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The standard central limit theorem with a Gaussian attractor for the sum of independent random variables
may lose its validity in the presence of strong correlations between the added random contributions. Here, we
study this problem for similar interchangeable globally correlated random variables. Under these conditions, a
hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define
different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending
on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized
by distinct probability densities. For a class of urn models it is also possible to characterize their domain of
attraction, which, as in the standard case, is parametrized by the probability density of each random variable.
Symmetric and asymmetric q-Gaussian attractors (q < 1) arise in a particular two-state case of these urn models.
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I. INTRODUCTION

The standard central limit theorem (CLT) is a cornerstone
of probability theory [1–4]. It establishes that a sum of inde-
pendent (identical) random variables, under suitable rescaling,
converges to a Gaussian distribution. It plays a fundamental
role in the formulation of statistical thermodynamics and also
provides a rigorous basis for assuming Gaussian statistics
for describing fluctuations in equilibrium and nonequilibrium
systems.

There exist a few remarkable examples where the standard
CLT was generalized. The Gaussian attractor arises when
considering independent random variables with a finite second
moment. As is well known, when this condition is lifted up the
attractor becomes a Levy distribution [5]. In addition, Gumbel
distribution arises from the study of extreme value statistics
and describes the fluctuations of the largest value in a large
set of identically distributed independent random variables
[6]. Interestingly, this problem can in general be related
with the statistics of sums of correlated random variables
[7]. Departure from Gaussian statistics was also analyzed
for global correlations where the characteristic function of
the total sum is defined by a nonmultiplicative Fourier
structure [8].

Recently it was argued that the presence of global correla-
tions in stationary equilibrium and nonequilibrium systems is a
situation where nonextensive statistical mechanics may apply
[9–12]. Consistently, many theoretical studies were devoted
to finding global memory mechanisms that lead to attractors
defined by q-Gaussian probability densities [13–17]. These
statistical objects also arise from maximizing Tsallis entropy
[9], from superstatistical models [18], as well as from specific
transformations of Gamma distributed random variables [19].

Global correlations are a mechanism that may lead to
departures from Gaussian statistics. Nevertheless, establishing
a generalization of the CLT on the basis of only this feature is a
formidable task. In fact, to our knowledge, there does not exist
general rigorous mathematical criteria for splitting correlations
in weak ones (leading to Gaussian statistics) and stronger
ones (departure from normal distribution). Therefore, as in

the previous literature [7–17], one is naturally forced to study
particular cases. Of special interest is to find generalizations
that rely on simple correlation mechanisms or symmetries,
which in turn also allow defining or studying its basin of
attraction. In general, this last issue is hard to solve.

In this paper we analyze the departure from the standard
CLT for a specific class of global correlations. Similar
interchangeable random variables [20–24] are considered.
This property or symmetry, originally introduced by de Finetti
[20] in probability theory, is defined by random variables
whose joint probability density is invariant under arbitrary
permutations of its arguments.

The main goal is twofold. First, we give a general charac-
terization of possible correlation mechanisms consistent with
interchangeability. This objective is achieved by characterizing
the correlations not through the joint probability densities but
through the transition probabilities. These functions tell us
how the probability density of a given variable depends on the
previous values assumed by the rest of the random variables.
We demonstrate that these objects obey a set of hierarchical
equations that resemble a Chapman-Kolmogorov equation
for Markovian chains [2–4]. From this result we construct
different correlation models that allow us to achieve the
second main goal, that is, the characterization of the departure
from Gaussian statistics as well as to study their basin of
attraction. For a class of urn models [25–28], we demonstrate
that their basin of attraction is as wide as in the standard
case. Asymmetric and symmetric q-Gaussian attractors [19]
with q < 1 arise as a particular two-state case of these urn
models.

The paper is outlined as follows. In Sec. II, based on the
interchangeability property of the joint probabilities, we derive
a hierarchical set of equations for the transition probabilities.
Section III is devoted to finding different solutions to the
previous equations, which are based on a generalization of
Pólya urn scheme [25–28]. In Sec. IV, departure from Gaussian
statistics and their basin of attraction are analyzed. In Sec. V
we provide the conclusions. In the Appendices we show some
calculus details and study other correlation models (additive
memory, de Finetti representation).
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II. HIERARCHY OF TRANSITION PROBABILITIES FOR
SIMILAR INTERCHANGEABLE RANDOM VARIABLES

We consider a set of n random variables X1,X2, . . . Xn. For
a given n, their statistics is completely characterized by the
n-joint probability density Pn(x1,x2, . . . xn), which defines the
probability that each variable falls in an infinitesimal range
dxi around xi. Similar interchangeable variables are defined
by the following two symmetries.

Similarity (or scale invariance [9]) means that for any n the
following relation is fulfilled:

Pn−1(x1,x2, . . . xn−1) =
∫

dxnPn(x1,x2, . . . xn). (1)

Therefore, the joint probability density of the subset of
(n − 1) random variables coincides with the marginal density
corresponding to n variables. This property tells us that by
adding a new stochastic variable, (n − 1) → n, the marginal
statistics of the previous (n − 1) variables remains invariant.
In general, this property is not valid. In fact, a problem
with n arbitrary random variables may not have any relation
with a problem with (n − 1) variables (see Ref. [16]).
Then, the similarity condition Eq. (1) must not be confused
with the usual definition of marginal densities [3], which
certainly always applies to any fixed n,P (k)

n (x1,x2, . . . xk) ≡∫
Pn(x1, . . . xk,xk+1 . . . xn)dxk+1 . . . dxn. In terms of

them, condition Eq. (1) reads Pn−1(x1,x2, . . . xn−1) =
P (n−1)

n (x1,x2, . . . xn−1).
Interchangeability is defined by the invariance of the

joint probability density under arbitrary permutations of its
arguments,

Pn(. . . ,xk, . . . ,xl, . . . ) = Pn(. . . ,xl, . . . ,xk, . . . ), (2)

that is, for any k and l in the interval (1,2, . . . n), the joint
probability density does not change under the (arbitrary)
interchange xk ↔ xl. These relations are assumed valid for
all values of n.

Notice that, in particular, the previous two symmetries
imply that all random variables {Xi}ni=1 are character-
ized by the same density P1(x). In fact, for any n and
k = 1, . . . n, it follows P (1)

n (xk) = P1(xk) where P (1)
n (xk) ≡∫

Pn(x1, . . . xk, . . . xn)dx1 . . . dxk−1dxk+1 . . . dxn.

The joint probability density Pn(x1,x2, . . . xn) completely
characterizes the random variables {Xi}ni=1. Nevertheless,
an extra aspect is enlightened by introducing a conditional
probability density defined by the relation

Pn(x1, . . . xn) = Pn−1(x1, . . . xn−1)Tn−1(x1, . . . xn−1|xn).
(3)

Hence, the function Tn−1(x1, . . . xn−1|xn) gives the probability
density of the variable Xn given that the previous ones {Xi}n−1

i=1
assumed the values x1, . . . xn−1 [29]. By definition, it satisfies
the normalization condition

∫
dxnTn−1(x1, . . . xn−1|xn) = 1.

From Eq. (3), iteratively it follows

Pn(x1, . . . xn) = P1(x1)T1(x1|x2)T2(x1,x2|x3) . . .

· · · × Tn−1(x1, . . . xn−1|xn). (4)

Therefore, the set of functions Tk(x1, . . . xk|xk+1), with k =
1, . . . n − 1 provide the same information than the n-joint
probability density. Furthermore, from Eq. (4) one can easily

read how the correlations between the random variables
are built up. In fact, having an explicit expression for the
transition probabilities it is possible to numerically generate
the corresponding realizations of the correlated variables
{Xi}ni=1.

The main problem that we solve in this section is to
determine which set of transition probabilities are consis-
tent with the similarity and interchangeability properties.
Given an arbitrary probability density P1(x1), the sym-
metry does not impose any condition. For n = 2, inter-
changeability implies P2(x1,x2) = P2(x2,x1), or equivalently
P1(x1)T1(x1|x2) = P1(x2)T1(x2|x1). After integration, and by
using the similarity property, it follows the condition∫

dx1P1(x1)T1(x1|x2) = P1(x2). (5)

By using a similar procedure, T2(x1,x2|x3) must fulfill

T1(x1|x3) =
∫

dx2T1(x1|x2)T2(x1,x2|x3). (6)

For higher conditional probabilities densities (see
Appendix A), the following relations,

Tn−1(x1 . . . xn−1|xn+1) =
∫

dxnTn−1(x1, . . . xn−1|xn)

× Tn(x1, . . . xn|xn+1), (7)

must be fulfilled for all values of n. Furthermore, the func-
tion Tn(x1 . . . xn|xn+1) must be symmetric in the conditional
arguments x1 . . . xn, that is, it is invariant under arbitrary per-
mutations of its arguments. The hierarchical set of equations
defined by Eq. (7) is the main result presented in this section.

