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Density functional formulation of the random-phase approximation for inhomogeneous fluids:
Application to the Gaussian core and Coulomb particles
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Using the adiabatic connection, we formulate the free energy in terms of the correlation function of a fictitious
system, hλ(r,r′), in which interactions λu(r,r′) are gradually switched on as λ changes from 0 to 1. The function
hλ(r,r′) is then obtained from the inhomogeneous Ornstein-Zernike equation and the two equations constitute a
general liquid-state framework for treating inhomogeneous fluids. The two equations do not yet constitute a closed
set. In the present work we use the closure cλ(r,r′) ≈ −λβu(r,r′), known as the random-phase approximation
(RPA). We demonstrate that the RPA is identical with the variational Gaussian approximation derived within the
field-theoretical framework, originally derived and used for charged particles. We apply our generalized RPA
approximation to the Gaussian core model and Coulomb charges.

DOI: 10.1103/PhysRevE.93.062112

I. INTRODUCTION

Pair interactions of hard-sphere fluids derive from the
excluded volume effects: Non-overlapping configurations
recover an ideal-gas behavior, but the exclusion of overlapping
configurations reduces available phase space, leading at high
density to phase transition. In this sense, the hard-sphere fluids
constitute a geometric problem. Within various successful
(nonlocal) density-functional theories (DFT), a free-energy
functional for hard-sphere fluids is built from a weighted rather
than local density—nonlocality is attained by construction [1].
In early prescriptions, a weighted density corresponded to a
convoluted local density, where the single convoluting function
was the Mayer f function. The resulting theories and their
refinements and extensions came to be known as the weighted
DFT theories. A crucial next development was to decompose
a Mayer f function into several weight functions, yielding
multiple weighted densities and, by the same token, multiple
building blocks from which an approximate Fex was to be
constructed [2–6]. Referred to as the fundamental measure
(FM) DFT, a nice feature of this approach is the capture of a
correct dimensional crossover: Each consecutive reduction of
the system dimensionality, 3D → 2D → 1D → 0D, recovers
either an accurate or exact Fex.

The success of the hard-sphere DFT theories (and the lack
of equivalent theories for arbitrary pair interactions) prompted
attempts to implement the hard-sphere framework to other
types of short-range interactions. It became something of a
standard method to map particles with arbitrary short-range
interactions onto a hard-sphere fluid by ascribing to a pair
potential of interest an effective diameter. Density profiles are
then obtained from a (hard-sphere) DFT theory of choice.
The Barker-Henderson effective diameter is one recipe among
others for extracting an effective diameter [7].

A more sophisticated example is the “soft” fundamental
measure DFT, developed for penetrable spheres (spheres may
overlap but at an energy cost). Within this method Fex is
constructed to satisfy a correct dimensional crossover [8–12].

But for particles with arbitrary pair interactions, where
excluded volume effects are not dominant, the mean-field
approximation is still a preferred theoretical tool [13–17].
An important example are charged particles with long-range
interactions. Another example are penetrable particles with
bounded (nondivergent) interactions, such as the Gaussian core
model or the already-mentioned penetrable spheres. But the
correlations neglected by the mean-field description are not
always trivial. This is particularly true of Coulomb systems.
In such a case the “beyond-mean-field” approach is desirable.
Splitting the excess free energy into the mean-field and corre-
lation contribution, Fex[ρ] = 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)u(r,r′) +

Fc[ρ], where ρ(r) is a number density and u(r,r′) is an arbitrary
pair interaction, the “beyond-mean-field” approach amounts to
finding an appropriate functional Fc[ρ].

The “beyond-mean-field” approximations for Coulomb
systems are dominantly formulated within the field-theoretical
framework based on mathematical transformation of a parti-
tion function, using a Gaussian integral identity [18], into a
functional integral over an auxiliary fluctuating field [18–26].
The saddle point of the effective Hamiltonian recovers the
mean-field solution, while the harmonic fluctuations around
the saddle point account for weak (Gaussian) correlations. If
formulated variationally, the Gaussian approximation become
self-consistent (nonperturbative) and is deemed superior to the
perturbative formulation [18,23,24]. The primary drawback
of the field-theoretical formulation is its unintuitiveness by
adapting an auxiliary phase space.

In this work we lay out a general density functional
framework of inhomogeneous fluids. We then specifically
use the random-phase approximation closure (RPA). It turns
out that the Gaussian approximation is equivalent to the
well-established random phase approximation (RPA) [27], a
mathematical signature of which is its being composed of an
infinite summation of ring diagrams [28]. In hindsight, this
is not so entirely surprising to find the connection between
the harmonic fluctuations of an auxiliary field around the
saddle point and the density functional formulation of the
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RPA. To our knowledge, this connection, so far, has not been
formally established. The liquid-state formulation of the RPA
of this work is general and in principle applicable to any
pair interactions, not just Coulomb particles. In this sense we
generalize the RPA not just to inhomogeneous fluids but to all
particles.

In Sec. II we formulate the free energy within the liquid-
state formalism using the adiabatic connection. By coupling it
to the OZ equation, we set up a general theoretical framework
for inhomogeneous fluids. In Sec. III, using specifically
the RPA closure, we derive the appropriate self-consistent
equations. In Sec. IV we generalize the equations to multiple
species. Finally, in Secs. V, VII, and VIII we test the RPA
approximation on concrete systems with wall geometry.

II. ADIABATIC CONNECTION FORMULATION OF THE
FREE ENERGY

Given a general Hamiltonian for a system of interacting
particles,

H =
N∑

i=1

U(ri) + 1

2

N∑
i �=j

u(ri ,rj ), (1)

where U (r) is an external potential, u(r,r′) is a pair interaction,
and N is the number of particles, our aim is to obtain
a free-energy expression in terms of physically meaningul
quantities. To this end, we use the adiabatic connection
route [29,30], wherein interactions are gradually switched on
within a fictitious λ-dependent system,

Hλ =
N∑

i=1

Uλ(ri) + λ

2

N∑
i �=j

u(ri ,rj ), (2)

where the λ-dependent external potential Uλ(r) is introduced
to keep a density fixed at its physical value for all λ, and the
value λ = 1 recovers the physical potential, Uλ=1(r) = U (r).

The partition function and the free energy of a fictitious
system are

Zλ =
∫

dr1 . . .

