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F. M. Zimmer,1,* M. Schmidt,1,† and Jonas Maziero1,2,‡
1Departamento de Fı́sica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000,

97105-900, Santa Maria, RS, Brazil
2Instituto de Fı́sica, Facultad de Ingenierı́a, Universidad de la República, J. Herrera y Reissig 565, 11300, Montevideo, Uruguay

(Received 12 April 2016; published 13 June 2016)

Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations
regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method,
mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated
cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems.
Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we
address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach,
uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the
transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for
the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually,
our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.
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I. INTRODUCTION

The physics of many-body systems (MBS) is relevant for
investigations in several research areas, such as condensed
matter, complex systems, artificial intelligence, and quan-
tum information science [1–6]. Magnetic models have been
particularly useful for studying phenomena related to phase
transitions in MBS. Notwithstanding, there are few such
Hamiltonians with known exact solutions [7,8]. For instance,
the Ising model in the presence of a transverse magnetic
field is the simplest model presenting a zero temperature
phase transition driven by quantum fluctuations, but only the
one-dimensional case has been given an exact solution [9].
Therefore, there is an evident demand for approximative
approaches which are able to provide an informative and com-
putationally efficient description of the main features of MBS.

In this direction, several methods have been applied for ana-
lyzing MBS. For instance, the Monte Carlo (MC) method [10]
is frequently utilized to study classical problems, though its
application to quantum systems may be intricate. On the other
hand, we can use MC simulations to describe, for instance, the
d-dimensional quantum Ising model (QIM) by exploring its
(d + 1)-dimensional classical counterpart [11,12]. The critical
properties of the QIM can also be investigated via other
techniques such as, for example, the normalization group [13],
cluster variational method [14,15], matrix product states and
projected entangled pair states [16], series expansions [17,18],
and mean-field theory (MFT) [2]. Because of its amenability
for analytical calculations, MFT has been frequently adopted
as the starting point for investigations regarding magnetic
systems, with the interacting many-body Hamiltonian being
approximated in order to obtain an effective single-particle
one. The MFT is capable of correctly describing the qualitative
behavior of many systems, but it neglects some geometric
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features of the spin lattice and most correlations among its
constituent particles [19,20]. As a matter of fact, the results ob-
tained with MFT are highly dependent on the lattice coordina-
tion number z. Nevertheless, MFT’s versatility and simplicity
stimulate its development targeting to improve its quantitative
predictions by including correlation and geometry effects.

A straightforward betterment to the standard MFT is
obtained by considering spin clusters instead of a single
spin. In the so-called cluster MFT (CMFT), the intracluster
interactions are calculated exactly while the intercluster ones
are evaluated following a mean-field variational procedure
[21–23]. This means that the correlations neglected within the
MFT could be gradually recovered as the cluster size increases.
However, similarly to exact diagonalization, the CMFT is
limited by the needed computational ability to evaluate large
clusters [23]. Methods based on self-consistent conditions have
also been developed in a mean-field framework. For example,
the recently proposed entanglement mean-field theory (EMFT)
is based on a two-body self-consistent equation [24–27]. The
EMFT applied to the quantum Ising model improves the MFT
results for the critical values of temperature and transverse
field, but it is still highly dependent on z, not including other
lattice geometric features.

Another important step forward in the development of
ameliorated MFTs was given by the correlated cluster mean-
field theory (CCMFT) [28]. This technique extends the single-
site correlated molecular-field theory, introduced in Ref. [29],
to a cluster approach, in which self-consistent mean-field
equations dependent on the cluster spin configurations are
considered. The CCMFT estimates with good accuracy the
critical temperatures when applied to the classical Ising
model for different lattice geometries [28]. In addition, the
CCMFT improves the behavior of short-range correlations as
compared to other MFT-like calculations. It is important to
remark that the CCMFT deals with small clusters, avoiding
thus the computing time overload of the CMFT, and is free
from the strong dependence with z inherent to MFT and
EMFT. In this sense, the CCMFT goes beyond its cousins
MFTs by taking into account more lattice geometric features.
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As a consequence, the CCMFT leads to different critical
temperatures for systems that have the same coordination
number, as, e.g., the kagome and square or the triangular
and simple cubic lattices [28,30]. Besides, the CCMFT has
been successfully adopted to analyze several classical spin-1/2
interacting systems [31,32], including disordered [33] and
geometrically frustrated [30] lattices. However, up to now,
it has not been applied to the QIM, and filling this gap is
one of our main contributions in this article. Besides, it is
worthwhile mentioning the fact that, when applied to the QIM,
the CCMFT leads to inconsistent results with the appearance
of a discontinuity in the magnetization when the quantum
fluctuations are strong enough. So, it is necessary to adapt this
interesting technique for dealing with quantum systems in a
thorough manner.

