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Distributional behaviors of time-averaged observables in the Langevin equation with fluctuating
diffusivity: Normal diffusion but anomalous fluctuations
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We consider the Langevin equation with dichotomously fluctuating diffusivity, where the diffusion coefficient
changes dichotomously over time, in order to study fluctuations of time-averaged observables in temporally
heterogeneous diffusion processes. We find that the time-averaged mean-square displacement (TMSD) can be
represented by the occupation time of a state in the asymptotic limit of the measurement time and hence occupation
time statistics is a powerful tool for calculating the TMSD in the model. We show that the TMSD increases linearly
with time (normal diffusion) but the time-averaged diffusion coefficients are intrinsically random when the mean
sojourn time for one of the states diverges, i.e., intrinsic nonequilibrium processes. Thus, we find that temporally
heterogeneous environments provide anomalous fluctuations of time-averaged diffusivity, which have relevance
to large fluctuations of the diffusion coefficients obtained by single-particle-tracking trajectories in experiments.
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I. INTRODUCTION

The law of large numbers plays an important role in
statistical physics. In stationary stochastic processes X t , the
law of large numbers or the central limit theorem tells us that
time-averaged observables such as diffusivity and the ratio of
occupation time converge to a constant when the measurement
time goes to infinity:

1

t

∫ t

0
O(X t ′)dt ′ → 〈O(X)〉 as t → ∞, (1)

where t is the measurement time, the observable O(·) is a
function of the stochastic process X t , and the ensemble average
〈O(X)〉 must be finite. This property, i.e., the time average
equals the ensemble average, is called ergodicity in dynamical
systems.

In experiments, time-averaged observables are not constant
and thus their fluctuations are inevitable because of the finite
measurement times. However, in some stochastic processes
describing nonequilibrium phenomena, time-averaged observ-
ables are intrinsically random even in the long-time limit
because of the breakdown of the law of large numbers or
the central limit theorem [1–4]. In other words, they do not
converge to a constant even when the measurement time
goes to infinity and the fluctuations never disappear. Such
anomalous behavior has been studied by infinite ergodic
theory in dynamical systems [5]. Infinite ergodic theory is
closely related to the above stochastic processes and states
that time-averaged observables converge in distribution and
the distribution function depends on the invariant measure as
well as a class of the observation function [6–9].

The continuous-time random walk (CTRW) is a model
of anomalous diffusion, where the mean-square displacement
(MSD) increases sublinearly with time, and has been exten-
sively studied to understand anomalous diffusion in disordered
materials [10,11] as well as biological environments [12,13].
In the CTRW model, a random walker waits for the next jump
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and the waiting time is a random variable whose probability
density function (PDF) ρ(τ ) follows a power-law distribution

ρ(τ ) ∼ c0

|�(−α)|τ
−1−α (τ → ∞), (2)

where c0 is a scale factor. In the CTRW model it was shown
that the time-averaged MSD (TMSD), defined as

δ2(�; t) ≡ 1

t − �

∫ t−�

0
dt ′[r(t ′ + �) − r(t ′)]2, (3)

increases linearly with the lag time � for � 	 t [14], where
r(t) is the position of a particle and t is the measurement
time. When α � 1, the mean waiting time diverges, leading
to anomalous diffusion [15]. In particular, the TMSD with a
fixed lag time � does not converge to a constant. Instead, it
converges in the distribution as t → ∞ [12,14,16]. Moreover,
the PDF of the normalized TMSD, i.e., δ2(�; t)/〈δ2(�; t)〉,
follows a universal distribution called the Mittag-Leffler
distribution, which is one of the distributional limit theorems
in infinite ergodic theory [17]. This distributional property for
a time-averaged observable is called distributional ergodicity
in stochastic processes [14,18]. While the generalized
Langevin equation is also a model of anomalous diffusion, it
has been shown to be ergodic [19,20]. Hence, an anomalous
diffusion process does not always imply distributional
ergodicity.