If Tn−1(x1, . . . xn−1|xn+1), for all values of n, does
not depend on the previous values x1, . . . xn−1, it follows
Tn(x1, . . . xn|xn+1) = P1(xn+1), that is, we recover the case
of independent identical random variables. Notice that inter-
changeability implies that Tn−1(x1 . . . xn−1|xn) depends sym-
metrically on the previous arguments x1 . . . xn−1. Therefore,
transition probabilities that only depend on one previous
value, with a dependence that is independent on the number
of previous events, Tn−1(x1 . . . xn−1|xn) = Tn−1(xn−1|xn) =
T (xn−1|xn), are not consistent with interchangeability. This
case corresponds to stationary Markov chains. In fact, the
unique transition probability T (x|y) should satisfy [Eq. (5)]∫

dxP1(x)T (x|y) = P1(y), (8)

while by imposing the previous conditions on Eq. (7), it follows

T (x|y) =
∫

dx ′T (x|x ′)T (x ′|y). (9)

The stationary property is given by Eq. (8), while the
Markov property is defined by the Chapman-Kolmogorov
[2–4] relation Eq. (9).

The inconsistence between stationary Markov chains and
interchangeable random variables can be put in evidence
as follows. For the former one, the correlations between
“neighbor” random variables, Xk and Xk+d , only depend
through their “distance,” d. Nevertheless, this dependence is
inconsistent with interchangeability, which in fact implies that
correlations between any two random variables is always the
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same statistical object. On the other hand, both Eqs. (7) and (9)
are defined by integral relations. Therefore, as in the standard
Chapman-Kolmogorov case [3,30], we conclude that the set of
hierarchical Eqs. (7) define a necessary condition for similarity
and interchangeability symmetries.

In the following section we search solutions of Eq. (7)
where the transition probabilities are based on a general-
ization of Pólya urn scheme. In the Appendices we studied
other solutions that also depend in the same manner on all
previous values taken by the random variables, that is, global
correlations. For example, an additive memory assumption
Tn(x1 . . . xn|xn+1) = Tn(x1 + x2 · · · + xn|xn+1) (Appendix B)
leads to consistent solutions for Gaussian and classical spin
variables. A generalized de Finetti representation is analyzed
in Appendix C.

III. URN SCHEMES

Urn models are examples of random variables defined
through their transition probabilities [2,25]. They generate
interchangeable random variables [26–28]. Below we review
these schemes, which gives us the basis for constructing a
generalization consistent with interchangeability.

A. Pólya Urn scheme

In the standard Pólya urn scheme [2,25], initially an urn
contains many balls that, for example, are characterized by
different colors (the random variables). At each step, one
determines the color of one ball taken at random and then
put into the urn one extra ball (next random variable) of
the same color. A similar process can be defined by starting
the urn with only one ball, which is a particular case of the
Blackwell-MacQueen urn scheme [26,27], being related to the
“Chinese restaurant process” [27,28].

In the present context, the Blackwell-MacQueen urn
scheme is defined by an arbitrary density P1(x), while the
transition probabilities are

Tn(x1, . . . xn|x) = λP1(x) +∑n
i=1 δ(x − xi)

n + λ
. (10)

Here, λ is a dimensionless positive parameter, while δ(x) is
the delta Dirac function. When λ → ∞, identical independent
random variables are recovered, while the limit λ → 0 leads
to a fully correlated case, that is, after the first random value
the next ones assume the same value.

After a simple algebra it is possible to proof that the
set of functions defined by Eq. (10) satisfy Eq. (5), as
well as the hierarchical set of conditions corresponding to
interchangeability, Eq. (7). The Pólya urn scheme here is
defined as the particular case in which the random variables
{Xi}ni=1 are discrete. Hence, we write

P1(x) =
∑M

μ=1
qμδ(x − xμ), (11)

where {xμ}Mμ=1 is the set of M possible values and {qμ}Mμ=1 are

the corresponding weights (probabilities), with
∑M

μ=1 qμ = 1.

In this case, the transition probabilities Eq. (10) can be written
in terms on the number of times nμ that each value xμ was

FIG. 1. Two realizations [(a) and (b)] for a set of classical spin
variables {xμ} = {+1, − 1} obtained from Eq. (12) (M = 2). The
lower panels correspond to the transition probabilities Tn({xi}|x) (x =
1 gray line, x = −1 black line). The parameters are q+ = q− = 1/2
and λ = 2.

assumed previously,

Tn({xi}|x) =
∑M

μ=1

λqμ + nμ

n + λ
δ(x − xμ), (12)

where Tn({xi}|x) ≡ Tn(x1, . . . xn|x). Notice that the set of
numbers {nμ}Mμ=1 that the random values {Xi}ni=1 assumed the

values {xμ}Mμ=1 satisfy the relation n = ∑M
μ=1 nμ.

The correlation mechanism associated with Eq. (12) can
be read in the following way. With probability λ/(n + λ)
the random variable Xn+1 is drawn randomly in agreement
with the density P1(x), Eq. (11). Hence, independently of the
previous history, it assumes the value xμ with probability qμ.

Alternatively, with probabilities nμ/(n + λ), which depends
on all previous history, it assumes the value xμ. The parameter
λ measure the weigh of both options.

A central property of the transition probability Eq. (12)
is given by its limit in the regime n → ∞, where it becomes
similar to that of independent variables. This result, which was
characterized previously in the literature [26,27], here can be
written as

T∞({xi}|x) =
∑M

μ=1
Fu δ(x − xμ), (13)

where the set of weights {Fμ}Mμ=1 are defined by

Fμ ≡ lim
n→∞

λqμ + nμ

n + λ
, 0 � Fμ � 1, (14)

and consistently satisfy
∑M

μ=1 Fμ = 1. These weights (prob-
abilities) are different for each realization, that is, they
are random variables. Their probability density [26,27] is
presented in the next section [see Eq. (33)]. Notice that when
the previous regime is achieved, each realization is in fact
equivalent to that of independent random variables.

In order to get a clear understanding of the processes defined
by Eq. (12) and its properties, in Fig. 1 we plotted a set of
realizations for the random variables {Xi}ni=1 (upper panels).
They correspond to classical spin variables, that is, we take
xμ = ±1 and M = 2. For clarity, each value of Xi is continued
in the real interval (i − 1,i).

The first value, X1, is chosen in agreement with P1(x),
Eq. (11). The next values {Xi}ni=2 follow from the transition
probability Tn({xi}|x), Eq. (12). We also plotted this object as
a function of n and for each value of x = ±1 (lower panels).
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FIG. 2. Two realizations [(a) and (b)] for a set of three-state ran-
dom variables {xμ} = {+1,0, − 1}. They follow from the transition
probability Tn({xi}|x) Eq. (12) with M = 3, which is plotted in the
lower panels (x = 1 gray line, x = −1 black line, x = 0 light gray
line). The parameters are q+ = q− = q0 = 1/3 and λ = 3.

Given the previous history, each curve defines the probability
for the next variable. Therefore, they are random objects.

In agreement with Eq. (13), we found that for increasing
n the transition probabilities always saturate to stationary
values [Eq. (14)]. Therefore, when this regime is achieved,
each realization is equivalent to that of independent random
variables. Nevertheless, the stationary values reached by the
transition probabilities are different for each realization.

In the realization of Fig. 1(a) the stationary transition
probability for the state −1 is larger than for the state +1.

Consistently, the state −1 is taken much more frequently,
feature clearly visible in the upper panel. In Fig. 1(b) the
difference between the stationary values is much smaller,
inducing a more “noisy” realization.

In Fig. 2 we plot a set of realizations obtained from the
transition probability Eq. (12) for random variables character-
ized by three states, M = 3, with xμ = +1,0, − 1. Similar to
the case of two-level variables, for increasing n the transition
probabilities reach stationary values, which are different and
random for each realization. Therefore, in this regime the real-
izations are also equivalent to that of identical independent ran-
dom variables. In Fig. 2(a) the random variables almost always
assume the values x = ±1. This happens because the station-
ary value of the transition probability corresponding to the state
x = 0 is much smaller than the other two, x = ±1. Instead,
in Fig. 2(b) the state x = 0 has the larger stationary transition
probability. Consistently, the states x = ±1 appear sparsely.