Motivated by these observations, we propose a quantum
version of the CCMFT (QCCMF) that allows us to describe
very well the phase diagram of the QIM for different lattice
geometries. As in the CCMFT, in the QCCMFT the spin lattice
is divided into clusters with the intercluster interactions being
replaced by mean-fields that depend on the possible states
of the cluster spins. The main difference between the two
methods is that while the CCMFT restricts these states to
the classical quantization axes, the QCCMFT admits more
general quantum states. Here, this set of quantum states
is self-consistently computed by using the imaginary time
spin self-interaction. The resulting effective cluster model
is then solved by exact diagonalization for different lattice
geometries. Magnetization and spin correlations are evaluated
for the classical and quantum regimes. The critical values
of temperature and transverse field are obtained with very
good accuracy when compared with other MFTs. In fact, these
results can be matched to those obtained via state-of-the-art
MC simulations.

The remainder of this article is structured as follows.
In the next section (Sec. II), we present the QCCMFT
applied to the QIM in the honeycomb (Sec. II A), square
(Sec. II B), and simple cubic (Sec. II C) lattices. Section III is
dedicated to describing and discussing the numerical results for
magnetization, correlation functions, and phase diagrams of
temperature versus transverse field. We summarize the article
and make some concluding remarks in Sec. IV. The calculation
of the imaginary time spin self-interaction is provided in the
Appendix.

II. THE QUANTUM CORRELATED CLUSTER
MEAN FIELD THEORY

Let us begin this section by recalling that the Hamiltonian
of the quantum Ising model can be written in the following
manner:

H = −J

N∑
(i,j )

σ z
i σ z

j − �

N∑
i=1

σx
i , (1)

where σ z
i and σx

i are the Pauli spin operators acting on the
Hilbert space of the ith spin (Hi), J sets the energy unit for
exchange interactions, � is the transverse magnetic field, and
(i,j ) indicates that the first sum is made over all the nearest
neighbors in a given lattice with N sites.

In the CCMFT, the thermodynamic limit (N → ∞) of
the model is approximated by dividing the spin lattice into
identical clusters with ns spins each and in such a way that the
resulting set of clusters follows the original lattice symmetry.
The intracluster interactions are fully preserved while the
intercluster ones are approximated using correlated-effective
fields. This procedure results in the following effective single-
cluster quantum model:

H eff
ν = Hν + Hinter (2)

with

Hν = −J

ns∑
(i,j )

σ z
i σ z

j − �

ns∑
i=1

σx
i (3)

representing the intracluster interactions and the sums being
made over the ns sites of a cluster ν, see Fig. 1. By its turn, the
intercluster interactions are approximated by effective fields
that act on the cluster boundary sites, that is to say,

Hinter = −J

ns∑
i=1

σ z
i heff

i . (4)

The effective field heff
i depends on the states of the spin i and

of its neighbors which belong to the same cluster boundary.
Therefore, different lattice geometries can have different
numbers of neighbors between clusters and consequently
different effective fields (see Fig. 1). In the next sub-sections,
we exemplify this procedure by regarding explicitly three types
of lattices: honeycomb, square, and simple cubic.

A. Honeycomb lattice

The honeycomb lattice can be divided into topologically
equivalent clusters of six sites each (ns = 6), and in such
a way that there is only one pair of interacting spins
between neighboring clusters [see Fig. 1(a)]. This intercluster
interaction is replaced by mean fields m+ and m− acting on the
spins of the considered cluster ν [28]. And, as in the CCMFT,
these mean fields are determined by the “states” of the site in
which they act (|↑〉 or |↓〉). As a result, Hinter can be recast as

