a finite overlap even though the
initial state is a Majorana and the final state has fermionic
modes. Note that in the Kitaev (K1) regime there is one
Majorana at each edge, and in SSH 2 there are two fermionic
modes (four Majoranas coupled two by two to form fermionic
modes) at each edge. This is similar to the Kitaev model in
the sense that quenches to the trivial region lead to a vanishing
survival probability after a short time, and a transition from
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FIG. 16. Survival probability in off-critical quenches for the SSH-
Kitaev model across a transition line. The parameters are μ = 0,η =
0,� = 0.2 to η = 0.7 and −0.7, respectively.

a topological phase to another point in the topological phase
leads to a finite probability. Note that in the Kitaev model a
transition between the two topological regions I and II leads
to a vanishing survival probability due to the orthogonality of
the edge states [72].

In Fig. 17 we consider critical quenches to points in the
transition between different topological regions. In the top
panels we consider P (T ) and the overlaps of a transition at
μ = 0 from the SSH 2 regime to the critical point η = 0,� =
0 by considering different initial values of η = −0.01, −
0.05, − 0.1, − 0.2, − 0.5, − 0.99. In the lower panels we
consider critical quenches to the critical point η = 0.5,� =
0.5 changing the initial value of η. In both cases note that there
is again a change of the distribution of the overlaps from sharp
peaks, at small deviations from the critical point, to a broad
distribution of the overlaps as one moves sufficiently away
from the critical point; again there is a crossover between the
two regimes (not shown), as for the Kitaev model. However,
the overlaps are not smooth as a function of energy. Note that in
the first case � = 0, which means this occurs in the context of
the SSH model with no superconductivity. In the second case
we have a mixture of SSH and Kitaev model but the behavior
is qualitatively similar in the crossover region. Beyond it we
find again the very smooth distributions of the overlaps as in
the Kitaev model.

In Fig. 18 in the top panel the parameters are μ =
0,η = 0.7,� = 0, or � = 0.1, which get changed to μ =
0,η = 0.1,� = 0.15. There are oscillations, but if �0 = 0.1
oscillations are also observed but there is also a noticeable
decay of the amplitude of the survival probability. In the lower
panel, an initial state is considered with μ = 0,η = 0.2,� = 0
and various final states with different values of �. Again there
are oscillations in some regimes with an admixture of other
frequencies as � changes. Note that we are considering the
survival probability of a trivial extended state, since we start
from the phase SSH0. The quench takes place to a topological
phase with Majorana edge states but the overlaps are summed
over all eigenstates, and so one expects a finite P (T ). However,
the presence of oscillations is still significative, although
several frequencies contribute, as seen by the modulation of
the oscillations.
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FIG. 17. Critical quenches in the SSH-Kitaev model: survival
probability and overlaps. The CP on the first two panels is η = 0,� =
0 (SSH2) and on the last two panels the CP is η = 0.5,� = 0.5 (K1).

In Fig. 19 we consider a transition from K1 to SSH0 but with
μ = 0.2 (see Ref. [88] for a phase diagram). The initial state
has one edge Majorana, but in the final state, even though η is
negative (η = −0.7), there are no edge zero-energy fermionic
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FIG. 18. Survival probabilities of the SSH0-K1 transition in the
SSH-Kitaev model (trivial to topological). Originally we have an
extended state, and in the final we have an edge state but not very
localized. In the top panel, we have μ = 0 and η = 0.7,� = 0 to
η = 0.1,� = 0.15 or the initial value of � = 0.1. In the lower panel,
we have also SSH0 to K1 and μ = 0, but we start from η = 0.2,� = 0
and change to � = 0.21,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.9.

modes. If μ = 0 there are modes with zero energy, but if the
chemical potential is finite these modes have finite energy.
However, they are localized at the edge of the chain. This is
as in Ref. [89]. In the figure, the survival probability of the
lowest energy state is compared (the Majorana state of the K1
phase; note that in the Kitaev regime, even though the chemical
potential does not vanish, the edge state has zero energy and
therefore is a Majorana). If � = 0 and μ �= 0, then there is
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FIG. 19. Survival probability of different states for the transition
K1-SSH0 in the SSH-Kitaev model.
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FIG. 20. Modulated frequencies in the survival probability of
Majorana states and finite energy peaks of the overlaps in the
SSH-Kitaev model. The transition is of the type SSH2-K1.

a possibility of edge states with localized wave functions but
finite energy. If μ = 0, then these fermionic modes have zero
energy, as discussed above. The behavior is a bit complex.