B. Composed Pólya urn scheme

Here, we introduce a generalization of the previous urn
scheme that is also consistent with interchangeability. We con-
sider nondiscrete random variables with arbitrary probability
density P1(x). The domain � of each variable Xi, that is, the
domain of P1(x), is split in a finite set of disjoint subdomains
{�μ}Mμ=1 such that the total domain is their union, � = ∪�μ.

To each �μ we associate a probability density pμ(x) that
assumes values on � and is normalized as

∫
�

pμ(x)dx = 1.

Under these definitions, we propose the transition probability
density,

Tn({xi}|x) =
λP1(x) +

M∑
μ=1

pμ(x)
n∑

i=1

∫
�μ

dyδ(y − xi)

n + λ
. (15)

As before, λ is a free parameter and {xi} = x1,x2, . . . xn is the
previous trajectory.

The integral contributions,

nμ ≡
n∑

i=1

∫
�μ

dyδ(y − xi),
M∑

μ=1

nμ = n, (16)

give the number of times the variables {xi}ni=1 fell in the
subdomain �μ. Therefore, we can write

Tn({xi}|x) = λP1(x) +∑M
μ=1 pμ(x)nμ

n + λ
. (17)

The correlation dynamics induced by Eq. (15) is then clear.
With probability λ/(n + λ) the next variable, independently
of the previous history, is chosen in agreement with P1(x). On
the other hand, with probabilities nμ/(n + λ), the next value
is chosen in agreement with the arbitrary density pμ(x).

It is simple to check that the transition probability density
Eq. (15), for arbitrary subdomains {�μ}Mμ=1 and densities
{pμ(x)}Mμ=1, is normalized

∫
�

dxTn({xi}|x) = 1, and positive
defined Tn({xi}|x) � 0. Nevertheless, in order to be consistent
with the similarity and interchangeability symmetries the den-
sities {pμ(x)}Mμ=1 cannot be arbitrary. In fact, these symmetries
are valid only when

pμ(x) = P1(x)
θ�μ

(x)∫
�μ

P1(x ′)dx ′ , (18)

where we defined the region indicator

θ�μ
(x) ≡

{
1 if x ∈ �μ

0 if x /∈ �μ
. (19)

These expressions follow after imposing over Eq. (15)
the validity of the hierarchical relations Eq. (7), which
lead to the conditions

∑M
μ=1 pμ(x)

∫
�μ

P1(y)dy = P1(x) and∫
�μ

pμ′(x)dx = δμμ′ . The former constraint tells us that the

set {pμ(x)}Mμ=1, under appropriate weights, recover the density
P1(x), while the last one implies that pμ(x) is not null only on
the subdomain �μ. Equation (18) satisfies both conditions.

Interestingly, from the previous solutions for {pμ(x)}Mμ=1,

Eq. (18), we can write the probability density of each variable
as

P1(x) =
M∑

μ=1

qμpμ(x), (20)

where the positive weights are

qμ ≡
∫

�μ

P1(x)dx, (21)

and fulfill
∑M

μ=1 qμ = 1. In consequence, by using Eq. (17),
the transition probability Eq. (15) becomes

Tn({xi}|x) =
M∑

μ=1

λqμ + nμ

n + λ
pμ(x). (22)

This final expression is the main result of this section.
Equation (22) can be read as an independent statistical

composition of the Pólya urn scheme, Eq. (12), and the set

062114-4



CENTRAL LIMIT THEOREM FOR A CLASS OF GLOBALLY . . . PHYSICAL REVIEW E 93, 062114 (2016)

FIG. 3. Two realizations [(a) and (b)] of the composed Pólya urn
scheme [Eq. (22)] defined by Eqs. (23) and (24). The lower panels
correspond to the transition probabilities Tn({xi}|�±) associated to
the subdomains �+ (gray line) and �− (black line), each one having
weights q+ = q− = 1/2 (see text). The parameter is λ = 2.

of probability densities {pμ(x)}Mμ=1. In fact, both expressions
are related by the replacements δ(x − xμ) ↔ pμ(x), while
the weights in the single density Eq. (11) here follows from
Eqs. (20) and (21). Hence, each subdomain �μ can be
associated to the states xμ [Eq. (11)]. Nevertheless, instead
of the value xμ, here the next variable assumes a random value
distributed over the subdomain �μ with probability density
pμ(x).

As an example, we take the uniform probability density,

P1(x) = 1

4
, − 2 � x � 2, (23)

and P1(x) = 0 if x /∈ [−2,2]. Therefore, each variable only
assumes random values over the real interval � = [−2,2].
The composed urn scheme is completely characterized after
defining the subdomains {�μ}Mμ=1. We consider only two, �+
and �−, defined as �+ = [0,2] and �− = [−2,0), respec-
tively. Notice that � = �+ ∪ �−. The associated probability
densities, from Eqs. (18) and (19), becomes

p+(x) = 1

2
, 0 � x � 2, (24a)

p−(x) = 1

2
, − 2 � x < 0. (24b)

Notice that the underlying discrete process that decides which
probability density is chosen, p+(x) or p−(x), is equivalent
to that plotted in Fig. 1. In fact, from Eq. (21) if follows
q+ = q− = 1/2.

In Fig. 3 we plot a set of realizations corresponding to
the previous definitions. In contrast to the previous figures,
here the random variables assume values over the real interval
[−2,2]. In the lower panels we plot the underlying transition
probability Tn({xi}|�j ), which governs which subdomain
(j = ±) is occupied in the next step. Consistently, its behavior
is similar to that of Fig. 1. In Fig. 3(a) the subdomain
�+ has a higher stationary probability and, consistently, the
realization take most of its values in the interval [0,2]. In
Fig. 3(b) both subdomains have similar stationary values.
Hence, the realization looks like a random signal in the full
domain [−2,2]. Additionally, by averaging over realizations
we checked that the probability density of each variable
{Xi}ni=1 is given by P1(x), Eq. (23).

IV. STATISTICS OF THE SUM VARIABLE

In the previous section (and in the Appendices) we de-
scribed different memory mechanism and statistics consistent
with the required symmetries. Here, we study departures with
respect to the standard CLT when considering such kinds of
globally correlated variables.

We consider the normalized random variable defined by the
limit

W = lim
n→∞ Wn = lim

n→∞

(
1

n

n∑
i=1

Xi

)
. (25)

Notice that in contrast with the standard CLT [1–4], instead of
1/

√
n, here the normalization is 1/n. We choose this factor

because all studied models, depending on their characteristic
parameters, are able to reach a full correlated regime where all
variables {Xi}ni=1 assume the same random value. Hence, in
that regime the normalization 1/n is the only one that delivers
a random variable (W ) that (asymptotically) does not depend
on n.

The probability density P (w) of W can be written as the
following limit, P (w) = limn→∞ P (wn),

P (w) = lim
n→∞

∫
dx1 . . . dxnδ

(
w − 1

n

n∑
i=1

xi

)
Pn({xi}),

(26)

where Pn({xi}) ≡ Pn(x1, . . . xn) is the n-joint probability
density. P (w) is denoted as the attractor associated to
the sum Eq. (25). The sequence of random variables
X1,X2, . . . Xn,Xn+1, . . . is characterized by a given correla-
tion mechanism (like urn schemes), which in turn is univocally
defined by their n-joint probability densities. Therefore, the
attractor can also be associated to a given set {Pn({xi})}∞n=1.

For (statistically) different sequences of random variables,
the normalized sum [Eq. (25)] may be characterized by the
same attractor or probability density. The basin of attraction
of P (w) corresponds to all different sets {Pn({xi})}∞n=1, which
lead to the same probability density (attractor). This definition
is formulated in the space of joint probability densities,
which can also be defined in terms of conditional objects,
Eq. (4). Notice that each set {Pn({xi})}∞n=1 is a point in the
previous space. Equivalently, the basin of attraction can be
read as the set of all different sequences of random variables
whose normalized sum, Eq. (25), is characterized by the same
attractor.