∫
drN e−βHλ (3)

and

βFλ = − log Zλ, (4)

respectively. The free energy of a physical system can be
expressed in terms of a fictitious system, as a thermodynamic
integration,

F = F0 +
∫ 1

0
dλ

∂Fλ

∂λ
, (5)

where the reference free energy is

F0[ρ] = Fid[ρ] +
∫

dr ρ(r)Uλ=0(r), (6)

and

Fid[ρ] = kBT

∫
dr ρ(r)[log ρ(r)�3 − 1] (7)

is an ideal-gas free energy. The integrand in Eq. (5) can be
written as

∂Fλ

∂λ
=

∫
dr ρ(r)

∂Uλ(r)

∂λ
+ 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)u(r,r′)

+1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)hλ(r,r′)u(r,r′) (8)

and Eq. (5) becomes

F [ρ] = Fid[ρ] +
∫

dr ρ(r)Uλ=0(r)

+
∫ 1

0
dλ

∫
dr ρ(r)

∂Uλ(r)

∂λ

+1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)u(r,r′)

+1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)u(r,r′)

∫ 1

0
dλ hλ(r,r′). (9)

After a number of cancelations we arrive at the final form,

F [ρ] = Fid[ρ] +
∫

dr ρ(r)U (r)

+1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)u(r,r′)

+1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)u(r,r′)

∫ 1

0
dλ hλ(r,r′).

(10)

[A similar expression has been derived in Ref. [31] in
Eq. (3.4.10).] Note that the final expression does not depend
on the fictitious potential Uλ. The only quantity that depends
on λ is a correlation function hλ(r,r′). The first three terms of
Eq. (10) constitute the mean-field approximation,

Fmf = Fid +
∫

dr ρ(r)U (r) + 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)u(r,r′),

(11)
and the last term is the correlation free energy,

Fc = 1

2

∫ 1

0
dλ

∫
dr ρ(r)

[ ∫
dr′ ρ(r′)hλ(r,r′)u(r,r′)

]
. (12)

Not surprisingly, Fc depends on the correlation function
hλ(r,r′) that is obtained from the Ornstein-Zernike equation
(OZ),

hλ(r,r′) = cλ(r,r′) +
∫

dr′′ ρ(r′′)hλ(r′,r′′)cλ(r,r′′), (13)

a standard relation within the liquid-state theory that expresses
the correlation function in terms of the direct correlation func-
tion cλ(r,r′). The introduction of cλ(r,r′) requires additional
closure to complete an approximation.

III. RANDOM-PHASE APPROXIMATION

We consider the simplest closure available,

cλ(r,r′) = −βλu(r,r′), (14)
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known as the RPA. The closure modifies the exact Ornstein-
Zernike relation in Eq. (13),

hλ(r,r′) = −βλu(r,r′) − βλ

∫
dr′′ρ(r′′)hλ(r′,r′′)u(r,r′′).

(15)

Accordingly, we refer to it as the OZ-RPA equation. Appli-
cation of the OZ-RPA modifies the correlation free energy in
Eq. (12),

Fc[ρ] = −1

2

∫
drρ(r)

∫ 1

0
dλ

hλ(r,r)

λβ
− u(0)

2

∫
dr ρ(r).

(16)
In the above equation u(0) = u(r,r). Likewise, for homoge-
neous fluids in a bulk we write hb(0) = hb(r,r).

A. Connection with the field-theoretical formulation

The λ dependence in Fc can be eliminated by expanding
hλ(r,r′),

hλ(r,r′) = −βλu(r,r′) + β2λ2
∫

dr1 ρ(r1)u(r,r1)u(r1,r′)

−β3λ3
∫

dr1

∫
dr2 ρ(r1)ρ(r2)

× u(r,r1)u(r1,r2)u(r2,r′) + . . . (17)

The expansion is generated iteratively by repeated insertion of
the right-hand side of Eq. (15) for every occurrence of hλ(r,r′).
The formulas are simplified by introducing an operator,

A(r,r′) = βρ(r)u(r,r′), (18)

and adopting a convention,

An =
∫

dr1

∫
dr2. . .

∫
drn−1A(r,r1)A(r1,r2) . . . A(rn−1,r′),

(19)
by means of which we get

ρ(r)hλ(r,r′) = −λA + λ2A2 − λ3A3 + . . .

= −
(

λA

I + λA

)
, (20)

where I = δ(r,r′) is the identity matrix in the continuum limit.
Integration over λ now is done explicitly,

∫ 1

0
dλ

ρ(r)hλ(r,r′)
λ

= −A + A2

2
− A3

3
+ . . .

= − log[I + A], (21)

and Fc[ρ] becomes

Fc[ρ] = kBT

2
Tr log[I + A] − u(0)

2

∫
dr ρ(r), (22)

where the first term yields an infinite series of ring diagrams,
a characteristic feature of the RPA.

The expression can further be rearranged by using the
formal matrix identity,

1

2
Tr log[I + A] = log

√
det

[
I + A

]
, (23)

and the fact that a functional determinant is a solution of a
Gaussian functional integral,

1√
det

[
I + A

] =
∫

Dφ e− 1
2

∫
dr

∫
dr′ φ(r)φ(r′)[δ(r−r′)+A(r,r′)],

(24)
where φ(r) is a fluctuating field and

∫
Dφ is a functional

integral. The partition function within the RPA can now be
written as a Gaussian functional integral,

Zrpa = e
βN

2 u(0)e−βFmf

×
∫

Dφ e− 1
2

∫
dr

∫
dr′ φ(r)φ(r′)[δ(r−r′)+A(r,r′)], (25)

where we used F = Fmf + Fc and Z = e−βFmf e−βFc .
In consequence, we propose an alternative, liquid-state

route to generate the functional integral formulation of the free
energy without resorting to the Hubbard-Stratonovich transfor-
mation. By adapting the density functional approach we avoid
a number of artifacts arising in the field-theoretical formalism,
such as the problem of divergences, or inapplicability of the
Gibbs-Bogolyubov-Feynman inequality to complex functions
when constructing variational equations [18].

B. Density profile

To obtain an equilibrium density we use the known
thermodynamic condition,

δF

δρ(r)
= μ, (26)

where μ denotes the chemical potential. The functional
derivative of Fc with respect to ρ(r) incidentally eliminates
all λ dependence,

δFc

δρ(r)
= kBT

2

δTr log[I + A]

δρ(r)
− 1

2
u(0)

= −1

2
[u(0) + kBT h(r,r)], (27)

and the functional derivative is written in terms of a correlation
function of a physical system, h(r,r) [this is better seen in
conjunction with Eq. (21) and Eq. (17)]. The number density
that results is

ρ(r) = ρbe
−βU (r)e−β

∫
dr′ ρ(r′)u(r,r′)e

1
2 [βu(0)+h(r,r)]+βμex , (28)

where we separated a chemical potential into ideal and excess
parts, μ = μid + μex, with the ideal contribution related to a
bulk density,

ρb =
(

eβμid

�3

)
. (29)

The excess chemical potential within the present approxima-
tion is

μex = ρb

∫
dr u(r) − 1

2
[u(0) + kBT hb(0)], (30)

where hb(r) is a correlation function in a bulk. For U (r) =
0, we accurately recover a bulk density, ρ(r) → ρb. More
conveniently, a density can be written as