Hinter = −J

ns∑
i=1

(
Ii + σ z

i

2
m+ − Ii − σ z

i

2
m−

)
, (5)

with Ii being the identity operator in Hi .
Now let us regard the computation of m+ and m−. In order

to incorporate the quantum nature of this kind of system, in
the QCCMFT we do not restrict the “states” used to compute
the mean fields to be in the classical quantization axes. To
instantiate how we do that, let us start considering the cluster
ν ′ in Fig. 1(a), whose site 4′ is first neighbor to site 1 in
cluster ν. As for ν, effective fields, heff

i , act on the border spins
of cluster ν ′, with exception to the site 4′. In the QCCMFT,
the spin at this site interacts with the expected value of the
magnetic moment of site 1 for two general orthogonal states:

|�+〉 = cos(θ/2)|↑〉 + eiφ sin(θ/2)|↓〉, (6)

|�−〉 = sin(θ/2)|↑〉 − eiφ cos(θ/2)|↓〉, (7)
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FIG. 1. Schematic representation of the (a) honeycomb, (b) square, and (c) simple cubic lattices divided into clusters of spins. The dashed
arrows indicate mean-fields. The solid arrows correspond to the expected values used to evaluate the mean-fields.

where the angles θ ∈ [0,π ] and φ ∈ [0,2π ) have to be
determined self-consistently. For the QIM there exists an
“easy” axes for the exchange interaction, the z direction. So,
once only the z component of the magnetic moment of the
spin 1 is expected to be relevant for its interaction with spin
4′, and 〈

�±∣∣σ z
1

∣∣�±〉 = ± cos θ, (8)

we shall use φ = 0. We observe that if we set θ = 0, then the
QCCMFT is equivalent to the CCMFT.

Thus, the self-consistent mean-field equations read

ms = Tr
(
σ4′ρβ

[
H eff

ν ′ (s)
])

(9)

with

ρβ

[
H eff

ν ′ (s)
] = exp

[−βH eff
ν ′ (s)

]
Tr exp

[−βH eff
ν ′ (s)

] (10)

being the Gibbs thermal state for the Hamiltonian

H eff
ν ′ (s) = Hν ′ − J

∑
i 	=4′

σ z
i heff

i − Jσ z
4′s cos θ, (11)

where the sums are performed over the sites of cluster ν ′,s =
±1, and β = 1/T with T being the temperature (we set the
Boltzmann constant to unit).

Before solving the equations for ms , we have to input the
value of θ . In this article, our ansatz is to provide this quantity
via the imaginary time spin self-interaction. As discussed and
motivated in the Appendix, we obtain θ using the following
relation:

q̄ =
〈

1

β

∫ β

0
dτσ z

i σ z
i (τ )

〉
ρβ (H eff

ν )

= cos2 θ. (12)

With this, Eqs. (9) and (12) are solved self-consistently to
obtain the mean fields m+ and m−. These fields are finally used
in Eq. (5) to yield the effective model (2) for the honeycomb
lattice, from which one can compute all physical quantities of
interest. The results for this lattice are presented in the next
section.

B. Square lattice

This lattice is divided into clusters with ns = 4 sites each,
and there are, for each site, two spin interactions between

neighboring clusters [see Fig. 1(b)]. In the CCMFT, the mean
field due to a site in the cluster ν ′ is strongly dependent on the
spin states of its first and second neighbors in the cluster ν.
Analogously to the previous sub-section, in the standard-Ising
basis, these spin states are |↑↑〉,|↑↓〉,|↓↑〉, and |↓↓〉, which are
associated, respectively, with the mean fields m++,m+−,m−+,
and m−−. Following the CCMFT procedure [28], the effective
single cluster model (2) can be expressed with Hinter written as

Hinter = −J
∑
i,k

(
Ii + σ z

i

2

Ik + σ z
k

2
m++

− Ii + σ z
i

2

Ik − σ z
k

2
m+− − Ii − σ z

i

2

Ik + σ z
k

2
m−+

+ Ii − σ z
i

2

Ik − σ z
k

2
m−−

)
, (13)

where, for the square lattice, the pairs of indexes are (i,k) =
(1,2), (2,4), (4,3), (3,1) and its permutations.

