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Quantum-classical correspondence principle for work distributions in a chaotic system
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We numerically study the work distributions in a chaotic system and examine the relationship between
quantum work and classical work. Our numerical results suggest that there exists a correspondence principle
between quantum and classical work distributions in a chaotic system. This correspondence was proved for
one-dimensional integrable systems in a recent work [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038
(2015)]. Our investigation further justifies the definition of quantum work via two-point energy measurements.
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I. INTRODUCTION

In the past two decades, substantial developments have been
made in the field of nonequilibrium statistical mechanics in
small systems [1,2]. A set of exact relations of fluctuations
regarding work [3—8], heat [8,9], and entropy production [10]
have been discovered. They are now collectively known as
fluctuation theorems (FT) [1-3,8]. These theorems are valid
in processes that are arbitrarily far from equilibrium and have
significantly advanced our understanding about the physics
of nonequilibrium processes in small systems. These FT
not only imply the second law of thermodynamics but also
predict quantitatively the probabilities of the events, which
“violate” the second law in small systems. Despite these
developments, there are still some aspects of these FT that
have not been fully understood. One of these aspects is the
definition of quantum work. For an isolated quantum system,
there are various definitions of quantum work [11]. However,
it is found that within a large class of definitions, only one
[12,13] of them satisfies the FT. That is, the work defined
through two-point energy measurements: one at the beginning
and the other at the end of a driving process [14,15]. This
definition of quantum work, though leading to FT, seems ad
hoc because the collapse of the wave function [16], which plays
a central role in determining the work [13], brings profound
interpretational difficulty to the definition of quantum work
[17]. It is thus important to justify the definition of quantum
work, i.e., to find other independent evidences (besides the
validity of FT) to support the definition of quantum work via
two-point energy measurements. Since the correspondence
principle [18] is a bridge connecting quantum and classical
mechanics, we believe that the correspondence principle for
work distributions (if there is one) can be a good evidence to
justify this definition.

Recently, the relationship between quantum and classi-
cal work distributions in one dimensional (1D) integrable
systems has been carefully studied [17]. By employing the
semiclassical method [19,20], it is rigorously proved that such
a correspondence principle exists for work distributions in
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1D integrable systems when the quantum work is defined
via two point energy measurements. Nevertheless, for a
generic system, especially a chaotic one, the correspondence
principle for work distributions has not been explored so
far. In this article, we try to address this issue following
the efforts of Ref. [17]. If the correspondence principle for
work distributions also exists in chaotic systems, then the
justification of the definition of quantum work via two-point
energy measurements can be extended to chaotic systems.

Among various chaotic systems, one of the most extensively
studied systems is the billiard systems [21,22]. In this article,
we numerically study the work distribution in a driven billiard
system—a ripple billiard [23] with moving boundaries. We
numerically compute the time evolution of the chaotic billiard
system in both quantum and classical regimes and then study
the relationship between the distributions of quantum work
and classical work. Our numerical results suggest that the
correspondence principle applies in this context.

The paper is organized as follows. In Sec. II we introduce
the quantum and the classical transition probabilities, which
are used in the calculation of the work distributions. In
Sec. III, we introduce the billiard model. In Sec. IV, we
present our numerical results and our analysis. In Sec. V, we
make some concluding remarks. The numerical method is
presented in the Appendix.

II. CLASSICAL AND QUANTUM
TRANSITION PROBABILITIES

We consider a quantum system, which is driven in a
nonequilibrium process from time ¢+ =0 to t = t. This is
usually characterized by the work parameter of the system
b that changes from A to B. The work parameter b can be
the position of a piston or the spring constant of a harmonic
oscillator or else. For this nonequilibrium process, its work
distribution function can be expressed as [17,24]:

PeW) =Y P2m)PCn®im™s(W — EF + Epy). (1)

It is clear that the work distribution function is determined
by two factors. The first one is the initial thermal distribution
function PZ(m) = e FEn)z%, 729 =Y e PEL, where E/
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is the energy of the mth eigenstate when b = A, Z/? =
> e b Eyn is the partition function and B is the inverse
temperature of the initial thermal state. The second one is the
transition probability P2(n®|m*) between the initial and the
final energy eigenstates during the driving process. Similarly,
the work distribution function of the corresponding classical
system is [17]

PEW) ~ Y P{m)PC(n®lm™8(W — Ef + Epy).  (2)

m,n

where P$(m)[P€(n®|m*)] is the classical counterpart of
PL(m)[P(n®|m™)].