ρ(r) = ρbe
−βU (r)e−β

∫
dr′ (ρ(r′)−ρb)u(r,r′)e

1
2 [h(r,r)−hb(0)]. (31)
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C. Direct correlation function

In constructing the generalized RPA framework (GRPA)
we used the closure c(r,r′) = −βu(r,r′). Using the formal
definition of the direct correlation function within the resulting
GRPA framework, we find

c(r,r′) = − δ2βFex

δρ(r)δρ(r′)
= −βu(r,r′) + 1

2

δh(r,r)

δρ(r′)

= −βu(r,r′)
(

1 + 1

2

∂hλ(r,r′)
∂λ

∣∣∣∣
λ=1

)
, (32)

which yields an additional term, absent in the standard
RPA [13,32]. For homogeneous fluids this reduces to

c(r) = −βu(r)

(
1 + 1

2

∂hλ(r)

∂λ

∣∣∣∣
λ=1

)

= −βu(r)

(
1 + 1

2

∂ρbh(r)

∂ρb

)
. (33)

Note that a number of expressions of the GRPA approximation
include the term u(0), which may lead to assumption that the
RPA is inappropriate for divergent pair interactions. A careful
inspection, however, shows that the divergence in u(r,r′) is
always canceled by another divergence in h(r,r′) [see the
expansion in Eq. (17)]. The true pair correlation function,
however, never diverges as r′ → r and the lower bound is
given as h(r,r′) > −1 and indicates the exclusion of a particle
from the position r if another particle is at r′. The divergence
in h(r,r′) is, therefore, an artifact of the GRPA that is essential
for keeping the GRPA expressions well behaved.

D. Pressure and the contact value theorem

Pressure is obtainable from a number of definitions. From
the “compressibility” route we get

Pex = P − kBTρb =
∫ ρb

0
dρ ρ

∂μex

∂ρ
, (34)

where we use Eq. (30) for μex and get

Pex = ρ2
b

2

∫
dr u(r) − kBT

2

∫ ρb

0
dρ ρ

∂hb(0)

∂ρ
. (35)

[The “compressibility” expression can also be defined as Pex =
−kBT

∫
dr

∫ ρb

0 dρ ρ c(r), where c(r) in Eq. (33) yields the
same answer]. Alternatively, the pressure is defined through a
“virial” route,

Pex = ρ2
b

2

∫
dr u(r) − ρ2

b

6

∫
dr h(r) r

∂u(r)

∂r
. (36)

Within a consistent approximation the “virial” and “com-
pressibility” expressions yield the same result. In order to
compare the two expressions, we introduce a particle scaling
by assuming a general potential form, βu(r) = εf (r/σ ). Using
the identity r ∂u(r)

∂r
= −σ ∂u(r)

∂σ
and the fact that a particle scaling

is similar to density variation, and working with the expansion
in Eq. (17), it can be demonstrated after some manipulation
that

ρ2
b

6

∫
dr h(r) r

∂u(r)

∂r
= kBT

2

∫ ρb

0
dρ ρ

∂hb(0)

∂ρ
, (37)

and the “virial” and “compressibility” routes within the GRPA
lead to the same result.

(There are a number of ways to express thermodynamic
integrals such as∫ ρb

0
dρ ρ

∂hb(0)

∂ρ
= ρb

∫ 1

0
dλ λ

∂
(
hλ

b(0)/λ
)

∂λ

= Tr

(
log[I + A] − A

I + A

)
. (38)

The advantage of integration is that it represents a physical
process that is easy to conceive, such as “charging,” or a
gradual increase of density. But from mathematical point of
view, integration modifies coefficients of an expansion in the
operator A = ρbβu(r,r′). The terms An constitute the true
building blocks of the GRPA approximation).

Alternatively, pressure, can be obtained not from bulk
parameters but from a density profile of a fluid confined by
a planar hard wall. Fluid itself is in contact with a reservoir
and a density profile somehow “knows” what the reservoir
thermodynamic parameters are. According to the contact value
theorem sum rule, the pressure is related to a value of a density
profile directly at a wall, ρw,

P = kBTρw, (39)

and the excess pressure according to the contact value sum
rule is

Pex = kBT (ρw − ρb) (40)

We first demonstrate that the contact value theorem sum rule
is satisfied by the mean-field. The excess pressure in terms
of bulk quantities, obtained from either “compressibility” or
“virial” route, is

Pex = αρ2
b

2
, (41)

where we use α = ∫
dr u(r) to reduce the notation. To

demonstrate that the contact value theorem relation is satisfied,
we need to prove the following equivalence:

kBT (ρw − ρb) = αρ2
b

2
, (42)

which needs to be obtained from the mean-field density alone,

ρ(x) = ρbe
−β

∫ ∞
0 dx ′ ρ(x ′)u(x,x ′)eβαρb , (43)

assuming that the planar hard wall is at x = 0, and where we
used

u(x,x ′) = 2π

∫ ∞

0
dR R u(r,r′), (44)

where (R,φ,x) are cylindrical coordinates with the angle φ

integrated out. We proceed by differentiating both sides,

dρ(x)

dx
= −βρ(x)

∫ ∞

0
dx ′ ρ(x ′)

du(x,x ′)
dx

, (45)

then we integrate the expression inside the interval [0+,L] (ex-
cluding the wall at x = 0), where L is finite but considerably
larger than all other length scales, so ρ(L) = ρb, and we get

kBT (ρw − ρb) =
∫ L

0
dx ρ(x)

∫ ∞

0
dx ′ ρ(x ′)

du(x,x ′)
dx

. (46)
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In order to prove the contact value theorem sum rule, we
need somehow to show that the integral on the right-hand
side, which depends on a nonuniform density profile near a
wall, can be related to the bulk, or reservoir thermodynamic
parameters, by somehow moving the integration limits from
the vicinity of the wall far into a bulk where the density is
uniform. To do this it helps to understand what this integral
represents physically. By recognizing F (x,x ′) = − du(x,x ′)

dx
as

force exerted by a particle at x ′ on a particle at x, and rewriting
the integration limits of the right-hand side term as

∫ L

0
dx ρ(x)

∫ L+∞

0
dx ′ ρ(x ′)

du(x,x ′)
dx

, (47)

and noting that
∫ L

0
dx ρ(x)

∫ L

0
dx ′ ρ(x ′)

du(x,x ′)
dx

= 0, (48)

which is true for any ρ(x) since du(x,x ′)/dx =
−du(x,x ′)/dx ′ so that the total net force vanishes (particles
exert on each other the same but opposite force), then the
right-hand term in Eq. (46) becomes

kBT (ρw − ρb) =
∫ L

0
dx ρ(x)

∫ ∞

L

dx ′ ρ(x ′)
du(x,x ′)

dx

= −
∫ L

0
dx ρ(x)

∫ ∞

L

dx ′ ρ(x ′)
du(x,x ′)

dx ′

= ρb

∫ L

0
dx ρ(x)[u(x,L) − u(x,∞)]

= ρ2
b

∫ L

0
dx u(x,L) = αρ2

b

2
, (49)

and indeed Eq. (42) has been confirmed and the consistency
of the contact value theorem for the mean-field proved. The
one-half factor in the result reflects the fact that the integration
was carried out inside a half-space.