The mean fields are obtained by considering the nearby
connected clusters ν ′. For instance, mss ′

is determined from
the expected value of σ z

3′ when the intercluster interaction
for ν ′ is given by effective fields as in the equations below,
except for the connected sites 3′ and 4′. These sites interact
with the expected values of magnetic moments of sites 1
and 2 of cluster ν on the state |�ss ′ 〉. Explicitly, the mean
fields are computed by solving self-consistently the set of
equations:

mss ′ = Tr
(
σ z

3′ρβ

[
H eff

ν ′ (ss ′)
])

, (14)

where 3′ is a site of cluster ν ′ that is neighbor of sites 1 and 2
of cluster ν. The effective Hamiltonian H eff

ν ′ (ss ′) of cluster ν ′
is expressed by

H eff
ν ′ (ss ′) = Hν ′ + H eff

inter(ss
′) (15)

with

H eff
inter(ss

′) = −J

4

ns∑
i

{i,k} 	= {3′,4′},{4′,3′}

× [
σ z

i (m++ + m+− + m−+ + m−−)

+ σ z
i σ z

k (m++ − m+− + m−+ − m−−)
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+ σ z
k (m++ − m+− − m−+ + m−−)

]
− J

〈
�ss ′ ∣∣σ z

1

∣∣�ss ′ 〉
σ z

3′ − J
〈
�ss ′ ∣∣σ z

2

∣∣�ss ′ 〉
σ z

4′ .

(16)

In particular, our ansatz to the states |�ss ′ 〉 is

|�++〉 = (cos(θ/2)|↑〉 + sin(θ/2)|↓〉)|↑〉, (17)

|�+−〉 = (cos(θ/2)|↑〉 + sin(θ/2)|↓〉)|↓〉, (18)

|�−+〉 = (cos(θ/2)|↓〉 − sin(θ/2)|↑〉)|↑〉, (19)

|�−−〉 = (cos(θ/2)|↓〉 − sin(θ/2)|↑〉)|↓〉. (20)

These states result in the following expected values:〈
�ss ′ ∣∣σ z

1

∣∣�ss ′ 〉 = s cos(θ ) and
〈
�ss ′ ∣∣σ z

2

∣∣�ss ′ 〉 = s ′. (21)

Here the imaginary time spin self-interaction of cluster ν is
used once more to obtain θ = cos−1 √

q̄ (see the Appendix),
where q̄ is evaluated considering the square lattice effective
model (2) with Hinter given by Eq. (13).

C. Simple cubic lattice

For the three-dimensional case, we consider a simple cubic
lattice. For this system, the calculation is performed based
on eight-site cubic clusters, as illustrated in Fig. 1(c). There
are four sites connected between neighbor cluster faces,
which introduces 16 mean fields in the original CCMFT.
However, we assume an approach that takes into account only
three connected sites per face. For instance, we consider the
states of site i and its nearest neighbors of the same cluster
face ν to obtain the mean fields that act on the spin of site
i [33]. In this case, the number of mean fields is decreased to
eight: m+++,m++−,m+−+,m−++,m+−−,m−+−,m−−+, and
m−−−. We can also explore the symmetries m++− = m−++
and m−−+ = m+−− to evaluate only six mean fields,
reducing thus the numerical cost in this case. The procedure
is a straightforward extension of that in the case of the
square lattice. However, here we consider the following
orthogonal set of states |ψs ′ss ′′ 〉 instead of |�ss ′ 〉, with
|ψ+++〉 = cos(θ/2)|↑↑↑〉 + sin(θ/2)|↑↓↑〉, . . . ,|ψ−−−〉 =
cos(θ/2)|↓↓↓〉 − sin(θ/2)|↓↑↓〉.

III. NUMERICAL RESULTS AND DISCUSSION

The mean fields are determined numerically from the
effective Hamiltonian of cluster ν ′ in a self-consistent routine
by using an exact diagonalization method. In this framework,
the lattice geometric features are addressed by the cluster
structure. The effective Hamiltonian of ν ′ also depends on
θ , which is evaluated from the imaginary time spin self-
interaction q̄ of cluster ν. In other words, this routine requires
only two clusters: the central cluster ν and one of its nearby
connected ν ′. The cluster ν ′ is used to compute the mean
fields and from ν the thermodynamic quantities can be
derived. Therefore, this procedure allows us to get an effective
single cluster model, Eq. (2), that can be used to obtain the
observables of interest as magnetization,

mα = Tr
[
σα

i ρβ

(
H eff

ν

)]
, (22)
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(b)

FIG. 2. Results for the honeycomb lattice. (a) Temperature
dependence of mz and q̄ for different intensities of �/J . (b) mz,mx ,
and q̄ as a function of �/J for T = 0.

and spin correlation,

Cαα = Tr
[
σα

i σ α
j ρβ

(
H eff

ν

])
, (23)

where α = x,z refers to the component of the Pauli spin
operator.