In Fig. 20 we show another example of a modulated
frequency due to a mixture of finite overlaps as shown in the
bottom panel. The parameters here are μ = 0,η = −0.2,� =
0.1 to μ = 1,η = −0.2,� = 0.1. In this case, there is a
transition from a state with two zero-energy edge states to a
state with one zero-energy edge state. Note that there are large
overlaps to states that are at the edge of the high-energy gap.
These states are high-energy localized states and therefore with
a somewhat spatial distribution as the Majorana or fermionic
edge states at low energies.

As shown in Fig. 21 by the Fourier decomposition of the
time dependence of P (T ) for various quenches, important
contributions may be due to finite-energy states.
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FIG. 21. Fourier decomposition of survival probability of sev-
eral quenches in the SSH-Kitaev model. The parameters are as
follows: (a) μ = 0,η = 0.7,� = 0.15 → μ = 0,η = 0.1,� = 0.15
(SSH0 → K1); (b) μ = 0,η = 0.7,� = 0 → μ = 0,η = 0.1,� =
0.15 (SSH0 → K1); (c) μ = 0,η = 0.2,� = 0 → μ = 0,η =
0.2,� = 0.25 (SSH0 → K1); and (d) μ = 0,η = −0.2,� = 0.1 →
μ = 1,η = −0.2,� = 0.1 (SSH2 → K1).

VI. CONCLUSIONS

Topological systems are robust to unitary transformations
in the thermodynamic limit. However, finite systems and their
associated edge states are in general not robust. In this work,
the dynamics of these edge modes is analyzed with particular
emphasis on the oscillations of the survival probability of a
single-particle state after a sudden quench of the Hamiltonian
parameters.

Majorana and fermionic zero-energy modes were com-
pared, and their general behaviors are similar. Differences
occur mainly due to the specifics of each transition between
different phases of the various topological systems. The
survival probability is controlled by the overlaps between the
eigenstates of the Hamiltonians prior to and after the quantum
quench, as well as by the excitation spectrum of the final-state
Hamiltonian. While transitions between points in parameter
space in the same topological phase or between points in
different phases (off-critical quenches) have been studied
before, we have focused here on critical quenches, where often
oscillations in the survival probability, P (T ), appear. It turns
out that oscillations also occur in some off-critical quenches.

The regime of oscillations, or more loosely periodicity of
P (T ), is changed as the initial state approaches the critical
region. Specifically, even-odd effects or their absence lead to
a period doubling, whose crossover depends on the system
size (in a way similar to the revival time scaling previously
considered). The critical fluctuations near a critical point (or
line of points) effectively decrease the system size, leading to a
more pronounced coupling of the states at the two edges of the
system. These considerations hold both for the Majorana edge
states, found in topological superconductors (exemplified here
by the 1D Kitaev model), and for the fermionic zero-energy
states of a topological insulator (exemplified here by the
Shockley model). An interesting model that provides both
Majorana and fermionic edge states is the SSH-Kitaev model
considered here. Its multiband structure also reveals interesting
oscillation effects due to the presence of large overlaps to finite
energy states (appearing in high-energy gaps of the spectrum)
since these states are also localized. There is no clear-cut
distinction between the various states localized at the edges
of the system from the point of view of their contribution to
the dynamics of the survival probability.

Pushing further the consequences of the finiteness of the
system, it is trivial to find cases in which Majoranas can
be generated by the dynamical process, in the sense that the
overlap between single-particle states of the trivial phase of the
Kitaev model and a Majorana state of the topological regime
is in some cases finite, and moreover time-independent. Also,
one may switch off and back on Majorana states if sequences of
quenches are chosen appropriately, as exemplified in the text.
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