Other distributional behaviors have been found in other
diffusion processes such as a quenched trap model [21] and
stored-energy-driven Levy flight (SEDLF) [18,22], where
the PDF of the normalized TMSDs (time-averaged diffusion
coefficients) follows other distributions depending on the
power-law exponent in the waiting time distribution, the spatial
dimension, and parameters controlling jumps of a random
walker. It is important to clarify whether fluctuations of time-
averaged observables are intrinsic or not, because diffusion
coefficients obtained by single-particle-tracking experiments
in living cells exhibit large fluctuations [13,23–26]. Such large
fluctuations will have relevance to distributional behaviors
in stochastic models of anomalous diffusion. Therefore, in
this paper we investigate ergodic properties of time-averaged
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diffusivity in temporally heterogeneous diffusion processes
related to diffusion in living cells.

II. LANGEVIN EQUATION WITH DICHOTOMOUSLY
FLUCTUATING DIFFUSIVITY

To investigate ergodic properties in temporally heteroge-
neous diffusion processes, we consider the following Langevin
equation with fluctuating diffusivity (LEFD):

d r(t)

dt
=

√
2D(t)w(t), (4)

where w(t) is the d-dimensional white Gaussian noise with
〈w(t)〉 = 0 and 〈wi(t)wj (t ′)〉 = δij δ(t − t ′). On the other
hand, the diffusion coefficient D(t) can be a non-Markovian
stochastic process. We assume that D(t) and w(t) are
statistically independent. Because the diffusion coefficient
in Brownian motion is determined by the shape of the
particle or the surrounding environment, the LEFD captures
the dynamics of a particle changing its shape with time
or in a fluctuating environment [27,28]. Such a fluctuating
diffusivity was recently observed in peripheral membrane
proteins binding specific lipids [29] and a protein crowding
environment [30] by molecular simulations. In fact, this model
describes the equation of motion for the center of mass of
entangled polymer in the reptation model [31] and is related
to dynamic heterogeneity in supercooled liquids [32–35].
Moreover, because the stochastic process D(t) is generic, this
system includes temporally heterogeneous diffusion models
induced by spatial heterogeneity such as the ones studied
in [36–38].

In a previous study [39], the relative standard deviation
(RSD) of the TMSD in the LEFD was investigated when the
stochastic process D(t) is in equilibrium, where the RSD is
defined by

�(t ; �) ≡
√

〈[δ2(�; t) − 〈δ2(�; t)〉]2〉
〈δ2(�; t)〉

. (5)

In equilibrium processes, the RSD becomes

�2(t ; �) ≈ 2

t2

∫ t

0
ds(t − s)ψ1(s), (6)

where ψ1(t) is the normalized correlation function of the dif-
fusion coefficients, i.e., ψ1(t) ≡ [〈D(t)D(0)〉 − 〈D〉2]/〈D〉2.
Therefore, information on the underlying diffusion coefficient
D(t) can be extracted by the RSD analysis [39–41]. Here
we investigate ergodic properties of the LEFD especially in
nonequilibrium cases. In particular, we consider two-state
models for the stochastic process D(t) as studied in [41]. When
the mean sojourn time of a state in D(t) diverges, the stochastic
process becomes nonstationary, which implies that the system
is intrinsically in nonequilibrium. We show normal diffusion
yet anomalous fluctuations of the TMSD in the LEFD.

Here we consider dichotomous processes for diffusivity
D(t) (see Fig. 1), i.e., D(t) = D+ if the state is positive and
D(t) = D− otherwise (a negative state). Sojourn times for
positive and negative states are random variables following
different PDFs, ρ+(τ ) and ρ−(τ ) for positive and negative

 0  1  2  3  4  5

D
(t)

t

x(
t)

FIG. 1. Trajectory of the Langevin equation with dichotomously
fluctuating diffusivity. The lower panel represents the underlying
diffusion coefficient.