The transition probability of the quantum system is defined
as

PemBim*) = [(n® |0 @)|m™) 2, 3)

where |m*) and |n?), respectively, represent the mth eigenstate
at the initial time ¢ = 0 and the nth eigenstate at the final
time ¢ = 7. Accordingly, P2(n®|m*) denotes the quantum
transition probability from the mth eigenstate when b = A to
the nth eigenstate when b = B. U(¢) is the unitary operator
satisfying ihdU(t)/dt = H(1)U(t), where H(r) is the time-
dependent Hamiltonian of the system.

While the definition of the quantum transition probability
is straightforward, the definition of its classical counterpart is
a bit subtle. The classical transition probability P (n?|m?) is
defined as follows [17,25]. Initially, the microscopic states
are evenly sampled from the energy shell E = E/ in the
classical phase space (see Fig. 1). Each microscopic state is
represented by a phase-space point. The initial states then
undergo Newtonian dynamics governed by H(z), when the
work parameter b(¢) is varied according to a given protocol.
The corresponding classical transition probability is defined as

PEmP i) = 0 “)

N total
where Ny, is the number of representative points which fall
into the energy window (EZ,EP, ) att = 7, and Nyg is the
total number of the representative points. So P€(n®|m*) is the
probability of a classical particle whose energy is initially EA
and, finally, falls into the energy window (E” E} il B att =r.

In order to study the initial thermal distribution PC(m) and
PAQ (m), we need to clarify the density of states. The density
of states for the classical system is given by

P(E) = /(2 h)d

where g and p are the coordinate and the momentum of
the system, d is the spatial dimension, H(p,q) = H(0)
is the initial Hamiltonian. Accordingly, the initial thermal
distribution for this classical system reads

— H(p,q)], )

EII?I‘FI 1
Py (m) = / PE)oze PPdE, (6)
Eq Za
where
d'qd’p
7€ _ e PH(P.9) 7
A / Qrhyd ¢ ™

is the classical partition function.
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(b)

FIG. 1. Ripple billiard with moving boundaries. The coordinates
in the position space and the momentum space are denoted by (x,y)
and (py, py), respectively. Parameter b is varied in time b(t) = by +
vt, where by = A. The parameter a represents the ripple amplitude.
The red dots in the Fig. 1(a) show that the initial states are evenly
sampled in the coordinate space. Figure 1(b) shows that the initial
states are evenly sampled in the momentum space from an energy
shell E;y = (p} 4 p3)/2M, where M is the mass of the billiard ball.

m

For the quantum system, according to Gutzwiller [21] the
semiclassical density of states is equal to the summation of the
classical density of states p(E) and an oscillating correction
term p(E) [18,21,26-28]

p(E) = p(E) + p(E). ®)

The oscillation part §(E) has an origin in the classical period
orbits and is absent for classical systems. To the first-order
approximation, or on an energy scale larger than the period of
O(E), we can ignore the oscillation part §( E) and keep only the
average density of states p(E). Therefore, the initial thermal
distribution for the quantum system is approximately equal to
its classical counterpart

0 En 1
PP = [ o) _ge Prar
Eqp zZ,
Epp 1
z/ ﬁ(E)Fe_ﬁEdEz PS{(m).  (9)
E

A
m A

As a result, the comparison between the quantum (1) and the
classical (2) work distributions is reduced to the comparison
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between the quantum PC®mZ|m?A) (3) and the classical
PS¢ (n8|m*) (4) transition probabilities.

Both the quantum transition probability (3) and its classical
counterpart (4) are computable. However, unlike the integrable
systems [17], for chaotic systems, we have to resort to the
numerical method as the analytical semiclassical (WKB) wave
function [29] of the energy eigenstate in a fully chaotic system
is usually unavailable [18,22,27,30-32]. We will introduce
the model in the next section. Our numerical results will be
presented in the Sec. IV.