The honeycomb lattice results can be analysed in Fig. 2. For
� = 0, when the temperature decreases, the system presents
spontaneous magnetization mz below the critical temperature
Tc. In addition, the absence of quantum fluctuations leads
to a spin self-interaction independent of temperature. As a
consequence, q̄ = 1 and the classical CCMFT results are
recovered with Tc = 1.592J [28]. When � > 0,mz and Tc

are gradually decreased as the quantum fluctuations increases
[see Fig. 2(a)]. Moreover, q̄ is very sensitive to the presence of
quantum fluctuations. Thus, q̄ becomes temperature dependent
for � > 0. It exhibits a clear mark at Tc, going towards
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FIG. 3. Results for the square lattice. (a) Temperature dependence
of mz and mx for different intensities of �/J . (b) mz and mx as a
function of �/J for some values of T/J .

one at higher temperatures, where the thermal fluctuations
dominate.

The effects of quantum fluctuations in the ground state
can be analyzed in Fig. 2(b). The increase of � leads
the system to a quantum critical point (QCP) at �c =
2.105J , where mz becomes zero. The magnetization mx

arises when � increases, exhibiting a mark at �c. For
� > �c, mx increases monotonically towards one. Further-
more, q̄ decreases faster within the ferromagnetic (FE) order
than in the quantum paramagnetic (PM) phase, in which q̄ → 0
when � → ∞.

The magnetization results for the square lattice are pre-
sented in Fig. 3. The mz for � = 0 recovers the classical
CCMFT with the critical temperature Tc(� = 0) = 2.362J

and mx = 0. As the transverse field increases, the magneti-
zation mz decreases and mx arises showing a cusp at Tc [see

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

FIG. 4. Correlation as a function of reduced temperature (trans-
verse field) at � = 0 (T = 0) for the square lattice. The fluctuations
are also exhibited.

Fig. 3(a)]. The effect of � on the magnetizations can also be
analyzed in Fig. 3(b), that exhibits a QCP at �c = 2.956J . In
particular, q̄ presents the same qualitative behavior as the one
observed for the honeycomb lattice.

The study of magnetizations is also done for the simple
cubic lattice, with the results being qualitatively equivalent to
those in Fig. 3. However, the quantum critical point is obtained
at �c = 5.198J and the critical temperature for the classical
limit is found to be Tc(� = 0) = 4.763J . This Tc(� = 0) value
is very close to that obtained from the original CCMFT with
16 mean fields: Tc(� = 0) = 4.753J [28]. It is important to

0

1

2

3

4

5

0 1 2 3 4 5

PM

FE

FIG. 5. Phase diagrams of temperature versus transverse field for
the honeycomb, square, and cubic lattices.
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TABLE I. Comparison of the critical transverse fields and temperatures (in units of J ) for the quantum Ising model on three classes of
lattices and obtained using different methods.

Lattice MFT EFT EMFT QCCMFT exact/MCS

Honeycomb
Tc

�c

3
3

2.104
1.829

2
2

1.593
2.105

1.519
2.132

Square
Tc

�c

4
4

3.090
2.751

3
3

2.362
2.956

2.269
3.044

Cubic
Tc

�c

6
6

5.073
4.704

5
5

4.763
5.198

4.511
5.158

remark that in our approach the problem is simplified by
considering only six mean fields.

Figure 4 shows the longitudinal correlation functions, Czz

and the connected one Czz − (mz)2, between first neighbors
in a square lattice. For the case of � = 0 (upper curves),
the thermal fluctuations decrease Czz and the neighbor spins
become totally uncorrelated only at higher temperatures. At
zero-temperature (lower curves), the quantum fluctuations lead
the connected correlation function to a maximum at �c. This
maximum is lower than that obtained for the thermal fluctu-
ations (classical) case. It is noted that, differently from the
MFT and EMFT, the QCCMFT leads to correlation functions
different from zero in the classical or quantum paramagnetic
regimes close to the phase transition. On the other hand,
we observe that, like in other mean-field approaches, the
critical exponents obtained with the QCCMFT are the classical
ones.