By introducing the Fourier representation of the δ Dirac
function, δ(x) = (1/2π )

∫ +∞
−∞ e−ikxdk, the characteristic func-

tion Gw(k) of P (w),

Gw(k) =
∫ +∞

−∞
dweikwP (w), (27)

can be written as Gw(k) = limn→∞ Gwn
(k), where

Gwn
(k) =

∫
dx1 . . . dxn exp

(
i
k

n

n∑
i=1

xi

)
Pn({xi}). (28)
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In terms of the the multiple Fourier transform of Pn({xi}), that
is,

Gn({ki}) =
∫

dx1 . . . dxn exp

(
i

n∑
i=1

kixi

)
Pn({xi}),

it follows

Gw(k) = lim
n→∞ Gwn

(k) = lim
n→∞ Gn

({
ki = k

n

})
. (29)

Below we treat the different cases introduced previously.
For clarifying the derivation and understanding of some
results, the well-known case of independent variables is
reviewed first.

A. Statistical independent variables

Assume the set {Xi}ni=1 are independent random vari-
ables with probability density P1(x). Therefore, Pn({xi}) =∏n

i=1 P1(xi). From Eq. (28), it follows

Gwn
(k) =

[
Gx

(
k

n

)]n

, (30)

where Gx(k) is the Fourier transform of P1(x).
Assuming that the mean value x̄ = ∫ +∞

−∞ dxxP1(x), and

standard deviation σ 2 = ∫ +∞
−∞ dx(x − x̄)2P1(x), of the den-

sity P1(x) are finite, to leading order in n, it follows
limn→∞ Gwn

(k) = eikx̄ limn→∞ exp [− 1
2

σ 2k2

n
]. After Fourier

inversion, P (w) is given by

P (w) = δ(w − x̄). (31)

Therefore, the random variable W deterministically assumes
the value x̄. This result, which can be read as the well-known
law of large numbers [1–4], follows from the normalization
1/n in Eq. (25). In fact, defining the variable

√
nW , one gets a

Gaussian probability density, which in turn corresponds to the
standard CLT. The basin or domain of attraction of the normal
distribution corresponds to all joint probability densities
{Pn({xi})}∞n=1 = {∏n

i=1 P1(xi)}∞n=1, where the arbitrary density
P1(x) has finite first and second moments. Notice that each set
{Pn({xi})}∞n=1 can be parametrized by P1(x).

Using the same Fourier techniques, we showed that
departure with respect to Eq. (31) arises from (correlated)
Gaussian variables [see Eq. (B16)] and also in the de Finetti
representation [see Eq. (C5)]. In fact, the possibility of
achieving a fully correlated regime is enough for warranting
departure from a δ distribution.

B. Pólya urn scheme

For increasing n, the transition probability of the Pólya
urn scheme converge to that of identical independent random
variables, Eqs. (13) and (14). This result was characterized
previously in the literature [26,27]. In the previous section it
was explicitly shown through numerical simulations [Figs. 1
and 2].

Given that the asymptotic values {Fμ}Mμ=1 [Eq. (14)] are
different for each realization, that is, their are random variables,
one can define their probability density D({fμ}|{λμ}), which
depends on the characteristic parameters of the problem, here

defined as

λμ ≡ λqμ. (32)

Due to the normalization of the weights {qμ}Mμ=1, it follows λ =∑M
μ=1 λμ. It is known [26,27] that D({fμ}|{λμ}) is a Dirichlet

distribution,

D({fμ}|{λμ}) ≡ �(λ)∏M
μ′=1 �(λμ′)

M∏
μ=1

f
λμ−1
μ , (33)

where �(x) is the Gamma function. D({fμ}|{λμ}) is
positive for all values of {fμ}Mμ=1, and normalized as∫
	

df1 . . . dfM−1 D({fμ}|{λμ}) = 1, where 	 is the region
defined by

∑M
μ=1 fμ = 1. In addition, the relation qν =∫

	
df1 . . . dfM−1 D({fμ}|{λμ})fν is fulfilled for all ν =

1, . . . M.

With Eq. (33) it is possible to obtain the probability density
P (w) of the sum variable W, Eq. (25). Given that asymp-
totically each realization is equivalent to that of independent
random variables, one can associate the probability density
δ(w − X̄f ) to each realization [see Eq. (31)], where X̄f =∑M

μ=1 Fμxμ. Now, the final structure of P (w) arises after
averaging over realizations. Given that the random variables
Fμ obeys the statistics given by Eq. (33), it follows

P (w) =
∫

	

df1 . . . dfM−1 δ(w − x̄f )D({fμ}|{λμ}), (34)

where x̄f is defined by

x̄f ≡
∑M

μ=1
fμxμ. (35)

From the result Eq. (34), in the limit of λ → ∞ we
consistently recover the independent random variables case,
limλ→∞ P (w) = δ(w − x̄q), where x̄q ≡ ∑M

μ=1 qμxμ. In the
limit λ → 0, which corresponds to the fully correlated case, it
follows limλ→0 P (w) = ∑M

μ=1 qμδ(w − xμ) [see Eq. (12)].
The final expression, Eq. (34), allow us to characterize the

CLT for the Pólya urn scheme. It is valid for any value of
M and arbitrary discrete distributions, Eq. (11). For example,
for classical spin variables, xμ = ±1, after integration we get
(λ± ≡ λq±)

P (w) = 1

N (1 + w)λ+−1(1 − w)λ−−1, (36)

where N ≡ 2λ++λ−−1�(λ+)�(λ−)/�(λ+ + λ−).
Equation (36) can be read as a Beta [2] or asymmetric

q-Gaussian distribution (q < 1) [19]. In the symmetric case
λ+ = λ−, this result was derived previously in the context
of a nonextensive thermodynamics approach [13] (see also
Refs. [2,25]). We notice that in the present context (correlated
random variables) no special role is played by this case (M =
2). Criticisms along this line have been introduced previously
[31].

In Fig. 4 we obtained numerically P (w) by averaging a
set of realizations such as those presented in Fig. 1. Results
for different values of λ are presented, while q+ = q− = 1/2.

Independently of the parameter values, we find that Eq. (36)
fits the numerical results.
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FIG. 4. Probability density of the sum variable W, Eq. (25). The
random contributions are classical spin variables, xμ = ±1, defined
by the transition probability Eq. (12). The full lines correspond to
the analytical expression Eq. (36), while the circles correspond to
numerical simulations with n = 300 terms and 5 × 105 realizations
(see Fig. 1). In (a) λ = 20, (b) λ = 4, (c) λ = 2, and (d) λ = 1. In all
cases, q+ = q− = 1/2.

For three-states variables with {xμ} = {+1,0, − 1}, the
parameters are {qμ} = {q+,q0,q−} and λ. They can be
parametrized as {λμ} = {λqμ} = {λ+,λ0,λ−}. By taking into
account that x̄f = f+ − f− [Eq. (35)], from Eq. (34) we get

P (w) =
{
g+[w] w > 0
g−[w] w < 0 , (37)

where each contribution is defined as

g+[w] =
∫ 1−w

2

0
df f λ−−1(1 − w − 2f )λ0−1(f + w)λ+−1,

g−[w] =
∫ 1+w

2

0
df (f − w)λ−−1(1 + w − 2f )λ0−1f λ+−1.

These integrals can be solved in terms of the hypergeometric
function 2F1[a,b,c,z] as

g+[w] = (1 − w)λ−+λ0−1wλ+−1

2λ−�−1(λ)�(λ+)�(λ0 + λ−)

2F1

[
λ−,1 − λ+,λ0 + λ−,

w − 1

2w

]
,

and similarly,

g−[w] = (1 + w)λ++λ0−1(−w)λ−−1

2λ+�−1(λ)�(λ−)�(λ0 + λ+)

2F1

[
1 − λ−,λ+,λ0 + λ+,

w + 1

2w

]
.

The hypergeometric function is defined by 2F1[a,b,c,z] =∑∞
k=0(a)k(b)k(c)kzk/k! with (x)k = ∏k−1

j=0(x + j ). Simpler
expressions can be found in the particular case λ+ = λ−1 = 1,

.

.

.

.

.
. . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

. . . . . . . . . .

.

.

.

.

.

FIG. 5. Probability density P (w) for random variables with
three discrete states, xμ = +1, 0, − 1, obtained from the transition
probability Eq. (12). The full lines correspond to the analytical
expression Eq. (37), while the circles correspond to a numerical
simulation with n = 300 terms and 5 × 105 realizations (see Fig. 2).
In (a) λ = 15, (b) λ = 3, (c) λ = 2, and (d) λ = 3/4. In all cases,
q+ = q0 = q− = 1/3.

where Eq. (37) reduces to

P (w) = 1

2
(1 + λ0)(1 − |w|)λ0, λ+ = λ−1 = 1. (38)

In Fig. 5 we show a set of plots corresponding to P (w). The
realizations, over which the probability densities are obtained,
are those shown in Fig. 2. We found that the density Eq. (37) fits
the numerical results. The case shown in Fig. 5(b) corresponds
to Eq. (38) with λ0 = 1.