states, respectively. We assume that one of the PDFs ρ+(τ )
follows either a narrow distribution where all moments are
finite or a broad distribution of power-law form [Eq. (2)] and
that the other PDF follows a power-law distribution whose
Laplace transform is given by ρ̂−(s) = 1 − a−sα− + o(s)
(α− < 1). In particular, we consider three cases for ρ+(x):
(i) narrow distribution, ρ̂+(s) = ∑∞

k=0
mk

k! sk; (ii) α− < α+ <

1, ρ̂+(s) = 1 − a+sα+ + o(sα+ ); and (iii) α− = α+, ρ̂+(s) =
1 − a+sα+ + o(sα+ ), where mk is the kth moment of sojourn
times of the positive state. In what follows we set α− = α.
We note that this kind of power-law behavior is observed
in supercooled liquids [35]. In two-state processes, one can
consider equilibrium and nonequilibrium processes. The PDF
of the initial sojourn time is denoted by ρ̃0

±(τ ), i.e., the
probability that the initial sojourn time is in [τ,τ + dτ ] under
the condition that the initial state is positive is given by
ρ̃0

+(τ )dτ . For equilibrium processes, the PDF of the initial
sojourn time becomes ρ̃0

±(τ ) = ρ
eq
± (τ ), where

ρ
eq
± (τ ) = 1 − ρ̂±(s)

μ±s
, (7)

with μ± the mean sojourn time for the positive and negative
states, respectively. However, we use here ρ̃0

±(τ ) = ρ±(τ ) as a
typical nonequilibrium initial ensemble. Because the PDF in
equilibrium exists if and only if both the mean sojourn times
μ± are finite, the process we consider cannot be in equilibrium.

III. REPRESENTATION OF TIME-AVERAGED
MEAN-SQUARE DISPLACEMENT

For � 	 t , the TMSD is represented by

δ2(�; t) ≈
�	t

∑Nt−1
i=0

∫ ti+1

ti
δr2(�; t ′)dt ′ + ∫ t

tNt
δr2(�; t ′)dt ′

t
,

(8)

where δr(�; t ′) ≡ r(t ′ + �) − r(t ′), ti is the ith transition time
from one state to the other state with t0 = 0, and Nt is the
number of transitions up to time t . Since a particle undergoes
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Brownian motion in each state, the TMSD becomes

Nt−1∑
i=0

∫ ti+1

ti

δr2(�; t ′)dt ′ +
∫ t

tNt

δr2(�; t ′)dt ′

≈
�	τ0

∫ T+(tNt )

0
δr2

+(�; t ′)dt ′ +
∫ T−(tNt )

0
δr2

−(�; t ′)dt ′,

(9)

where δr±(�; t ′) ≡ ∫ t ′+�

t ′ dt ′′
√

2D±w(t ′′), T±(t) is the occu-
pation time of the positive and negative states, respectively, up
to time t [thus T+(t) + T−(t) = t], and τ0 is a characteristic
time for the transitions of D(t). The condition of � 	 τ0

validates the approximation that the state in [ti ,ti + �] does
not change. Moreover, we can represent the TMSD as

δ2(�; t) ≈ 2d
D+(t) T+(t) + D−(t) T−(t)

t
�, (10)

where we define a time-averaged diffusion coefficient of
each state as D±(t) ≡ ∫ T±(t)

0 δr2
±(�; t ′)dt ′/(2dT±(t)). Hence,

TMSDs always show normal diffusion and the time-averaged
diffusion coefficient defined as D(t) ≡ δ2(�; t)/(2d�) is
given by

D(t) ≈ D−(t) + [
D+(t) − D−(t)

]T+(t)

t
. (11)

The time-averaged diffusion coefficient D(t) is determined by
three stochastic variables D±(t) and T+(t). As shown below,
the RSD of T+(t) decays as t−β with β < 1/2 in the limit
t → ∞, while those of D±(t) decay as t−0.5. Thus, in the
long-time limit, the fluctuation of T+(t) is dominant over those
of D±(t) and thus we can approximate it as D±(t) � D±.
In the long-time limit, statistical properties of occupation
time T+(t) determine those of D(t). Hence, under the above
approximation, we have

δ2(�; t) ≈ 2d
D− + (D+ − D−)T+(t)

t
�. (12)

This is one of the main results in this paper.
Using Eqs. (10) and (11), we have the RSD [Eq. (5)]