The behavior of the critical temperature as a function
of � is shown in Fig. 5 for the three lattices studied. The
FE-PM phase transitions can occur by changes in thermal
or quantum fluctuations and the phase boundaries are always
continuous. The critical temperatures diminish towards QCPs
as � increases. The QCP location not only depends on the
dimension of the system, but also on the geometry of the
lattice. These phase diagrams are in qualitative agreement with
other mean-field techniques. Furthermore, they also exhibit a
very good quantitative agreement with the results presented
in Fig. 3.5 of Ref. [11], which were obtained via Monte
Carlo simulations (MCS) and series expansions applied to the
quantum Ising model.

Table I shows a comparison between the critical tem-
peratures and the QCPs obtained from several methods
applied to the quantum Ising model. For instance, the EMFT
and the effective-field theory (EFT), which is a single-site
approximation based on the differential operator technique,
provide better results [34–36] for Tc and �c as compared to
the standard MFT. However, the MFT, EFT, and EMFT lead to
results that are uniquely dependent on the lattice coordination
number, neglecting other geometric features. In fact, Tc = �c

in the MFT and EMFT [26]. On the other hand, the locations of
these critical points from the QCCMFT method do not present
a strong dependence on z. In addition, the QCPs evaluated from
the QCCMF approach are extremely close to those obtained
from the best results of cluster Monte Carlo simulations [12].
By comparing the QCCMFT results with the MCS [12,37] and
exact results [38], the �c differences are less than 3%, while the
Tc is overestimated by less than 6% for the considered lattices.

IV. CONCLUSION

In this article, we introduced a quantum correlated cluster
mean-field method (QCCMFT), which had been proven of
being capable of correctly describing classical and quantum
phase transitions in some important spin systems. The reported
method is an extension of the correlated cluster mean-field
theory [28], that was adapted here in order to treat many-body
problems with quantum fluctuations. Our approach succeeds
in better capturing quantum effects because it recognizes their
influence on the spin-spin interactions, which is implemented
through state superpositions determined self-consistently via
the imaginary time spin self-interaction. As an application, the
QCCMFT was used to analyze the transverse Ising model
on three classes of spin lattices: honeycomb, square, and
simple cubic. We found out that the QCCMFT improves
the results for the spin correlations and takes into account
more lattice geometric features when compared with other
approximative methods, as for instance the MFT and EMFT.
In particular, the QCCMFT enabled us to consider thermal
and quantum effects in the same framework. As a result, this
technique gives a very accurate location for the ferromagnetic-
paramagnetic phase transition driven by thermal and quantum
fluctuations. For instance, the quantum critical points obtained
for the considered lattices present a difference of less than
3% when compared to those obtained using Monte Carlo
simulations [12].

In summary, the simplicity of the approach and accurate
results obtained here with the QCCMFT indicate that it shall
be a valuable tool for investigations regarding quantum spin
systems. It would be interesting to utilize this framework to
deal with more complex systems, as for instance the geomet-
rically frustrated ones. Another area in which this kind of tool
can find application is for quantum correlation quantification
in spin and other systems [39–43], and its possible role for
characterizing the so-called quantum criticality [44–46]. It
would be natural also using the QCCMFT to investigate the
dynamics of many-body systems [47–49].
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APPENDIX: IMAGINARY TIME SPIN
SELF-INTERACTION

In this appendix, the imaginary time spin self-interaction,

q̄ =
〈

1

β

∫ β

0
dτσ z

i σ z
i (τ )

〉
ρβ (H )

= Tr

(
1

β

∫ β

0
dτσ z

i σ z
i (τ )ρβ(H )

)
, (A1)

is evaluated. Above and hereafter we utilize σ z
i = σ z

i (0). The
Trotter formalism is used to deal with commutation relations
present in the model. The “integration variable” τ is an
imaginary time, with the associated time evolution operator
leading to [11]: σ z

i (τ ) = e−τHσ z
i eτH .