C. Composed Pólya urn scheme

The previous results with the Pólya urn scheme (see also
the Appendices) demonstrate that the sum variable Eq. (25),
depending on the underlying correlation mechanism, may
adopt very different statistics. In contrast to independent
random variables, these probabilities do not have associated
a basin of attraction. Here, we show that sum of sequences
of random variables obtained from the composed Pólya urn
scheme lead to the same probability densities (attractors) as in
the standard scheme. From this result, it is possible to conclude
that attractors (probabilities densities) associated to the Pólya
urn scheme have a basin of attraction that is as wide as in the
standard CLT. This is the main result of this section.

For the composed Pólya urn scheme, the probability density
of the sum variable W [Eq. (25)] reads

P (w) =
∫

	

df1 . . . dfM−1 δ(w − x̄f )D({fμ}|{λμ}). (39)

Here, x̄f is given by

x̄f =
M∑

μ=1

fμx̄μ, x̄μ =
∫

�μ

dxxpμ(x), (40)
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while D({fμ}|{λμ}), Eq. (33), is defined with the parameters
[see Eq. (21)]

λμ = λqμ = λ

∫
�μ

P1(x)dx. (41)

This result is demonstrated below. Notice that Eq. (39) is
similar to that of the standard scheme, Eq. (34). In fact, they
can be related by the replacements xμ ↔ x̄μ [Eqs. (35) and
(40)], while here the weights {qμ}Mμ=1 are defined by Eq. (21).

The composed urn scheme is completely defined after
given P1(x) and the subdomains {�μ}Mμ=1. Taking into account
the previous three equations, we realize that different P1(x)
that lead to the same weights {qμ}Mμ=1 [Eq. (21)] and mean
values {x̄μ}Mμ=1 [Eq. (40)] lead to the same attractor P (w)
[Eq. (26)] for the normalized sum W, Eq. (25). The basin
of attraction of the probabilities density Eq. (39) correspond
to all joint probabilities densities {Pn({xi})}∞n=1 associated
to the composed scheme. From the previous comments, it
follows that these conditional objects can be parametrized by
the density P1(x). Therefore, we conclude that the basin of
attraction of the Pólya urn attractors [Eq. (39)] is as wide as in
the standard CLT (independent random variables).

For demonstrating the validity of Eq. (39) we use that
the composed Pólya urn scheme consist of two independent
random processes: the randomness introduced by the proba-
bility densities pμ(x) associated to each subdomain �μ and
the underlying Pólya urn process that select each subdomain.
Therefore, the joint probability density of the random variables
{Xi}ni=1 reads

Pn({xi}) = 〈
pμ1 (x1) . . . pμn

(xn)
〉
{μ}. (42)

Here, each index μi = 1 . . . M runs over the set of subdomains
{�μ}Mμ=1. Furthermore, 〈. . . 〉{μ} denotes and average over
the ensemble of realizations associated with the underlying
Pólya urn scheme. From Eqs. (28) and (29) we get Gw(k) =
limn→∞ G(n)

w (k), with

G(n)
w (k) =

〈
Gμ1

(
k

n

)
. . . Gμn

(
k

n

)〉
{μ}

, (43)

where Gμ(k) is the Fourier transform of pμ(x). By indexing
the realizations by the number of times nμ that each subdomain
�μ is selected, we can write

G(n)
w (k) =

〈[
G1

(
k

n

)]n1

. . .

[
GM

(
k

n

)]nM
〉
{n}

. (44)

When n → ∞ the set of occurrences also diverge, {nμ} → ∞.

Thus, maintaining the leading order in n, in that limit each
factor in the previous expression can be written as

lim
n→∞

[
Gμ

(
k

n

)]nμ

= lim
n→∞ exp

(
ikx̄μ

nμ

n

)
exp

(
−σ 2

μk2

2n

nμ

n

)
,

(45)

where x̄μ is the mean value defined in Eq. (40) while
σ 2

μ = ∫
�μ

dx(x − x̄μ)2pμ(x). Notice that Eq. (45) relies on the
validity of the law of large numbers for each density pμ(x).

In the previous expression, the argument nu/n, in the
asymptotic limit, can be associated with the random variables

Fμ, Eq. (14). Therefore, nu/n → Fμ, which from Eqs. (44)
and (45) leads to

Gw(k) =
〈

exp ik
∑

μ

Fμx̄μ

〉
{F }

. (46)

The average over the random set of weights {F } is governed
by the Dirichlet distribution Eq. (33). Therefore, after Fourier
inversion we recover Eq. (39) with Eq. (40). This finishes the
demonstration.

As an example of the previous result we take a composed
Pólya urn scheme [Eq. (22)] defined with two subdomains �±
with densities p±(x). We get [Eq. (44)]

G(n)
w (k) =

〈[
G+

(
k

n

)]n+[
G−

(
k

n

)]n−
〉

{n}
, (47)

where n± are the number of times that each subdomain �± was
chosen, and G±(k) = ∫ +∞

−∞ dweikwp±(w). Using that n+ +
n− = n, it follows

G(n)
w (k) =

n∑
n+=0

Pn(n+)

[
G+

(
k

n

)]n+[
G−

(
k

n

)]n−n+
, (48)

where Pn(n+) is the probability of the random variable n+.

This object, after some algebra and by using the properties
of Gamma functions, can be obtained from Eqs. (4) and
(12). Alternatively, it can be obtained directly from de Finetti
representation theorem [see. Eq. (C12)]. It reads

Pn(n+) = 1

Nn

(
n

n+

)
�(n+ + λ+)

�(λ+)

�(n − n+ + λ−)

�(λ−)
, (49)

where Nn = �(n + λ)/�(λ), and λ± = λq± [Eq. (21)].
The previous two expressions give an exact analytical

expression for G(n)
w (k). For the example defined by Eq. (23),

the random variables have a uniform probability density for
X ∈ [−2,2]. The probabilities of each subdomain are defined
by Eq. (24). Their Fourier transform reads

G±(k) = [sin(k)/k]e±ik. (50)

In order to check these results, in Fig. 6 we show a set of prob-
ability distributions obtained by averaging the realizations of
the composed scheme (Fig. 3). For each n = 1, 2, 10, 300, the
numerical results follows after averaging 5 × 105 realizations.
For n = 1 it is recovered Eq. (23). For higher n we find that the
(numerical) inverse Fourier transform of Eq. (48) evaluated
with Eq. (50) fits very well the numerical results (circles).
Consistently with the previous analysis, at n = 300 the density
P (wn) is almost indistinguishable from the corresponding
attractor, that is, P (wn) in Fig. 6(d) is very well fitted by the
density P (w) corresponding to the standard scheme, Eq. (36),
which in turn is plotted in Fig. 4(b). This follows because
the average values {x̄μ} [Eq. (40)] are x̄± = ±1 and also the
weights {qμ} [Eq. (21)] are q± = 1/2, which correspond to
the parameters of Fig. 4. We also checked that for all values of
λ the attractors correspond to those shown in that figure.

For arbitrary distributions P1(x) the sum variable, associ-
ated to the composed urn scheme with two subdomains, is
characterized by the attractor Eq. (36). In general, the random
variables can assume values over the entire real line. For
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FIG. 6. Probability density P (wn) of the variable Wn =
(1/n)

∑n

i=1 Xi, where each random variable Xi follows from the
composed Pólya urn scheme defined by Eqs. (22) and (23), with
λ = 4. The weights [Eq. (21)] are q+ = q− = 1/2. The solid line
follows from the inverse Fourier transform of Eq. (48) defined with
Eq. (50). The circles correspond to numerical results obtained by
averaging 5 × 105 realizations. In (a) n = 1, (b) n = 2, (c) n = 10,

and (d) n = 300.

example, we take

P1(x) = (1/2) exp(−|x|), (51)

with subdomains �± = x ≷ 0. Then, the Fourier transforms
of p±(x) = exp(∓x) read

G±(k) = 1

1 ∓ ik
. (52)

In Fig. 7 we show a set of probability distributions for the
sum variable for this alternative single statistics. As in the
previous case, the analytical expressions in the Fourier domain
fit the numerical results. Notice that even when the single
variables assume values over the real line, their normalized
sum is characterized by an (probability density) attractor that
is not null only in the interval (−1,1) [see Fig. 4(d)]. This
property is induced by the global correlation effects.