Note that the integral term on the right-hand side of Eq. (49)
represents a force between two sections of a fluid separated by
an invisible wall at x = L. Since L can be placed arbitrarily
far from the wall, the contributions of nonuniform density
near a wall can easily be neglected, and the resulting integral
represents a force per unit area between two uniform fluids
brought into direct contact along an infinite plane.

Note that Eq. (48) is true for any profile ρ(x), as long as it
converges to a bulk value far from the wall. This introduces
only a weak constraint and we could insert into Eq. (45) the
simplest possible density profile, ρ(x) = ρbθ (x) [where θ (x)
is the Heaviside step function], which itself does not satisfy
the contact value sum rule but which yields the same result as
that in Eq. (49) and that simplifies the calculations.

A similar proof needs to be carried out for the GRPA, except
now one needs to prove

kBT (ρw − ρb) = αρ2
b

2
− kBTρb

2

∫ 1

0
dλ λ

∂
(
hλ

b(0)/λ
)

∂λ
(50)

from the density profile

ρ(x) = ρbe
−β

∫ ∞
0 dx ′ ρ(x ′)u(x,x ′)eh(x,x)/2eβαρb−hb(0)/2 (51)

with a confining wall at x = 0. We proceed in the same fashion
as for the mean-field. Performing differentiation followed by
integration within the interval [0+,L] we find

kBT (ρw − ρb) = αρ2
b

2
− kBT

2

∫ L

0
dx ρ(x)

dh(x,x)

dx
, (52)

where the first (mean-field) term does not change, being
independent of details of a density profile. To evaluate the
integral term, we again want to move the integration limits
away from a wall. To be able to do this, we expand the
correlation function using Eq. (17) to get∫ L

0
dx ρ(x)

dh(x,x)

dx
= β2

∫ L

0
dx ρ(x)

∫ L+∞

0
dx ′ ρ(x ′)

du2(x,x ′)
dx

−β3
∫ L

0
dx ρ(x)

∫ L+∞

0
dr′ ρ(x ′)

×
∫ L+∞

0
dr′′ ρ(x ′′)

d

dx
w(r,r′,r′′) + . . .

(53)

We consider the first two terms and check that they agree
with the initial terms from either “virial” or “compressibility”
expressions. The function

w(r,r′,r′′) = u(r,r′)u(r′,r′′)u(r′′,r) (54)

plays the role of a three-body potential. This interpretation will
allow us to shift the integration limits away from the wall. The
first integral is similar to the mean-field case except that the
two-body potential now is u2(r,r′). The second term requires
considerable elaboration and we only show the end result,∫ L

0
dx ρ(x)

dh(x,x)

dx
= 1

2
β2ρ2

b

∫
dr

∫
dr′u2(r,r′)

− 2

3
β3ρ3

b

∫
dr

∫
dr′

∫
dr′′ u(r,r′)u(r′,r′′)

× u(r′′,r) + . . .

= 1

2
Tr A2 − 2

3
Tr A3 + . . . (55)

and the initial terms are in agreement with those in Eq. (38). We
conclude, to the credit of the approximation, that the GRPA
satisfies the contact value theorem and consistently predicts
the same pressure independent of route.

As for the case of the mean-field, the value of the integral
in Eq. (55) is independent of a density profile, as long that
profile falls off to a bulk value. This weak constraint permits
us to assume the simple profile ρ(x) = ρbθ (x) which yields∫ L

0
dx ρ(x)

dh(x,x)

dx
= ρbhb(0) − ρbhw(0). (56)

However, the substitution does not provide a straightforward
answer we might have hoped for. The evaluation of the
correlation function at the edge of a half-space, hw(0), is also
quite complicated as each term in the expansion in Eq. (17)
needs to be evaluated separately. This essentially constitutes a
geometric problem of determining how the removal of a half-
space at x < 0 effects the correlation function. Incidentally,
this also provides an explanation to the question of why local
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approximations fail in satisfying the contact value theorem. For
the density profile ρ(x) = ρbθ (x) all quantities (being local)
are the same regardless if they are evaluated near or far from
an interface, in which case hw(0) = hb(0).

E. Dilute limit

The pair correlation function in the dilute limit is

hλ(r,r′) ≈ e−βλu(r,r′) − 1 (57)

and is obtained by fixing a single particle at r′ and determining
the distribution of mobile particles by treating them as ideal
gas particles. On the other hand, the dilute limit of the GRPA
yields h(r,r′) ≈ c(r,r′)

hλ(r,r′) ≈ −βλu(r,r′), (58)

see Eq. (17). The two expressions agree only in the high-
temperature limit. The problem seems to originate in the very
assumption of the RPA, c(r,r′) = −βu(r,r′).

The failure of the RPA in the low-density and low-
temperature limit is attested to by other quantities. We consider
the excess chemical potential and excess pressure,

μex = ρb

∫
dr u(r)

(
1 − β

2
u(r)

)
+ O

(
ρ2

b

)
, (59)

Pex = ρ2
b

2

∫
dr u(r)

(
1 − β

2
u(r)

)
+ O

(
ρ3

b

)
, (60)

respectively. At low temperature, the RPA chemical potential
and excess pressure become negative even for repulsive
interactions. This instability is not reproduced by exact results.
Since pressure is related to the value of a density profile at a
contact with a wall, it is inferred that the density profile must
be poorly approximated as well. The conclusion is that the
GRPA constitutes a correction to the mean-field, but, like the
mean-field, it becomes more accurate for dense fluids, where a
large number of particle overlaps justifies the mean-field point
of view.

IV. MULTIPLE SPECIES

Next we generalize the RPA to multiple species. The
fictitious Hamiltonian, equivalent to that in Eq. (1), is

Hλ =
N∑

i=1

Uλ
i (ri) + λ

2

N∑
i �=j

uij (ri ,rj ). (61)

Here we assume that each particle feels different external
potential, and pair interactions between different pairs differ.
Of course, particles do not all differ but generally are grouped
into species.