III. THE RIPPLE BILLIARD MODEL

A prototype model widely studied in quantum chaos is
a static billiard system whose boundaries are fixed and the
Hamiltonian is time independent. For our study, we choose
a ripple billiard [23] whose sinusoidal boundaries move in
opposite directions. The advantage of choosing the ripple
billiard instead of other more extensively studied systems
in literature, such as the stadium billiard [21,33], is that
each entry of its Hamiltonian matrix can be expressed in
terms of elementary functions [23]. Thus the eigenenergies
and eigenstates of the system at any moment of time can
be obtained through exact numerical diagonalization, which
is usually not doable in chaotic systems. As a result, we
can accurately simulate the quantum dynamical evolution in
the chaotic system, which is usually a big challenge [34].
In addition, the degree of chaoticity of the model can be
controlled by tuning the geometric parameters a, b, and L,
which enables us to study the influence of the degree of
chaoticity easily.

The ripple billiard [23] with both boundaries moving at
the same speed and in the opposite direction is illustrated
in Fig. 1. In our model, the work parameter is the (half)
length b of the billiard. We move both the curved boundaries
because the symmetry can help us simplify the calculation. The
position and the momentum of the particle inside the billiard
are denoted by (x,y) and (py,py), respectively. This model
system can be characterized by the following parameters:
by, a, L, v, and 1. by is the initial length, a and L are the
parameters characterizing the boundary shape of the ripple
billiard, while v is the speed of the moving boundary and t is
the total driving time. In an appropriately chosen coordinate,
the boundaries of the ripple billiard can be depicted by

f(y.0) = £[b(t) —acos2ry/L)], (10)

where a represents the ripple amplitude and b(t) = by + vt
denotes the length at time . When a is decreased, the system
becomes “less chaotic.” When a = 0, the system becomes
integrable. Since we are interested in the dynamical evolution
of a chaotic system, we fix a at a finite number and vary b in
time. For a large a the system is always in the deep chaotic
regime.

This kind of driven quantum systems are of interest in
the field of mesoscopic physics and have been studied by
Cohen et al. [35]. For a 1D system, work distributions in
a quantum and a classical billiard have been obtained in
Refs. [36,37]. For 2D systems, some brief results regarding
time-dependent integrable quantum billiards (rectangular and
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elliptical billiards) have been reported by Shmelcher et al. [38],
but no results about chaotic billiards were reported there.

It should be emphasized that the counterpart of the energy
eigenstate |m”) in the classical system is a microcanonical
ensemble, namely the collection of representative points
evenly sampled from a 3D “energy shell” E = E2 in a 4D
phase space. In the coordinate space, the position components
of the representative points (x,y) are evenly sampled inside
the potential well [see Fig. 1(a)]. In the momentum space,
the momentum components (py, p,) are evenly sampled from
the energy shell E2 = (p2 + p?)/2M [see Fig. 1(b)]. Such a
choice of sampling assures a uniform (isotropic) distribution
in the coordinate (momentum) space after the local average
over a vicinity which is small compared to the size of the
potential well but large compared to the quantum wave length
[30,32,39]. For simplicity, we set the mass of the billiard ball
to be M = 0.5. In the next section, we numerically simulate
the classical and the quantum evolution of the driven ripple
billiard system and compare these two transition probabilities
to check if there exists the correspondence principle between
the transition probabilities in this chaotic system.

IV. NUMERICAL RESULTS

We develop a method to accurately calculate the quantum
transition probabilities in a ripple billiard system with moving
boundaries. Technical details can be found in the Appendix.
We only present the numerical results in the main text.

An example of the comparison between the quantum and
the classical transition probabilities is shown in Fig. 2. The
parameters are by = 0.5,a = 0.2, L =1.0,v =2.0,7t =04,
and the Planck’s constant 2 = 1.0. The initial state is the
100th eigenstate (m = 100). In Fig. 2 we notice that (i) both
the quantum and the classical transition probabilities are less
regular than those in the 1D integrable case [17] and (ii) the
quantum transition probabilities are sparse and discrete, while
the classical transition probabilities are quasicontinuous and
spread in a wide range of the energy spectrum. In order to
compare these two transition probabilities in a better way,
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FIG. 2. Comparison between quantum P2 (n®|m*) and classical
PC¢(n®|m*) transition probabilities. Here the horizontal axis labels
quantum number n. The parameters are setas by = 0.5,a = 0.2, L =
1.0, v =2.0, t = 0.4, i = 1.0. The initial state is set to be the 100th
eigenstate, namely m = 100. The partial enlarged details are shown
in the insetting.
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FIG. 3. Comparison between quantum S2 and classical S¢ cumulative transition probabilities with various sets of parameters a, v, and /.
Here the horizontal axis labels quantum number 7 and the vertical axis labels the cumulative transition probability S2(S¢). The parameters
in the four figures are respectively set as: (a) by = 0.5,a =0.2,L =1.0,v=2.0,t =04,h=1.0;(b) by =0.5,a =0.2, L = 1.0, v = 8.0,
t=01,h=1.0;(c)bp=05,a=03,L=1.0,v=2.0,t=04,h=1.0;(d) by =0.5,a=02,L =1.0,v=2.0,7 =04, h = 1.5571.