For an urn model with three states, similar results can
be obtained. For example, by maintaining P1(x) given by
Eq. (23), taking the subdomains �+ = (1/3,5/3),�− =
(−5/3, − 1/3), and �0 = (−2, − 5/3) ∪ (5/3,2), leads to
the attractors shown in Fig. 5. A model with exponential
distributed variables can also be written.

V. SUMMARY AND CONCLUSIONS

Beyond statistically independent variables, there exist
very few generalizations of the CLT. Here, we studied this
problem for globally correlated random variables that are
similar and interchangeable. In order to characterize these
symmetries we derived a hierarchical set of equations that
the transition probability densities must to satisfy, Eq. (7).
These integral equations provide a tool for constructing
correlation mechanisms that satisfy the required properties.

FIG. 7. Probability density P (wn) of the variable Wn =
(1/n)

∑n

i=1 Xi, where each random variable Xi follows from the
composed Pólya urn scheme defined by Eqs. (22) and (51), with
λ = 1. The weights [Eq. (21)] are q+ = q− = 1/2. The solid line
follows from the inverse Fourier transform of Eq. (48) defined with
Eq. (52). The circles correspond to numerical results obtained by
averaging 5 × 105 realizations. In (a) n = 1, (b) n = 2, (c) n = 10,

and (d) n = 300.

Different correlation mechanisms lead to transitions prob-
ability densities that fulfill the demanded symmetries, such as
globally correlated Gaussian variables, de Finetti representa-
tion (see Appendices), and urn schemes. In this last context,
we introduced a generalization of Pólya urn scheme, where the
values assumed by the random variables are split in different
subdomains over the real line, each one being endowed with
a probability density. Each subdomain is chosen in agreement
with the standard Pólya urn scheme, while the associated
probability density delivers the next random value (Fig. 3).
The transition probability of this composed scheme, Eq. (22),
fulfills the required symmetries.

The sum variable that defines the CLT, Eq. (25), here is
defined with a different normalization because the studied
random variables may achieve a fully correlated regime.
Thus, the case of independent variables leads to a delta
Dirac distribution, a fact related to the validity of the law
of large numbers. In general, global correlations consistent
with the demanded symmetries lead to very different statistics
of the sum variable. The Pólya urn scheme, depending on
its number of states and characteristic parameters, delivers
different probability densities, Eq. (34) (see Figs. 4 and 5).
For the particular case of two states, the attractor is defined
by an asymmetric q-Gaussian density (q < 1), Eq. (36). More
complex expressions arise for more states.

Given the diversity of possible attractors, a very difficult
task is to characterize their basin of attraction. We solved this
problem in a constructive way. We demonstrated that the sum
of random variables generated via the composed Pólya urn
scheme leads to the same attractors as in the standard scheme
(see Figs. 6 and 7). Therefore, their basin of attraction, in
the space of joint probability densities, can be parametrized
by the probability density of each random variable. In fact,
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there exist infinite single probability distributions that with a
specific splitting of their domain lead to the same attractor
[see Eqs. (20) and (21)]. In contrast with the standard CLT,
here the mechanism that guarantees this result is the validity
of the law of large numbers for the probability density of each
subdomain as well as the convergence to stationary values of
the transition probability of the standard Pólya urn scheme.

The basin of attraction of the Pólya urn attractors can
be extended after raising up the interchangeability symmetry
[Eq. (18)] in the composed scheme. In addition, the same
attractors arise, for example, by introducing correlations be-
tween the random variables in such a way that the law of large
numbers remains valid in each subdomain. The present results
also lead us to ask about physical systems characterized by dy-
namical correlations able to induce attractors that take values
on a subdomain of the underlying random process (variables).

In conclusion, we developed a consistent approach for deal-
ing with globally correlated similar interchangeable random
variables, which in turn allowed us to characterize different
attractors of the CLT as well as their basin of attraction.
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APPENDIX A: INTERCHANGEABILITY CONDITION
FOR THE CONDITIONAL PROBABILITIES

Here, we derive the hierarchical set of conditions
defined by Eq. (7). Assuming that interchangeability is
valid for Pn(x1, . . . xn), we determine the conditions under
which Pn+1(x1, . . . xn+1) also fulfill the symmetry. These
functions are related as Pn+1(x1, . . . xn+1) = Pn(x1, . . . xn)
Tn(x1, . . . xn|xn+1). Therefore, Tn(x1, . . . xn|xn+1) must also be
symmetric in the x1, . . . xn arguments. The interchangeability
for Pn+1(x1, . . . xn+1) is valid when xn+1 can be interchanged
with an arbitrary xk, with k = 1, . . . n. Written in an explicit
way, this requirement reads

Pn+1(x1, . . . ,xk, . . . xn+1) = Pn+1(x1, . . . ,xn+1, . . . xk).
(A1)

By using Bayes rule, these objects can be written as

Pn+1(x1, . . . ,xk, . . . xn+1) = Pk−1(x1 . . . xk−1)

× Tk−1(x1 . . . xk−1|xk)

× Tk(x1, . . . xk|xk+1)

× Tk+1(x1, . . . ,xk,xk+1|xk+2)

· · · × Tn−1(x1, . . . xn−1|xn)

Tn(x1, . . . xn|xn+1),

and also

Pn+1(x1, . . . ,xn+1, . . . xk) = Pk−1(x1 . . . xk−1)

× Tk−1(x1 . . . xk−1|xn+1)

×Tk(x1, . . . ,xk−1,xn+1|xk+1)

×Tk+1(x1, . . . ,xk−1,xn+1,xk+1|xk+2)

· · · × Tn−1(x1, . . . ,xk−1,xn+1,xk+1 . . . xn−1|xn)

×Tn(x1, . . . ,xk−1,xn+1,xk+1 . . . xn|xk),

where now k = 2, . . . n. Performing the integrals∫
dxkdxk+1 . . . dxn to both objects, using the normalization

condition
∫

dxjTi(x1, . . . xi |xj ) = 1, and simplifying the
factor Pk−1(x1 . . . xk−1), from Eq. (A1) it follows the condition

Tk−1(x1 . . . xk−1|xn+1)

=
∫

dxk . . . dxnTk−1(x1 . . . xk−1|xk)

× Tk(x1, . . . xk|xk+1)Tk+1(x1, . . . ,xk,xk+1|xk+2)

· · · × Tn−1(x1, . . . xn−1|xn)Tn(x1, . . . xn|xn+1). (A2)

For k = n, this equation reduces to

Tn−1(x1 . . . xn−1|xn+1)

=
∫

dxnTn−1(x1 . . . xn−1|xn)Tn(x1, . . . xn|xn+1). (A3)

For k = n − 1, after using the validity of Eq. (A3), Eq. (A2)
leads to

Tn−2(x1 . . . xn−2|xn+1)

=
∫

dxn−1Tn−2(x1 . . . xn−2|xn−1)Tn−1(x1, . . . xn−1|xn+1).

Notice that this equation has the same structure as Eq. (A3).
Hence, it is simple to realize that Eq. (A2) is satisfied if

Tn−j (x1 . . . xn−j |xn+1)

=
∫

dxn−j+1Tn−j (x1 . . . xn−j |xn−j+1)

×Tn−j+1(x1, . . . xn−j+1|xn+1).

where j = 1, . . . n − (k − 1). This last equation, after a
straightforward change of indexes, recovers Eq. (7).

APPENDIX B: ADDITIVE MEMORY CASE

The symmetry of the transition probability
Tn(x1 . . . xn|xn+1) on the previous conditional values
x1 . . . xn is trivially fulfilled by assuming that it depends on
the addition of these values. Then, we write

Tn(x1 . . . xn|xn+1) = Tn(x1 + x2 · · · + xn|xn+1), (B1)

where Tn(x ′|x) is a set of equivalent functions that only
depends on two arguments. For random variables {Xi}ni=1 with
a finite domain, X ∈ [x<,x>], the variable x ′ in Tn(x ′|x) runs
in the interval [nx<,nx>].

From Eq. (7), it follows that the functions Tn(x ′|x) must to
satisfy the recursive relations

Tn−1(x ′|x) =
∫

dyTn−1(x ′|y)Tn(x ′ + y|x). (B2)

Below we show that the additive assumption allows us to find
a complete solution of the hierarchy Eq. (7) after assuming
different statistics for each single variable.