Assuming K different species, the free energy from the
adiabatic connection is

F [{ρk}] = Fid[{ρk}] +
K∑

k=1

∫
dr Uk(r)ρk(r)

+ 1

2

K∑
k,l

∫
dr

∫
dr′ ρk(r)ρl(r′)ukl(r,r′)

+ 1

2

K∑
k,l

∫
dr

∫
dr′ ρk(r)ρl(r′)ukl(r,r′)

×
∫ 1

0
dλ hλ

kl(r,r
′), (62)

where the ideal-gas contribution is

βFid[{ρk}] =
K∑

i=1

∫
dr ρk(r)[log ρk(r)�3 − 1]. (63)

If the Ornstein-Zernike equation of a multiple-species fluid is

hλ
kl(r,r

′) = cλ
kl(r,r

′) +
K∑

n=1

∫
dr′′ρn(r′′)hλ

nl(r
′,r′′)cλ

kn(r′′,r),

(64)

where correlations between particles of a species k and l are
mediated by all particles disregarding their type, then the RPA
closure, cλ

kl = βλukl(r,r′), yields

hλ
kl(r,r

′) = −βλukl(r,r′)

−βλ
∑

n

∫
dr′′ρn(r′′)hλ

nl(r
′,r′′)ukn(r′′,r), (65)

and the RPA correlation free energy is

Fc = −1

2

K∑
k=1

ukk(0)
∫

dr ρk(r)

− 1

2

K∑
k=1

∫
dr ρk(r)

∫ 1

0
dλ

hλ
kk(r,r)

βλ
. (66)

[Compare with Eq. (16) for a one component system.] The lack
of dependence on inter-species correlations, that is, hkl(r,r′)
for k �= l, at first glance appears inaccurate. But as correlations
between particles of the same species, hkk(r,r′), are mediated
by all particles disregarding their type, the cross-correlations
are always implicit in hkk(r,r′).

A. Density

As for a one-species system, an equilibrium density of
a species k of a multiple-species fluid is obtained from the
condition

δF

δρk(r)
= μk (67)

and the correlational counterpart yields

δFc

δρk(r)
= −ukk(0)

2
− kBT

2
hkk(r,r). (68)

If the excess chemical potential of a specie k is

μex
k =

K∑
l

ρb
l

∫
dr ukl(r) − 1

2

[
ukk(0) + kBT hb

kk(0)
]
, (69)

then a density is

ρk(r) = ρb
k e

−βUk (r)e−β
∑K

l=1

∫
dr′ (ρl (r′)−ρb

l )ukl (r,r′)

× e
1
2 [hkk(r,r)−hb

kk (0)]. (70)
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B. Pressure

The pressure is obtained from the relation Pex =∑K
k=1 ρb

k μ
ex
k − fex, where the excess free-energy density in

a bulk is

fex = 1

2

K∑
k,l

ρb
k ρ

b
l

∫
dr ukl(r)

−1

2

K∑
k=1

ρb
k

[
ukk(0) + kBT

∫ 1

0
dλ

h
b,λ
kk (0)

λ

]
(71)

and includes the mean-field and correlational contributions.
The excess pressure that results is

Pex = 1

2

K∑
k,l

ρb
k ρ

b
l

∫
dr ukl(r)

−kBT

2

K∑
k=1

ρb
k

[
hkk(0) −

∫ 1

0
dλ

h
b,λ
kk (0)

λ

]
. (72)

V. THE GAUSSIAN CORE MODEL

We apply the developed GRPA approximation to the Gaussian
core model (GCM), whose pair interactions have the Gaussian
functional form,

βu(r) = εe−r2/σ 2
, (73)

where σ is the length scale that determines the interaction
range and ε determines the interaction strength. Because at a
complete overlap βu(0) = ε, particles are free to interpene-
trate. The GCM is a theoretical invention of Stillinger [33–38]
that found application as an effective interaction between poly-
mers [39,40]. This started a more general interest in bounded
potentials as a means for modeling various macromolecules
encountered in soft matter [41]. An interesting feature of the
GCM system is that, like water, it undergoes re-entrant melting
when solid becomes too dense and the crystal arrangement can
no longer be supported, triggering the melting transition.

For a homogenous system the free energy in Eq. (22) can
be calculated exactly, and each individual ring term becomes

Tr An = V (εηb)n

(nπσ 2)3/2
, (74)

where ηb = π3/2σ 3ρb is the reduced density and V is the
volume of a system. The correlation free-energy density, fc =
Fc/V , becomes

fc = ερb

2

∞∑
n=2

(−εηb)n−1

n5/2

= −ερb

2

{
1 + Li5/2[−εηb]

εηb

}
, (75)

where Lim(x) = ∑∞
n=1

xn

nm is a polylogarithm.
Other quantities of interest follow. The excess chemical

potential is

βμex = εηb − ε

2

{
1 + Li3/2[−εηb]

εηb

}
. (76)

Then, from comparison with Eq. (30), we get

hb(0) = ε

∞∑
n=1

(−1)n(εηb)n−1

n3/2
= Li3/2(−εηb)

ηb

, (77)

which then can be used to obtain pressure,

βPex

ρb

= ε

2

{
ηb + Li5/2(−εηb) − Li3/2(−εηb)

εηb

}
. (78)

Our primary interest, however, lies in the GRPA as a theory
of inhomogeneous fluids. Considering a fluid confined by a
hard wall to a half-space x > 0, we can use the contact value
theorem to relate the pressure to a density at a contact with a
wall,

ρ(0) = βP = ρb

[
1 + εηb

2
+ Li5/2(−εηb) − Li3/2(−εηb)

2ηb

]
.

(79)

The first term is the ideal-gas contribution, the second the
mean-field contribution, and the last term accounts for the
RPA correlations.

In Fig. 1 we compare the contact density at a wall as a
function of ε for different approximations. The exact data
points are from the MC simulation carried out for 1000
particles with periodic boundary conditions in three directions.
The size of the box was modified to yield a desired bulk density
ρb, and the pressure was calculated from the virial formula,

P = kBTρb − 1

3V

N∑
i<j

〈
rij

du(rij )

drij

〉
. (80)

In general the RPA shows improvement over the mean field,
except in the dilute limit, where both the mean-field and the
RPA perform poorly. This is in agreement with the discussion
in Sec. III E and not surprising if it is recalled that the RPA is
designed as a correction over the mean field. In the dilute limit,
the negative contributions of the RPA eventually bring the
pressure down as a function of increased interactions. Again,
this is predicted by Eq. (60) from which we also know that in
the dilute limit Pex becomes zero (the mean-field contribution
is canceled by the RPA correlations leaving only the ideal gas
part) for ε = 4

√
2 ≈ 5.7. For high densities the RPA appears

accurate.
Figure 2 displays the direct correlation function for different

approximations. The mean-field and the dilute limit curves
are independent of a bulk density, and the GRPA curves, if
accurate, should span between the two limiting cases as ρb

changes from 0 → ∞. Indeed, in the limit ρb → ∞ the GRPA
converges to the mean-field but fails to converge to the correct
behavior as ρb → 0.

In Fig. 3 we plot the entire density profiles near a planar wall
at x = 0. The improvement of the GRPA over the mean-field
is visible not just near the wall but are noticeable in the far
field.