�2(t ; �) ≈ 〈[D(t) − 〈D(t)〉]2〉/〈D(t)〉2. Under the above ap-
proximation, we have the asymptotic behavior

�2(t ; �) ∼ 〈T 2
+(t)〉 − 〈T+(t)〉2

D−
(D+−D−)2 t2 + 〈T+(t)〉2

. (13)

This is another representation of the RSD by the occupation
time in LEFD with two-state diffusivity [see Eq. (6), where the
RSD is represented by the correlation function of D(t)]. We
confirmed that the asymptotic behavior is the same as Eq. (6) in
equilibrium processes. Since we neglect fluctuations of D±(t),
this expression for the RSD is valid only when the right-hand
side of Eq. (13) decays more slowly than t−0.5. Otherwise,
the asymptotic behavior of the RSD is the same as that in
Brownian motion (see Appendix A):

�2(t ; �) ∼ 〈[D−(t) − D−]2〉
D2−

∼ 4�

3dt
. (14)

IV. OCCUPATION TIME STATISTICS

To investigate fluctuations of the TMSD, we consider the
occupation time statics for the three cases. Let g±

n (y; t) be the
joint probability distribution of the occupation time T+(t) = y

and the number of renewal Nt = n up to time t under the
condition that the initial state is positive or negative. Then, we
have

g±
n (y; t) = 〈δ(y − T+(t))I (tn � t < tn+1)〉±, (15)

where I (tn � t < tn+1) = 1 if the relation tn � t < tn+1 is
satisfied and otherwise 0. The Laplace transform of g±

n (y; t)
with respect to y and t is given by

ĝ±
n (u; s) =

〈 ∫ tn+1

tn

e−st e−uT+(t)dt

〉
±
, (16)

where n = 1,2, . . . . For example, if the initial state is positive
and n = 2k or 2k + 1, it can be represented as

ĝ±
2k(u; s) =

〈 ∫ t2k+1

t2k

e−st e−u[τ1+τ3+···+τ2k−1+(t−t2k )]dt

〉
, (17)

ĝ±
2k+1(u; s) =

〈 ∫ t2k+2

t2k+1

e−st e−u(τ1+τ3+···+τ2k+1)dt

〉
, (18)

where τk is the kth sojourn time and thus tk = ∑k
i=1 τi . Inte-

grating the above equations and using the interindependence
of τk and τl (k = l), we have

ĝ+
2k+1(u; s) = 1 − ρ̂−(s)

s
ρ̂k

−(s)ρ̂k+1
+ (s + u), (19)

ĝ+
2k(u; s) = 1 − ρ̂+(s + u)

s + u
ρ̂k

−(s)ρ̂k
+(s + u). (20)

The cases in which the system starts from the negative state
can be calculated in a similar way. Then the PDF of T+(t) is
obtained by summing up g±

n (y; t) in terms of n, g±(y; t) =∑∞
n=0 g±

n (y; t), and thus we have

ĝ+(u; s) = 1 − ρ̂−(s)

sρ̂(s,u)
ρ̂+(s + u) + 1 − ρ̂+(s + u)

(s + u)ρ̂(s,u)
, (21)

ĝ−(u; s) = 1 − ρ̂+(s + u)

(s + u)ρ̂(s,u)
ρ̂−(s) + 1 − ρ̂−(s)

sρ̂(s,u)
, (22)

where ρ(s,u) ≡ 1 − ρ̂+(s + u)ρ̂−(s). In the small s and u

limit,

ĝ±(u; s) ∼ 1 − ρ̂−(s)

sρ̂(s,u)
+ 1 − ρ̂+(s + u)

(s + u)ρ̂(s,u)
. (23)

V. DISTRIBUTIONAL LIMIT THEOREMS

A. Case (i)

From Eq. (23), the Laplace transform of the PDF of T+(t)
for case (i) is given by

ĝ±(u; s) ∼ a−sα−1 + μ

a−sα + μ(s + u)
, (24)

where μ = m1. Using the relation between the moments of
T+(t) and ĝ±(u; s), we have the asymptotic behavior of the
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nth moment of T+(t),