By considering a basis of eigenstates |n〉 for H with
corresponding energies En, we can evaluate q̄ as

q̄ =
∑

n,m

∫ β

0 dτ
〈
n
∣∣σ z

i

∣∣m〉〈
m

∣∣σ z
i

∣∣n〉
eτ (En−Em)e−βEn

β
∑

n exp(−βEn)
(A2)

=
∑

n exp(−βEn)
∣∣〈n∣∣σ z

i

∣∣n〉∣∣2

∑
n exp(−βEn)

−
∑

n	=m

exp(−βEm) − exp(−βEn)

Em − En

∣∣〈m∣∣σ z
i

∣∣n〉∣∣2

β
∑

n exp(−βEn)
. (A3)

In particular, for the thermal state of a single spin with
eigenstates |�+〉 and |�−〉 and corresponding energies E+
and E−, the spin self-interaction is given by

q̄ = cos2 θ + sin2 θ
tanh β�E/2

β�E/2
(A4)

with �E = E+ − E−. As our purpose here is to include
quantum effects in mean-field approximations, we shall take
the limit where thermal fluctuations are small compared to the
energy gaps, i.e., β�E → ∞. In this limit, the second term in
the right-hand side of the last equation is null and q̄ ≈ cos2 θ .
Thus we shall use θ = cos−1 √

q̄ as motivation for our ansatz
in the QCCMFT.
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R. M. Serra, Phys. Rev. A 82, 012106 (2010).