In Fig. 4 we plot effective potentials due to the mean-
field, βUeff(x) = − ∫

dr (ρ(x ′) − ρb)u(r,r′), and due to the
RPA correlations, βUeff(x) = −[h(x,x) − hb(0)]/2. The two
potentials appear inverted. Near the wall the mean-field
contributions are attractive, while the correlations contribute
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FIG. 1. The value of a density at a contact with a wall, η(0) =
π 3/2σ 3ρ(0), for a planar hard-wall model as a function of an
interaction strength ε for a one component GCM. ηb is the bulk
reduced density. The dotted horizontal line corresponds to an ideal-
gas prediction. (a) ηb = 0.1; (b) ηb = 0.3; (c) ηb = 0.5.

repulsive interactions. The two potentials, furthermore, appear
to have different oscillation wavelength.

VI. THE TWO-COMPONENT GCM

We next consider a two-component GCM fluid with
interactions

uij (x) =
{

εe−r2/σ 2
, if i = j

−εe−r2/σ 2
, if i �= j

.

The reservoir concentration of both species is the same,
ρb = ρ+

b = ρ−
b , and the density profiles of both species are

indistinguishable, in which case the mean-field contributions
cancel out and the density profile is determined correlations

0 1 2 3
r/σ

-4

-2

0

c(
r) rpa, ηb=0

rpa, ηb=1
rpa, ηb=5
mf
diluteε=5

FIG. 2. Direct correlation function of a bulk fluid for the GCM
model. The curves for the RPA are from Eq. (33), the mean-field curve
is c(r) = −βu(r), and the exact dilute limit is c(r) = e−βu(r) − 1.
Only the GRPA curves vary with density.

alone. The mean-field treatment (used in Refs. [13,32]) would
predict a flat density profile for a wall model.

For a two-component fluid there are now four correlation
functions hkl(r,r′): two same-species and two interspecies
correlations. Within the GRPA all correlations are expressed
through a single functional form,

hkl(r,r
′) =

{
h(r,r′) if k = l

−h(r,r′) if k �= l
,

where h(r,r′) is obtained from the OZ-RPA equation,

h(r,r′) = −βu(r,r′) − β

∫
dr′′ρ(r′′)h(r′,r′′)u(r,r′′), (81)

and ρ(r) = ρ+(r) + ρ−(r) is the total density, and the correla-
tion function is the same as for a one-component system. What
differs is a density profile due to the absence of the mean-field
contributions,

ρ(r) = ρbe
−βU (r)e

1
2 [h(r,r)−hb(0)]. (82)

0 1 2 3 4
x/σ

0.1

0.2

0.3

0.4

0.5

0.6

ρσ
3

mfrpa
sim

ε=7

ε=6

ε=5

FIG. 3. Density profile for the GCM for the planar hard-wall
model for different values of the interaction strength: ε = 5,6,7. A
simulation box dimensions are 20σ :20σ :20σ and it contains 1000
particles. This roughly corresponds to a bulk density ηb ≈ 0.67. The
numerical data points for the mean field and the GRPA are for the
same conditions. The filled blue circles at x = 0 are obtained from
Eq. (79) to confirm accuracy of numerical results and the validity of
the contact value theorem.
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FIG. 4. Effective potentials due to the mean-field, βUeff =
− ∫

dr [ρ(x ′) − ρb]u(r,r′), and the correlations, βUeff (x) =
− 1

2 [h(x,x) − h(0)] [see Eq. (31)], for a density profile in Fig. 3 with
ε = 7.

For a bulk system, hb(0) is the same as in Eq. (77), while the
pressure expression has no mean-field contributions,

βPex

ρb

= ε

2

[
Li5/2(−εηb) − Li3/2(−εηb)

εηb

]
. (83)

Figure 5 displays the pressure (related to a contact density)
as a function ε for different bulk densities. As density
increases the accuracy of the GRPA breaks down. This differs
from what we have seen for the one-component fluid where
high density recovers the weakly correlated limit and the
GRPA becomes more accurate. The flattening effect of exact
curves is connected to pair formation (reminiscent of Bjerrum
pairs in electrostatics) between different species. The poor
performance of the GRPA for a two-component fluid at high
density can therefore be seen as failure in predicting pairs.

In Fig. 6 we show an entire density profile of a two-
component GCM fluid near a wall. The GRPA accurately
predicts the depletion of particles from a wall region, since
it is energetically unfavorable for a particle to be near a
noninteractive wall than to be in a bulk surrounded by particles
of other species. The exact results indicate a higher contact
value, as well as a shift of an entire profile toward the wall,
indicating that the depletion region is exaggerated by the
GRPA.

VII. ONE-COMPONENT PLASMA

In this section we consider one-component Coulomb
particles. The primary objective is to demonstrate that the
GRPA equations transform to the expressions of a variational
Gaussian approximation within the field-theoretical frame-
work [23,24], without carrying out the Hubbard-Stratonovich
transformation of the partition function.

Coulomb charges q interact via the following pair potential:

u(r,r′) = q2

4πε|r − r′| , (84)

where ε is the background dielectric constant. We re-
emphasize that the divergence in u(r,r′) as r → r′ is not
problematic as it is canceled by the divergence in h(r,r′). To
see this, revisit the expansion in Eq. (17).
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/η
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sim ηb = 0.1
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sim ηb = 0.3
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η(
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/η
b

rpa
sim ηb = 0.5

(a)

(b)

(c)

FIG. 5. The value of a density at a contact with a wall, η(0) =
π 3/2σ 3ρ(0), for a planar hard-wall model as a function of an
interaction strength ε for a two-component GCM. ηb is the total
reduced bulk density. The dotted horizontal line corresponds to an
ideal-gas prediction. (a) ηb = 0.1; (b) ηb = 0.3; (c) ηb = 0.5.

A number density of Coulomb charges, using Eq. (31), is

ρ(r) = ρbe
−βqψ(r)e

1
2 [h(r,r)−hb(0)], (85)

where the external potential, in electrostatic problems gen-
erated by permanent charges distributed over surfaces and
accounted for by the boundary conditions, is omitted from
the expression. Furthermore, we introduce an electrostatic
potential ψ(r) defined as

qψ(r) =
∫

dr′ ρ(r′)u(r,r′). (86)

To transform the OZ-RPA equation in Eq. (15) into desired
form, we apply the Laplacian operator to both sides of the
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FIG. 6. A density profile for a two-component GCM fluid near a
planar hard wall. The system size and the number of particles is the
same as in Fig. 3.

equation,

∇2h(r,r′) = βq2

ε
[δ(r − r′) + ρ(r)h(r,r′)], (87)

where we used

∇2u(r,r′) = −
(

q2

ε

)
δ(r − r′). (88)

We carry out the same operation on Eq. (86),

ε∇2ψ(r) = −qρ(r), (89)

and the result is the standard Poisson equation.
Equations (85), (87), and (89) constitute the GRPA ap-

proximation for a density distribution and an electrostatic
potential. To make contact with the variational equations
of the field-theoretical framework the correlations in the
number density h(r,r′) need to be expresses as correlations
in electrostatic potential. This can be done using a slightly
rearranged OZ-RPA equation,

h(r,r′) = −β

∫
dr′′ [ρ(r′′)h(r′,r′′) + δ(r′ − r′′)]u(r,r′′).