〈T n
+(t)〉± = L−1

[
(−1)n

∂nĝ±

∂un
(0; s)

]
(t)

∼
(

μ

a−

)n
n!tnα

�(1 + nα)
, (25)

where L−1 is the inverse Laplace transform. Because the
TMSD can be represented by T+(t)/t through Eq. (10), the
ensemble average of the TMSD (ETMSD) shows normal
diffusion

〈δ2(�; t)〉 ∼ 2d

[
D− + μ(D+ − D−)

a−�(1 + α)

1

t1−α

]
�, (26)

where we used 〈D±(t)〉 ∼ D± and Eq. (25). Because the
TMSD converges to 2dD−� as t → ∞, this process seems to
be normal diffusion.

In Brownian motion, D(t) converges to a constant and
the distribution of D(t) follows a Gaussian one. Therefore,
deviation from Gaussian detects an anomaly of the process.
Since D(t) is given by Eq. (11) and D(t) → D−, we consider
the deviation, i.e., δDt ≡ D(t) − D−.

By Eq. (11) we have

δDt

〈δDt 〉
∼= (D−(t) − D−)t

(D+ − D−)〈T+(t)〉 + T+(t)

〈T+(t)〉 . (27)

Here the first term on the right-hand side can be neglected
if 〈[D−(t) − D−]2t2〉 = o(〈T+(t)2〉 − 〈T+(t)〉2). Note that this
condition is satisfied when α > 0.5 [see Eq. (25)]. By Eq. (25),
moments of the normalized occupation time defined by
Tα(t) ≡ T+(t)/〈T+(t)〉 become

〈Tα(t)n〉 ∼ n!�(1 + α)n

�(1 + nα)
(t → ∞). (28)

When the PDF of a random variable Mα follows the Mittag-
Leffler distribution of order α, the Laplace transform is given
by

〈e−zMα 〉 =
∞∑

k=0

�(1 + α)kzk

�(1 + kα)
. (29)

Therefore, the distribution of δDt/〈δDt 〉 is not Gaussian but
converges to the Mittag-Leffler distribution when α > 0.5
[see Fig. 2(a)]. For α < 0.5, the first term in Eq. (27)
becomes the leading term and the distribution of δDt/〈δDt 〉
becomes Gaussian with a mean 0 and variance 2�D2

−a2
−�(1 +

α)2t1−2α/d(D+ − D−)2μ2. For α > 0.5, using Eq. (13) yields

�2(t ; �) ∼ μ2(D+ − D−)2A(α)

a2−D2−�(1 + α)2
t−2(1−α), (30)

where A(α) = 2�(α+1)2

�(2α+1) − 1. This result is consistent with that
in [41]. When D− = 0, the RSD does not decay but converges
to

√
A(α), which is exactly the same as that in the CTRW

model [12].

Φ
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FIG. 2. Distribution of deviations of the time-averaged diffusivity
δD ≡ δDt/〈Dt 〉 in (a) case (i) and (b) case (ii) (D− = 1, D+ = 10,
and t = 104). In (a) the Mittag-Leffler distributions are drawn by
solid lines. In (b) the vertical axis is the survival probability �(δD) =∫ ∞

δD
P (δD′)δD′ and �(δD) ∝ δD−1 is drawn for reference. Squares

with colors are the results of numerical simulations. The power-
law distributions we used in numerical simulations are described
in Appendix B. In case (i), we used the exponential distribution
ρ+(τ ) = e−τ/μ/μ with μ = 10−2.