we plot the cumulative transition probabilities in Fig. 3 for
different sets of parameters. From Fig. 3 we can see that
the quantum and the classical transition probabilities do not
collapse onto the same curve but are very close to each other.
Especially the quantum cumulative transition probability curve
oscillates around the smooth classical cumulative transition
probability curve. This phenomenon is reminiscent of the
results in 1D integrable systems [17], where it has been
explained as a consequence of the interference of different
classical trajectories. Although we cannot clearly see the cor-
respondence between the quantum and the classical transition
probabilities in Fig. 2, we obviously observe the convergence
in Fig. 3, which implies a corresponding principle between the
transition probabilities.

Having demonstrated the correspondence between the
quantum and the classical transition probabilities, we will
study the effects of the degree of chaoticity (characterized by
a), the speed (v) of the moving boundary, and the value of the
Planck constant (/) on the convergence of the two transition
probabilities. To this end, we introduce a measure to quantify
the distance between the classical and the quantum cumulative
transition probabilities. The measure we choose is the root-
mean-square error (RMSE) (see textbooks on mathematical
statistics, for example, Ref. [40]). Attime 7, the RMSE R(¢) be-
tween the two cumulative transition probabilities is defined as

Yisezse [SF(0) = S20]
N()

R() = , an

where  SC(1)=Y;_, PC(kBO|m?) is the classical
cumulative transition probability at time ¢ and S2(t) =
>, P2kBDm™) is its quantum counterpart. We use k5@

instead of k® to emphasize that the work parameter B is time
dependent. The sum of the squared difference between S¢(t)
and SnQ (#) is taken over all n where these two quantities are
not equal. N(¢) is the total number of the quantum numbers
at which these two cumulative transition probabilities differ.
Roughly speaking, R(?) is the average of the local deviations
between these two cumulative transition probabilities at time
t. R(t) = 0 means that the two distributions are identical. The
larger R(?) is, the more distinct the two probabilities Snc () and
S2(t) are. We note that the correspondence principle implies
the convergence between the classical and the quantum
transition probabilities in some average sense [17]. The
RMSE quantifies the average distance between two probability
distributions. Hence, we believe that the RMSE can be a good
measure to quantify the applicability of the correspondence
principle.

In Figs. 4 and 5 we show the numerical results of RMSE for
different values of a and v. For the convenience of comparison,
the horizontal axes in Figs. 4 and 5 are chosen to be the
moving distance instead of the moment of time 7. In other
words, we compare the RMSE when the moving boundaries
reach the same location. In Fig. 4, the fixed parameters are
bp=05L=10,v=2.0,7 =0.4, and a is chosen to be
a =0.1,0.2,0.3. In Fig. 5, a is fixed at 0.2 while v is set
to be v = 1,8,40, and, accordingly, the total moving times
are T = 0.80,0.10,0.02. All the other parameters in Fig. 5
are the same as those in Fig. 4. In all these cases, R is
initially equal to zero and increases very rapidly (the top is
not visible in some figures) and then begins to decrease. We
observe that R decreases with oscillations in all the cases
and, finally, saturate at a finite value. The initial jump of
RMSE from O to a large number is probably due to the local
nature of the classical dynamics and the nonlocal nature of the
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0.6
Moving Distance

FIG. 4. Comparison of RMSE as a function of boundary-moving
distance (one side) at different degrees of chaoticity « = 0.1,0.2,0.3.
The other parameters are set as by = 0.5, L =1.0,v=2,7 =04,
h = 1.0 and the initial state is the 100th eigenstate (m = 100).