(90)

The term ρ(r′′)h(r′′,r′) in square brackets is a correlation hole
generated when a single charge is fixed at r′ and is represented
by the δ function. The entire integral on the right-hand side
can be regarded as a perturbation of an electrostatic potential,
�(r,r′), caused by a fixed charge at r′ [the total electrostatic
potential is ψ(r) + �(r,r′)]. The OZ-RPA equation simply
becomes

h(r,r′) = −βq�(r,r′), (91)

and the proportionality between the two fluctuating quantities
is established. Note that this is not an exact equality but a result
specific within the GRPA.

We next consider a charged wall model and review some
of the known results. For the wall model, there exists an
analytical solution for the mean-field which corresponds to the
weak-coupling limit. In the strong-coupling limit the density
approaches an ideal-gas distribution [42,43]. The perturbative
Gaussian correction to the mean-field has been considered in
Refs. [22,44] and a semianalytical solution is available. The
perturbative correction, however, fails to connect the weak- and
strong-coupling limit and yields an unphysical “hump” near
a wall for intermediate coupling parameters. Simulations, on

the other hand, always show monotonically decreasing profile.
We revisit the wall model to see if the variational Gaussian
approximation (or the GRPA in our framework) is better in
capturing the intermediate- and the strong-coupling limit. To
our knowledge, this test has has not been done before.

We consider Coulomb particles with charge q = e. The wall
surface charge is σc and the total system is neutral. The dielec-
tric constant ε is the same on both sides of the wall. As the bulk
density far away from the wall vanishes, the contact density is
determined solely by the surface charge (not the pressure),

ρ(0) = −
∫ ∞

0
dz ρ(z)

∂U (z)

∂z
= βσ 2

c

2ε
, (92)

where −∂U (z)/∂z = −eσc/2 is a constant force felt by
particles on account of a uniform wall charge. The mean-field
(or the Poisson-Boltzmann) solution is

ρmf(x) = βσ 2
c

2ε

[
1

1 + βqσcx/2ε

]2

, (93)

and it captures a weakly correlated limit. At the opposite
end we have the strong-coupling limit where charges become
distributed as ideal-gas particles [42,43],

ρsc(x) = βσ 2
c

2ε
e−βqσcx/2ε . (94)

A dimensionless parameter that determines the strength of
correlations for the one-component system is taken to be the
ratio between the Bjerrum and the Gouy-Chapman length,
λB and λD = 1/(2πλBσc), respectively, and is denoted as
� = λB/λD .

As correlations increase, the density evolves from one func-
tional form to another, ρmf → ρsc. A perturbative Gaussian
approach for a counterion-only system yields a semi-analytic
expression for a density correction �ρ(z), ρ(z) = ρmf(z) +
�ρ(z) [22,44], where

∫ ∞
0 dz �ρ(z) = 0 in order to retain the

neutrality, and �ρ(0) = 0 so the contact value theorem remains
satisfied. The corrected density develops a “hump” at a short
distance from a wall leading to nonmonotonic behavior not
confirmed by simulations, which always yield a monotonically
decaying density.

We want to see if the GPRA (or variational Gaussian)
proves a better approximation in representing the intermediate
regime. The results are shown in Fig. 7. Unfortunately, they
hardly differ from the perturbative approach. The “hump” is
still there and it is not even reduced. The question is why
the GRPA performs poorly for the one-component plasma
or, more specifically, why correlations are exaggerated even
for relatively low coupling constant � ≈ 2? To address this
we note that the counterion-only system corresponds to a
low-density fluid as the bulk density is zero, from the previous
discussions and results we determined that the GRPA performs
poorly in this limit.

To elucidate further the case of a one-component plasma,
in Fig. 8 we plot an effective potential, Ueff = − 1

2 [h(x,x) −
hb(0)], of the perturbative Gaussian approximation of
Refs. [22,44]. The potential is almost always attractive except
just at the wall, where it suddenly rises leading to repulsive
force that assures the satisfaction of the contact value theorem
at the cost of an entire profile. Note also that the functional form
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FIG. 7. Counterion density profiles for a counterion-only wall
model. The surface charge density is σc = 0.4 C/m2. For the Monte
Carlo simulation we used the Ewalds summation for the periodic
boundary conditions in the y and z directions. The simulation box
contained 1000 particles and the size of the simulation box was
10 × 10 × 10 nm. (a) λB = 0.36 nm, � = 2.03; (b) λB = 0.72 nm
� = 8.13.

of the effective potential does not change and its magnitude
is linear to the coupling constant �. It is dubious that the
weak- and strong-coupling limit should be governed by a single
functional form.

VIII. ELECTROLYTE

We consider next a two-component plasma or an electrolyte.
The primary objective, as for the case of a one-component

0 2 4 6 8
x/λD

-0.4

-0.2

0

βU
ef

f(x
) /

 Ξ

1+x/λD

13
4-

FIG. 8. Effective potentials due to correlations, βUeff (x) =
− 1

2 [h(x,x) − h(0)]. Away from the wall Ueff = �

1+x/λD
, where λD

is the Guoy-Chapman length.

plasma, is to demonstrate that the GRPA equations reduce
to the variational Gaussian formulation within the field-
theory framework. The variational Gaussian method was
constructed specifically for Coulomb charges [23,24], whereas
the present GRPA approach is general and applicable to
any pair interactions, as was shown in its application to the
Gaussian core model. To recover the variational Gaussian
equations, the GRPA relations need to be re-expressed in
terms of electrostatic potential, not the number density and
its fluctuations.

For a symmetric electrolyte q : q, pair interactions are

ukl(r,r′) =
{

u(r,r′) if k = l

−u(r,r′) if k �= l
,

where u(r,r′) is the Coulomb potential given in Eq. (84). The
four correlation functions hkl(r,r′) between different species
within the GRPA can be expressed in terms of a single function,

hkl(r,r
′) =

{
h(r,r′) if k = l

−h(r,r′) if k �= l
,

and h(r,r′) is obtained from the OZ-RPA relation,

h(r,r′) = −β

∫
dr′′ [ρ(r′′)h(r′,r′′) + δ(r′ − r′′)]u(r,r′′),

(95)

where ρ(r) = ρ+(r) + ρ−(r) is the total density. Within the
GRPA, the number density of each species is

ρ±(r) = ρbe
∓βqψ(r)e

1
2 [h(r,r)−hb(0)], (96)

where the correlation function is obtained by transforming
Eq. (95)

ε∇2h(r,r′) = βq2[ρ(r)h(r,r′) + δ(r − r′)]. (97)

Finally, we still need the Poisson equation,

ε∇2ψ(r) = −ρc(r), (98)

where ρc(r) = qρ+(r) − qρ−(r) is a charge density. Equa-
tion (96), Eq. (97), and Eq. (98) constitute the GRPA
approximation for a symmetric q : q electrolyte.