1. Gaussian random variables

For the single statistics of each random variable, let us
assume a Gaussian distribution

P1(x) = 1√
2πσ 2

exp

[
− x2

2σ 2

]
, (B3)
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which satisfies
∫

dxP1(x) = 1. The width σ 2 is a free parame-
ter. Given that T1(x ′|x) = T1(x ′|x), in order to fulfill Eq. (5) we
assume thatT1(x ′|x) is a Gaussian distribution in both variables
x ′ and x. Hence, T1(x ′|x) ≈ exp[−( x2

2ρ2 + x ′2
2μ2 + xx ′

ν
)]. The

undetermined free parameters (ρ,μ, ν) are constrained by the
normalization condition

∫
dxT1(x ′|x) = 1 and Eq. (5). After

imposing these constraints, we obtain

T1(x ′|x) = 1√
2πρ2

exp

[
− 1

2ρ2
(x − λx ′)2

]
, (B4)

where the real parameter λ is

λ ≡
√

1 − ρ2

σ 2
. (B5)

ρ remains as a free parameter and satisfies ρ2 � σ 2. Notice
that when λ = 0, that is ρ = σ, we get independent variables,
T1(x ′|x) = P1(x). On the other hand, for λ = 1,ρ → 0, it
follows T1(x ′|x) = δ(x − x ′). This is the maximal correlated
case, where x = x ′. Hence, after the first random value, the
next one is equal to the previous one.

Higher transition probabilities can be obtained from
Eq. (B2) and the solution Eq. (B4). Proposing a Gaussian
structure for higher objects, we get

Tn(x ′|x) = 1√
2πρ2

n

exp

[
− 1

2ρ2
n

(x − λnx
′)2

]
, (B6)

where the coefficients satisfy the recursive relations

λn = λn−1

1 + λn−1
, ρ2

n =
[

1 −
(

λn−1

1 + λn−1

)2
]
ρ2

n−1 (B7)

(n � 2), with λ1 ≡ λ and ρ1 ≡ ρ. Their solution is

λn = λ

1 + (n − 1)λ
, ρ2

n =
[

1 + (n − 1)λ2

1 + nλ

]−1

ρ2. (B8)

The joint probability density Pn(x1, . . . xn) can be obtained
from the set of transition probabilities [Eq. (4)]. For example,
the joint probability P2(x1,x2), from Eqs. (B3) and (B4), reads

P2(x1,x2) = 1

2π
√

σ 2ρ2
exp

[
− 1

2ρ2

(
x2

1 + x2
2 − 2λx1x2

)]
,

(B9)
which consistently is symmetric in x1 and x2. For arbitrary
n � 2, we get

Pn(x1, . . . xn) =
√

det[A(n)]

(2π )n
exp

⎡
⎣−1

2

n∑
i,j=1

xiA
(n)
ij xj

⎤
⎦,

(B10)
where the matrix elements are

A
(n)
ii = 1

ρ2
n−1

, A
(n)
ij = −λn−1

ρ2
n−1

, i �= j. (B11)

Here, ρn and λn are defined by Eq. (B8). The determinant of
the matrix A

(n)
ij reads

det[A(n)] =
{

[1 + (n − 1)λ]σ 2

(
ρ2

1 + λ

)n−1}−1

. (B12)

The validity of Eq. (B10) can be probed by using the
mathematical principle of induction and the recursive relations
Eq. (B7).

We remark that Eq. (B10) was derived over the basis
of the conditional probabilities densities Eq. (B6), which in
turn are a solution of the hierarchy Eq. (B2) after assuming
the Gaussian statistics defined by Eq. (B3). Clearly, due
to the symmetry of the covariance matrix Eq. (B11), the
multidimensional Gaussian density Eq. (B10) is compatible
with the interchangeability symmetry.

Now we obtain the probability density of W [Eq. (25)] for
a set of random variables {Xi}ni=1 correlated in agreement with
the Gaussian distribution Eq. (B10), which in turn is related
to the transition probability Eq. (B6). The (multiple) Fourier
transform of Eq. (B10) reads

Gk(k1, . . . kk) = exp

⎡
⎣−1

2

k∑
i,j=1

ki(1/A(k))ij kj

⎤
⎦, (B13)

where (1/A(k)) is the matrix inverse of A(k) [Eq. (B11)]. It can
be written as

(1/A(k))ii = σ 2, (1/A(k))ij = σ 2λ, i �= j, (B14)

where λ = (1 − ρ2/σ 2)1/2 [Eq. (B5)]. Hence, from Eqs. (28)
and (B13), we get

Gwn
(k) = exp

{
− 1

2
σ 2λk2

[
1 + 1

n
(λ−1 − 1)

]}
. (B15)

After taking the limit n → ∞, it follows

P (w) =
√

1

2πσ 2λ
exp

[
−1

2

w2

σ 2λ

]
. (B16)

Contrarily to the case of independent variables, here the
probability density of W is not a delta Dirac distribution,
Eq. (31). This departure has its origin in the correlations
between the random variables, which are tuned by the
parameter λ. In fact, in the limit λ → 0 we recover Eq. (31)
with x̄ = 0, that is, independent variables. On the other hand,
for maximally correlated variables, λ → 1, we recover the
Gaussian distribution P1(x) [Eq. (B3)]. This result, which gives
the maximal departure with respect to independent variables,
follows after noting that all random variables assume the same
value [see the transition probabilities Eqs. (B4) and (B6)].

2. Linear additive memory case

Here, we search another class of solution that in addition
assumes that the transition probabilities Tn(x ′|x) depend
linearly on the argument x ′. In the following results, the
structure of P1(x) is arbitrary.

Given P1(x), and given the linear dependence of T1(x ′|x)
on x ′, the relation defined by Eq. (5) becomes

T1(〈X〉|x) = P1(x), 〈X〉 ≡
∫

dxP1(x)x. (B17)

Given P1(x), any transition probability density T1(x ′|x) satis-
fying this equation is a valid one. Assuming that all transition
probability densities depend linearly on x ′, the conditions
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Eq. (B2) can be written as

Tn(x ′ + 〈X〉n−1,x ′ |x) = Tn−1(x ′|x), (B18)

where the conditional average 〈X〉n−1,x ′ is defined as

〈X〉n−1,x ′ ≡
∫

dxTn−1(x ′|x)x. (B19)

By evaluating the previous two expressions in x ′ = 〈X〉, the
relation

Tn(n〈X〉|x) = P1(x) (B20)

follows, which generalizes that defined by Eq. (B17).
From Eq. (B19), we realize that 〈X〉n−1,x ′ is also a linear

function of x ′. In particular, it is possible to write

〈X〉1,x ′ =
∫

dxT1(x ′|x)x = ax ′ + b. (B21)

This equation defines the constants a and b, the former
being a dimensionless one, while the last one has units of x.

Multiplying the previous expression by P1(x ′) and integrating
in x ′, the relation 〈X〉 = b/(1 − a) follows.

From Eq. (B21), the solution of Eq. (B18) for n = 2 is
T2(x ′(1 + a) + b|x) = T1(x ′|x), which can be rewritten as

T2(x ′|x) = T1

(
x ′ − b

1 + a

∣∣∣x). (B22)

In a similar form, an explicit expression for T3(x ′|x) can be
obtained. For arbitrary n, as a solution of Eq. (B18) we propose
the expression

Tn(x ′|x) = T1

(
x ′ − (n − 1)b

1 + (n − 1)a

∣∣∣x). (B23)

The validity of this result can be proven from Eq. (B18) by
using the mathematical principle of induction.

Discrete distributions with finite domain

The set of functions defined by Eq. (B23) give a full solution
to the hierarchical structure Eq. (B2). Nevertheless, it is not
guaranteed that they are are positive functions. In order to
check this issue, we consider discrete random variables defined
by

P1(x) =
M∑

μ=1

qμδ(x − xμ), (B24)

where the positive weights satisfy
∑M

μ=1 qμ = 1.

The mean value, 〈X〉 = ∫
dxP1(x)x, reads 〈X〉 =∑M

μ=1 qμxμ. The first conditional density, given its linear
dependence on x ′, is written as

T1(x ′|x) = 1

N

M∑
μ=1

(αμ + βμx ′)δ(x − xμ), (B25)

where (αμ,βμ) and N are arbitrary parameters. Using the
normalization condition

∫
dxT1(x ′|x) = 1, it follows N =∑M

μ=1 αμ, and

M∑
μ=1

βμ = 0. (B26)

The condition T1(〈X〉|x) = P1(x), leads to 1
N (αμ + βμ〈X〉) =

qμ. Under the association (βμ/N ) → βμ, we get

T1(x ′|x) =
M∑

μ=1

[qμ + βμ(x ′ − 〈X〉)]δ(x − xμ). (B27)

The first conditional average reads∫
dxT1(x ′|x)x = ζx ′ + 〈X〉(1 − ζ ) = ax ′ + b, (B28)

where the constant ζ is

ζ ≡
M∑

μ=1

xμβμ. (B29)

From Eq. (B23), higher objects read

Tn(x ′|x) =
M∑

μ=1

[
qμ + βμ

x ′ − n〈X〉
1 + (n − 1)ζ

]
δ(x − xμ). (B30)

We remark that this set of equations provides a solution
to the full hierarchy of conditional probabilities under the
interchangeability symmetry. Nevertheless, the positivity of
these objects must be checked.