B. Case (ii)

In this case, Eq. (23) yields the Laplace transform of the
PDF of T+(t):

ĝ±(u; s) ∼ a+(s + u)α+−1 + a−sα−1

a+(s + u)α+ + a−sα
. (31)

The Laplace transform of the first moment 〈T+(t)〉 is scaled as

〈T̂+(s)〉 = −∂ĝ±(u; s)

∂u

∣∣∣∣
u=0

∼ a+
a−

1

s2−δα
, (32)

where δα = α+ − α. Thus, the asymptotic behavior of 〈T+(t)〉
becomes

〈T+(t)〉 ∼ a+
a−�(2 − δα)

t1−δα. (33)

Moreover, the second moment of T+(t) is scaled as

〈T+(t)2〉 ∼ 2a+(1 − α+)

a−�(3 − δα)
t2−δα. (34)

It follows that the second moment of T+(t)/〈T+(t)〉 diverges
for t → ∞. Using Eqs. (11) and (33) yields the ETMSD

〈δ2(�; t)〉 ∼ 2d

[
D− + a+(D+ − D−)

a−�(2 − δα)

1

t δα

]
�. (35)

As in the previous case, TMSD converges to 2dD−� as
t → ∞. By Eq. (13) the RSD decays as

�2(t ; �) ∼ 2a+(D+ − D−)2(1 − α+)

a−D2−�(3 − δα)
t−δα. (36)

This result is also consistent with that in [41].
Although we do not have the limit distribution of

T+(t)/〈T+(t)〉, the tail should be a heavy tail (power-law
distribution) because the second moment of T+(t)/〈T+(t)〉
diverges. By the relation between δDt and T+(t), i.e., Eq. (27),
we find that the deviations of the time-averaged diffusion
coefficient δDt/〈δDt 〉 are random and the distribution is
a nontrivial distribution characterized by a power law [see
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FIG. 3. Anomalous fluctuations of time-averaged diffusivity in
case (iii) (D− = 1 and D+ = 10). (a) TMSDs for ten different
realizations (α = 0.5 and t = 104). (b) and (c) Distribution of time-
averaged diffusion coefficients (t = 103). Symbols are the results
of numerical simulations and solid curves are the theoretical ones.
(d) RSD as a function of α and β (t = 105). Squares with colors are
the results of numerical simulations. In numerical simulations, we
used the same power-law distribution as in Fig. 2.

Fig. 2(b)]. The situation is similar for the PDF of time-
averaged diffusion coefficients in some parameter region of
the SEDLF [22].

C. Case (iii)

Contrary to the previous two cases, TMSDs do not converge
to a constant in case (iii), whereas TMSD shows normal
diffusion [see Eq. (10) and Fig. 3(a)]. Equation (23) yields
the Laplace transform of the PDF of T+(t):

ĝ±(u; s) ∼ a+(s + u)α−1 + a−sα−1

a+(s + u)α + a−sα
. (37)

By Appendix B in [3], Eq. (37) implies that the limit
distribution of T +(t)/t exists,

lim
t→∞ gT +/t (x) = gα,β(x), (38)

and the distribution is given by

gα,β(x) = (a sin πα/π )xα−1(1 − x)α−1

a2x2α + 2a cos πα(1 − x)αxα + (1 − x)2α
, (39)

where gT +/t (x) is the PDF of T+(t)/t , a = a−/a+, and β ≡
1/(1 + a). This is the Lamperti generalized arcsine law [2],
which is observed for time-averaged drift in superdiffu-
sion [42]. By Eq. (11) the distribution of the time-averaged
diffusion coefficient is given by that of T+(t)/t ,

Pr[D(t) � x] = Pr

(
T+(t)

t
� x − D−

D+ − D−

)
. (40)

Because the PDF of T+(t)/t follows the Lamperti generalized
arcsine law (39), the PDF of D(t) is given by PD(x) =
gα,β ( x−D−

Dd
)/Dd, where Dd = D+ − D−. Figures 3(b) and 3(c)

show that the generalized arcsine distribution describes clearly
the PDF of the time-averaged diffusion coefficients. Be-
cause the mean and second moment of T+(t)/t are given
by 〈T+(t)/t〉 = β and 〈(T+/t)2〉 = m(α,β) ≡ β(αβ + 1 − α),
respectively [3], we have the RSD

�(t ; �) ∼
√

D2− + 2D−Ddβ + D2
dm(α,β)

(D− + Ddβ)2
− 1. (41)

As shown in Fig. 3, theory is in good agreement with numerical
results. This fluctuation analysis extracts information on
the underlying diffusion process D(t) from single-particle-
tracking trajectories, e.g., the power-law exponent α and the
asymmetric parameter a.