In the final step in recovering the Gaussian variational
equations the correlations in a number density are substituted
by the correlations in electrostatic potential. We identify the
term in brackets in Eq. (95) as a charge correlation hole
generated by fixing either a positive or a negative charge q

at r′. For a fixed positive charge we have

ρhole(r,r′) = ρ+(r)h++(r,r′) − ρ−(r)h+−(r,r′)

= ρ+(r)h(r,r′) + ρ−(r)h(r,r′)

= ρ(r)h(r,r′). (99)

The number density fluctuations can then be related to the fluc-
tuations in electrostatic potential in a simple proportionality
relation,

h(r,r′) = −βq�(r,r′), (100)

as was already found in a one-component plasma in Eq. (91).
Using this equality, Eq. (96) and Eq. (97) transform into
the variational Gaussian equations within the field-theoretical
framework [23,24].
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We review some known results for homogenous elec-
trolytes [45]. The excess chemical potential is

μ±
ex = −1

2
lim
r→0

[kBT hb(r) + u(r)], (101)

and it depends exclusively on correlations as the mean-field
contributions cancel out. The same is true of pressure,

Pex = −kBTρb

2
lim
r→0

[
hb(r) −

∫ 1

0
dλ

hλ
b(r)

λ

]
,

(102)

where ρb = ρb
+ + ρb

− is the bulk total density. To calculate
the pressure we need to know correlations that we get from
Eq. (97),

d2hb
λ(r)

dr2
= κ2

λhb
λ(r) +

(
λβq2

ε

)
δ(r), (103)

where κλ =
√

λβq2ρb/ε is the screening parameter, and the
solution is the familiar Debye-Hückel solution,

hλ
b(r) = −λβq2e−κλr

4πεr
, (104)

and the excess pressure becomes

βPex = − κ3

24π
, (105)

where κ ≡ κλ=1.
For testing the GRPA approximation we consider a wall

model without a surface charge and with the uniform dielectric
constant across the interface. As the mean-field contributions
vanish, the density depends on correlations alone,

ρ±(r) = ρbe
1
2 [h(r,r)−hb(0)]. (106)

The results are shown Fig. 9. The depletion layer near a wall is
the result of correlations, not of the dielectric discontinuity as
frequently is the case for interfaces. The depletion effect seen
in Fig. 9 is driven by a solvation effect—ions prefer a bulk
environment where they are surrounded by opposite charges
while the vicinity of the wall impedes this arrangement. In
summary, the GRPA overestimates the correlational contribu-
tions and becomes less accurate with increasing density.

IX. CONCLUSION

The present work started out as a single-minded project
of finding an alternative derivation for the variational Gaus-
sian approximation, originally derived within the field-
theoretical framework and intended specifically for Coulomb
charges [23,24]. The motivation was, on the one hand, to
be able to understand how the variational Gaussian method
compares with liquid-state approaches, and, on the other hand,
to find an alternative derivation of the relevant equations to
bypass the heavy formalism of the field-theory and avoid
various problems specific of that framework, such as the
problem of divergences, invalidity of the Gibbs-Bogolyubov-
Feynmann inequality in constructing the variational equations,
impossibility to generalize the framework to an arbitrary pair
potential [18].
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FIG. 9. Density profiles for a 1 : 1 electrolyte near a planar hard
wall. MC simulations were carried out for N = 600 and N = 1000
particles, while the simulation box was fixed at 10 × 10 × 10 nm. In
the y and z direction we used Ewald summation to ensure the periodic
boundary conditions. To make sure that the opposite charges do not
collapse, the simulated ions are represented as charged hard spheres
with diameter σ = 0.2 nm.

By formulating the variational Gaussian approximation
within a density-functional framework, we arrived at a gen-
eralized form of the RPA approximation [30]. Because, the
derivation makes no assumptions about pair interactions, in
principle, it is applicable to any system. (At first sight it
may appear that the approximation is unsuitable for divergent
potentials as a number of quantities depends on u(0). But these
divergences are always canceled by an identical divergence in
the pair correlation function. For divergent potentials it makes
more sense to write limr→0 u(r)).

We refer to the present RPA density-functional framework
as the GRPA to distinguish it from the RPA method applied to
the GCM fluid [13,32] and that in the present work we refer
to as the mean-field. We verified that within the GRPA frame-
work, different definitions of pressure (the “compressibility”
and “virial” expressions) yield the same result and that the
GRPA satisfies the contact value theorem sum rule, proving
the GRPA to be a consistent framework.

Intended as the correction to the mean-field, the GRPA
shares similar drawbacks as the mean-field. In consequence, it
is not a low-density approximation and the designed function
is not intended to recover the exact dilute limit behavior. The
situation is more subtle for two-component systems where the
mean-field contributions vanish altogether and the correlations
constitute the sole contributions beyond those of the ideal gas.
In that case, the larger density does not imply more accurate
predictions. Large density produces, in fact, consistently
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poorer results. We attribute this behavior to failure of the
GRPA to predict pair formation between opposite species,
reminiscent of Bjerrum pairs in electrolytes. In order to predict
correct phase diagram of an electrolyte, Bjerrum pairs had to
be put “by hand,” in addition to the GRPA type of correlations
(obtained through the Debye charging process) [46]. This
implies that one needs to include contributions beyond the
GRPA for a more efficient description of dense two-component
systems with propensity to pair formation.

With growing number of soft-matter systems involving
diverse effective interactions [47,48], the GRPA could poten-
tially find use as a general theoretical framework for dealing
with these novel systems. Up to now, the best theories are
for hard-spheres while the mean-field is used for all the rest.
But there are still challenges ahead. The first challenge is to
understand the limits of the GRPA and the conditions under
which it is reliable. Another part of the challange is technical
and is concerned with actual implementation. The fundamental
measure DFT owes its success to its easy implementation
and robust computation. If the GRPA could be reduced to
the similar level of computational effort as the mean-field,
then it would indeed become an attractive theoretical tool.

The technical difficulty of the GRPA is the computation of
operators An, and their traces Tr An (or ring diagrams). For
example, we see in Eq. (38) how a thermodynamic integral
can be represented in terms of ring diagrams. These operators
constitute the basic building blocks of the method and their
computation requires different approach than that for the
fundamental measure DFT based on weighted densities and
their functions. At this point, it is still difficult to say how useful
the GRPA can be in the future. As of now, it is just an alternative
derivation of the variational Gaussian approximation with
potential for broader applications.
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