The constants βμ should be chosen such that the positivity
of Tn(x ′|x) is guaranteed for all n and x ′ ∈ (nx<,nx>), where
x< and x> define, respectively, the minimal and maximal
values of the set {xμ}Mμ=1. Hence, for n = 1, it follows that

qμ + βμ(x − 〈X〉) � 0, (B31)

while in the limit n → ∞, we get

qμ + βμ(x − 〈X〉)∑M
ν=1 xνβν

� 0. (B32)

In both inequalities, x assumes values over the set {xu}. In the
case of two states, M = 2, from these inequalities we obtain
β � |x2 − x1|−1, where β1 = −β2 = β, and {xμ} = {x1,x2}.
Hence, positivity can always be guaranteed in this case.

In general, for M � 3, there is not a solution for the set {βμ}
that guarantees the validity of the previous two inequalities. In
fact, from Eq. (B32), we deduce that

|βμ(x − 〈X〉)| � qμ

∣∣∣∣∣
M∑

ν=1

xνβν

∣∣∣∣∣. (B33)

Taking x → xμ, and adding in the μ index,
∑M

μ=1 , it follows
that

M∑
ν=1

|βμxμ| �
∣∣∣∣∣

M∑
ν=1

xμβμ

∣∣∣∣∣. (B34)

Hence, we deduce that xμβμ > 0, and then
∑M

μ=1 xμβμ > 0.

Therefore, Eqs. (B31) and (B32) are equivalents, in the sense
that one of them always implies the other. Taking one of them
and the previous one, it follows M(M − 1) − 1 equations,
while the number of variables is M − 1. Thus, a consistent
solution (positive transition probabilities) is only available
when M = 2.

For classical spin variables xμ = ±1, parametrizing β =
(1/2)(1 + λ)−1 � |x+ − x−|−1 = 1/2, from Eq. (B30) we get
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(λ± = λq±)

Tn(x ′|x) =
(

λ+ + n+x ′
2

n + λ

)
δ(x − 1) +

(
λ− + n−x ′

2

n + λ

)
δ(x + 1).

(B35)

This expression gives a positive solution consistent with the
required symmetries. Nevertheless, it is simple to realize
that the quantities n+x ′

2 and n−x ′
2 give the number of times

n+ and n− that the previous variables assumed the values
±1, respectively. Therefore, Eq. (B35) recovers the transition
probability corresponding to the Pólya urn scheme, Eq. (12).

APPENDIX C: de FINETTI REPRESENTATION

de Finetti [20] introduced the concept of interchangeability
and also defined a general representation structure for the joint
probability density of a set of dichotomic interchangeable
variables. The de Finetti representation can be generalized
for arbitrary (nondichotomic) random variables. Given a set
of interchangeable random variables {Xi}ni=1, their n-joint
probability density is expressed as

Pn(x1, . . . ,xn) =
∫

�y

dyp(y)
n∏

i=1

p(y|xi). (C1)

Here, p(y) is the probability density of an extra random vari-
able Y, which assumes values in the domain �y. Furthermore,
p(y|xi) is a transition probability: it gives the probability
density of Xi given the value y of the random variable Y.

The structure given by Eq. (C1) allows us to read the
realizations of the correlated set {Xi}ni=1 as an average
over realizations of a set of identical random variables
with the joint probability density

∏n
i=1 p(y|xi). A similar

interpretation can be obtained for the transition density
Tn(x1, . . . xn|xn+1). In fact, by using that Tn(x1, . . . xn|xn+1) =
Pn+1(x1, . . . ,xn+1)/Pn(x1, . . . ,xn), it can be written as

Tn(x1, . . . xn|xn+1) =
∫

�y

dypn({xi}|y) p(y|xn+1), (C2)

where p(y|xn+1) was introduced previously while pn({xi}|y)
is

pn({xi}|y) =
∏n

i=1 p(y|xi)∫
�y

dy ′p(y ′)
∏n

j=1 p(y ′|xj )
p(y). (C3)

Therefore, Tn(x1, . . . xn|xn+1) is set by p(y|xn+1), where now
the probability density pn({xi}|y) of the random variable Y

[see Eq. (C2)] depends on all previous values {Xi}ni=1. Hence,
pn(x ′|y) can be read as the conditional probability density of
the random variable Y “given” the previous history defined by
the set of values {xi}ni=1. Moreover, it is simple to check that
Eq. (C2) satisfies the hierarchical equations defined by Eq. (7).

The sum variable Eq. (25) can be straightforwardly charac-
terized from Eqs. (C1) and (28). We get

Gwn
(k) =

∫
�y

dyp(y)[G(y|k/n)]n, (C4)

where G(y|k) ≡ ∫ +∞
−∞ dxeikxp(y|x). In the asymptotic limit,

Eq. (29), assuming valid the law of large numbers for the

transition p(y|x), from Eqs. (30) and (31) it follows that

P (w) =
∫

�y

dyp(y)δ(w − x̄y), (C5)

where the mean value x̄y is a function of y,

x̄y ≡
∫

dxp(y|x)x. (C6)

In the case of dichotomic variables, Xi = 0,1, with transi-
tion probability p(y|xi) = yxi (1 − y)1−xi , the joint probability
Pn(x1, . . . ,xn), from Eq. (C1), becomes

Pn(x1, . . . ,xn) =
∫ 1

0
dyp(y)

n∏
i=1

yxi (1 − y)1−xi . (C7)

Noting that the dependence of the probability Pn(x1, . . . ,xn)
on the set {xi}ni=1 can be written in terms of the variable x ′ ≡∑n

i=1 xi [Eq. (C7)], from Eq. (C2) it follows the presentation

Tn(x ′|x) =
∫ 1

0
dypn(x ′|y) yx(1 − y)1−x, (C8)

where

pn(x ′|y) = yx ′
(1 − y)n−x ′∫ 1

0 dỹp(ỹ) ỹx ′ (1 − ỹ)n−x ′ p(y). (C9)

Equation (C8) provides a representation for the transition
probability Tn(x ′|x) similar to that defined by Eq. (C7).

Given that Eq. (C6) leads to x̄y = y, from Eq. (C5) it
follows that P (w) = p(y)|y=w. Hence, any attractor can be
obtained by choosing an arbitrary density p(y).

If one chooses a Beta distribution,

p(y) = �(α + α′)
�(α)�(α′)

yα−1(1 − y)α
′−1, (C10)

where α > 1 and α′ > 1 are real parameters, from
Eqs. (C7) it is possible to obtain the joint probability
densities. In particular, P1(x) can be written as P1(x) =
[α′δ(x) + αδ(x − 1)]/(α + α′). Additionally, by rewriting
Eq. (C8) as Tn(x ′|x) = δ(x)

∫ 1
0 dypn(x ′|y)(1 − y) + δ(x −

1)
∫ 1

0 dypn(x ′|y)y, the transition probability density explicitly
reads

Tn(x ′|x) = (n − x ′ + α′)δ(x) + (x ′ + α)δ(x − 1)

n + α + α′ . (C11)

In deriving this expression we used the dichotomic property
of the random variables.

By introducing the parameter λ = α + α′, the weights
q0 = α′/(α + α′), q1 = α/(α + α′), and the numbers n0 =
n − x ′, n1 = x ′, the transition probability Eq. (C11) can be
written as a particular case of the Pólya urn scheme [see
Eq. (12)]. In fact, n0 and n1 are the number of times that
the random variables assumed the values 0 and 1, respectively.

The probability of the variable X′ ≡ ∑n
i=1 Xi, from

Eqs. (C7) and (C10), reads

P (x ′) =
(

n

x ′

)
�(α + α′)

�(n + α + α′)
�(n − x ′ + α′)

�(α′)
�(x ′ + α)

�(α)
,

(C12)

where �(x) is the Gamma function. The factor
(

n

x ′
)

follows
from all configurations that lead to the same value of x ′.
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