062116-7

http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/10.1007/s10955-009-9814-1
http://dx.doi.org/10.1007/s10955-009-9814-1
http://dx.doi.org/10.1007/s10955-009-9814-1
http://dx.doi.org/10.1007/s10955-009-9814-1
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1088/1742-5468/2013/03/P03003
http://dx.doi.org/10.1088/1742-5468/2013/03/P03003
http://dx.doi.org/10.1088/1742-5468/2013/03/P03003
http://dx.doi.org/10.1126/science.aab3326
http://dx.doi.org/10.1126/science.aab3326
http://dx.doi.org/10.1126/science.aab3326
http://dx.doi.org/10.1126/science.aab3326
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/PhysRevE.66.066110
http://dx.doi.org/10.1103/RevModPhys.70.653
http://dx.doi.org/10.1103/RevModPhys.70.653
http://dx.doi.org/10.1103/RevModPhys.70.653
http://dx.doi.org/10.1103/RevModPhys.70.653
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1103/PhysRev.81.988
http://dx.doi.org/10.1103/PhysRevB.27.6884
http://dx.doi.org/10.1103/PhysRevB.27.6884
http://dx.doi.org/10.1103/PhysRevB.27.6884
http://dx.doi.org/10.1103/PhysRevB.27.6884
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1088/0305-4470/14/8/027
http://dx.doi.org/10.1088/0305-4470/14/8/027
http://dx.doi.org/10.1088/0305-4470/14/8/027
http://dx.doi.org/10.1088/0305-4470/14/8/027
http://dx.doi.org/10.1088/0305-4470/27/16/010
http://dx.doi.org/10.1088/0305-4470/27/16/010
http://dx.doi.org/10.1088/0305-4470/27/16/010
http://dx.doi.org/10.1088/0305-4470/27/16/010
http://dx.doi.org/10.1103/PhysRevB.19.4737
http://dx.doi.org/10.1103/PhysRevB.19.4737
http://dx.doi.org/10.1103/PhysRevB.19.4737
http://dx.doi.org/10.1103/PhysRevB.19.4737
http://dx.doi.org/10.1103/PhysRevE.72.056104
http://dx.doi.org/10.1103/PhysRevE.72.056104
http://dx.doi.org/10.1103/PhysRevE.72.056104
http://dx.doi.org/10.1103/PhysRevE.72.056104
http://dx.doi.org/10.1002/pssb.2220830125
http://dx.doi.org/10.1002/pssb.2220830125
http://dx.doi.org/10.1002/pssb.2220830125
http://dx.doi.org/10.1002/pssb.2220830125
http://dx.doi.org/10.1103/PhysRevB.43.6181
http://dx.doi.org/10.1103/PhysRevB.43.6181
http://dx.doi.org/10.1103/PhysRevB.43.6181
http://dx.doi.org/10.1103/PhysRevB.43.6181
http://dx.doi.org/10.1103/PhysRevB.87.144406
http://dx.doi.org/10.1103/PhysRevB.87.144406
http://dx.doi.org/10.1103/PhysRevB.87.144406
http://dx.doi.org/10.1103/PhysRevB.87.144406
http://dx.doi.org/10.1088/1742-6596/297/1/012018
http://dx.doi.org/10.1088/1742-6596/297/1/012018
http://dx.doi.org/10.1088/1742-6596/297/1/012018
http://dx.doi.org/10.1088/1742-6596/297/1/012018
http://dx.doi.org/10.1007/s11128-011-0279-1
http://dx.doi.org/10.1007/s11128-011-0279-1
http://dx.doi.org/10.1007/s11128-011-0279-1
http://dx.doi.org/10.1007/s11128-011-0279-1
http://dx.doi.org/10.1209/0295-5075/99/20011
http://dx.doi.org/10.1209/0295-5075/99/20011
http://dx.doi.org/10.1209/0295-5075/99/20011
http://dx.doi.org/10.1209/0295-5075/99/20011
http://dx.doi.org/10.1016/j.physleta.2013.05.024
http://dx.doi.org/10.1016/j.physleta.2013.05.024
http://dx.doi.org/10.1016/j.physleta.2013.05.024
http://dx.doi.org/10.1016/j.physleta.2013.05.024
http://dx.doi.org/10.1103/PhysRevB.79.144427
http://dx.doi.org/10.1103/PhysRevB.79.144427
http://dx.doi.org/10.1103/PhysRevB.79.144427
http://dx.doi.org/10.1103/PhysRevB.79.144427
http://dx.doi.org/10.1103/PhysRevE.61.6399
http://dx.doi.org/10.1103/PhysRevE.61.6399
http://dx.doi.org/10.1103/PhysRevE.61.6399
http://dx.doi.org/10.1103/PhysRevE.61.6399
http://dx.doi.org/10.1016/j.physa.2015.07.010
http://dx.doi.org/10.1016/j.physa.2015.07.010
http://dx.doi.org/10.1016/j.physa.2015.07.010
http://dx.doi.org/10.1016/j.physa.2015.07.010
http://dx.doi.org/10.1088/1742-6596/200/2/022072
http://dx.doi.org/10.1088/1742-6596/200/2/022072
http://dx.doi.org/10.1088/1742-6596/200/2/022072
http://dx.doi.org/10.1088/1742-6596/200/2/022072
http://dx.doi.org/10.1088/0953-8984/22/39/395005
http://dx.doi.org/10.1088/0953-8984/22/39/395005
http://dx.doi.org/10.1088/0953-8984/22/39/395005
http://dx.doi.org/10.1088/0953-8984/22/39/395005
http://dx.doi.org/10.1103/PhysRevE.89.062117
http://dx.doi.org/10.1103/PhysRevE.89.062117
http://dx.doi.org/10.1103/PhysRevE.89.062117
http://dx.doi.org/10.1103/PhysRevE.89.062117
http://dx.doi.org/10.1080/00150198108219575
http://dx.doi.org/10.1080/00150198108219575
http://dx.doi.org/10.1080/00150198108219575
http://dx.doi.org/10.1080/00150198108219575
http://dx.doi.org/10.12693/APhysPolA.83.703
http://dx.doi.org/10.12693/APhysPolA.83.703
http://dx.doi.org/10.12693/APhysPolA.83.703
http://dx.doi.org/10.12693/APhysPolA.83.703
http://dx.doi.org/10.1016/j.physleta.2004.07.042
http://dx.doi.org/10.1016/j.physleta.2004.07.042
http://dx.doi.org/10.1016/j.physleta.2004.07.042
http://dx.doi.org/10.1016/j.physleta.2004.07.042
http://dx.doi.org/10.1103/PhysRevB.44.5081
http://dx.doi.org/10.1103/PhysRevB.44.5081
http://dx.doi.org/10.1103/PhysRevB.44.5081
http://dx.doi.org/10.1103/PhysRevB.44.5081
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1088/1367-2630/6/1/001
http://dx.doi.org/10.1088/1367-2630/6/1/001
http://dx.doi.org/10.1088/1367-2630/6/1/001
http://dx.doi.org/10.1088/1367-2630/6/1/001
http://dx.doi.org/10.1103/PhysRevA.82.012106
http://dx.doi.org/10.1103/PhysRevA.82.012106
http://dx.doi.org/10.1103/PhysRevA.82.012106
http://dx.doi.org/10.1103/PhysRevA.82.012106


F. M. ZIMMER, M. SCHMIDT, AND JONAS MAZIERO PHYSICAL REVIEW E 93, 062116 (2016)
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