VI. CONCLUSION

We have shown three distributional limit theorems for time-
averaged observables related to diffusivity in the Langevin
equation with dichotomously fluctuating diffusivity, where
the mean sojourn time of one of the states diverges. By the
fluctuation analysis of the TMSD, i.e., RSD analysis and the
distribution of the TMSD, one can extract information on
statistical properties of the underlying diffusion process, i.e.,
fluctuating diffusivity. In general, it is difficult to obtain such
information from single-particle-tracking trajectories because
the ETMSD shows only normal diffusion. Since our analysis
can be conducted in all single-particle-tracking experiments,
our results are useful for understanding anomalous diffusion
properties hidden in usual MSD analysis.

When one of the diffusivity states is zero (D− = 0) in
case (i), statistical properties of the TMSD are exactly the
same as those in the CTRW model. Therefore, this model is a
generalization of the CTRW model. When both diffusion co-
efficients in the LEFD are not zero, the TMSD asymptotically
shows normal diffusion in all cases, whereas fluctuations of
the TMSD (deviations of time-averaged diffusion coefficients)
are intrinsically random even in the long-time limit of the
measurement time. Especially in case (iii), time-averaged
diffusion coefficients are intrinsically random and the distri-
bution follows the generalized arcsine law. Therefore, we have
found anomalous fluctuations in apparently normal diffusion
processes. These anomalous fluctuations are reminiscent of
distributional limit theorems in infinite ergodic theory [5–8].
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APPENDIX A: DERIVATION OF EQ. (14)

Here we derive the RSD in Brownian motion with the
diffusion coefficient D. Since this process is described by
Brownian motion, displacement δr(�; t) ≡ r(� + t) − r(t)
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follows a Gaussian distribution with a mean 0 and variance
2dD�. The mean TMSD is straightforwardly calculated as

〈{δ2(�; t)}〉 = 2nD�. The second moment of TMSD can be
calculated as follows:

〈{δ2(�; t)}2〉 ∼ 2

t2

∫ t

0
dt ′

∫ t

t ′
dt ′′〈δr2(�; t ′)δr2(�; t ′′)〉

= 2

t2

∫ t

0
dt ′

∫ t ′+�

t ′
dt ′′〈δr2(�; t ′)δr2(�; t ′′)〉 + 2

t2

∫ t

0
dt ′

∫ t

t ′+�

dt ′′〈δr2(�; t ′)〉〈δr2(�; t ′′)〉

= 2

t2

∫ t

0
dt ′

∫ t ′+�

t ′
dt ′′{〈δr2(t ′′ − t ′; t ′)〉〈δr2(�; t ′′)〉 + 〈δr4(t ′ + � − t ′′; t ′′)〉

+ 〈δr2(t ′ + � − t ′′; t ′′)〉〈δr2(t ′′ − t ′; t ′ + �)〉} + 2

t2

∫ t

0
dt ′(t − t ′ − �)(2dD�)2

= (2dD�)2

(
1 + 4�

3dt

)
. (A1)

It follows that the RSD decays as

�2(t ; �) ∼ 4�

3dt
(t → ∞). (A2)

APPENDIX B: NUMERICAL SIMULATION

In numerical simulations we used 105 trajectories to
calculate the PDFs of δD for cases (i) and (ii) and D for
case (iii). To solve the Langevin equation (4) numerically, we
used the Euler method, where the time step is �t = 10−3.
For the stochastic process D(t), we assume that the first

sojourn time is also drawn from the same sojourn time
distribution, that is, an ordinary renewal process [43]. In
other words, we do not consider an equilibrium renewal
process. This is because there are no finite relaxation times
in all cases we considered. To generate random variables
following a power-law distribution, we used a uniform random
variable U on [0,1] and transformed it to τ0U

−1/α , where τ0

is a cutoff for the smallest value. Thus, we used ρ±(τ ) =
α±τ−1−α±/τ

α±
0 for τ � τ0 and 0 for τ < τ0, where τ0 =

10−3. In case (i), we used the exponential distribution for
ρ+(τ ).
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