quantum dynamics. In a short time, the classical transition
probabilities cannot fully reflect the global feature of the
system. However, even on a short time scale, the quantum
transition probabilities can fully reflect the global feature of
the system. Hence, at the initial stage of the driving process,
these two transition probabilities differ substantially. Figure
4 shows that the larger the parameter a is, which means
that the system becomes more chaotic, the more rapidly R
falls, and the smaller the value at which R saturates. This
result indicates that these two cumulative probabilities become
closer when the system becomes more chaotic and could be
explained as follows: For a 2D system, the more chaotic it
is, the better the quantum-classical correspondence principle
applies [41]. Figure 5 shows that as the boundary-moving
speed increases, the two cumulative transition probabilities
become more distinct. A similar result was obtained in the 1D
piston system [36]. This result can also be explained by the fact

050
u —v=1
(é) 0.4 --y=8 |
oo e v=40

0.3} ]

0.2k}

0.1

MovinogsDistance

FIG. 5. Comparison of RMSE as a function of boundary-moving
distance (one side) at different boundary-moving speeds v = 1,8,40.
The other parameters are set as by = 0.5,a =0.2,L =1.0,A=1.0
and the initial state is the 100th eigenstate (m = 100). T is set to be
7 = 0.80,0.10,0.02 to ensure the total moving distance equals 0.80
in all three experiments.
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FIG. 6. Comparison of RMSE as a function of boundary-moving
distance (one side) for different values of A. The other parameters are
setas by = 0.5,a = 0.2, L = 1.0, v = 2, t = 0.4. The initial energy
of the system is set to be the 100th eigenenergy when /& = 1.0. The
quantum number of the initial states are equal to m = 100, m = 40,
and m = 10, respectively.

that the quantum transition probabilities can always reflect the
global property of the system, while the classical transition
probabilities cannot unless the boundaries move slowly and
the classical particles collide frequently with the boundaries.

We have also studied the effect of the Planck’s constant &
on the convergence of the quantum and the classical transition
probabilities. As is known, quantum and classical predictions
must agree when the Planck constant approaches zero (A — 0)
[18]. Therefore, it is interesting to see how R changes in this
chaotic system when we adjust the value of the Planck constant
h. For this purpose, we should keep the energy, instead of the
quantum number, of the initial state as a constant. Except for
that, all the other parameters by, a, v, L, and t are fixed.
As we cannot guarantee the accuracy of numerical results
when we decrease the value of % (see the Appendix), we
increase the value of A and present the results in Fig. 6.
We clearly observe the increase of the saturated value of the
RMSE when # increases. This result implies that the difference
between these two cumulative transition probabilities becomes
more prominent with the increase of 4. Although we cannot
give accurate numerical results for a smaller value of A for
computational reasons, our results in Fig. 6 serve as an indirect
evidence that, in this chaotic system, the distance between
these two transition probabilities will diminish when the value
of h decreases. This is in accordance with the well-known
correspondence principle that quantum mechanics is reduced
to classical mechanics in the limit of & — O.

In this section, we have shown that under various conditions
there does exist a quantum-classical correspondence principle
of transition probabilities in a chaotic system. The more
chaotic the system is, or the more slowly the boundaries
move, the better the convergence between the quantum and the
classical transition probabilities becomes. Also, we indirectly
show that the smaller the value of the Planck constant #
is, the better the convergence between these two cumulative
transition probabilities is. Last but not least, we mention that
the correspondence principle between these two transition
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probabilities may break down in the long-time limit (after the
so-called Ehrenfest time) in a chaotic system [31,42-44]. But
in the case of nonequilibrium driving, especially a transient
driving process, as is usually the case in the study of FT, the
correspondence principle is still valid.

V. CONCLUSION

In this article we numerically study the correspondence
principle for work distributions in a prototype model of
quantum chaos—a driven ripple billiard system. The quantum
(or classical) work distribution function is determined by two
factors: (1) the initial thermal equilibrium distribution PAQ (m)
[or P (m)] and (2) the transition probabilities P2(n®|m*)
[or P¢(n®|m™)]. Since the initial distribution functions for
the classical and the quantum cases are approximately equal,
the correspondence principle between work distributions is
simplified to the correspondence principle between transition
probabilities. Unlike the 1D integrable systems [17], we
cannot employ analytical approaches due to the lack of the
semiclassical (WKB) wave function in a fully chaotic system
[18,22,27,30-32]. Instead, we numerically calculate both the
classical and the quantum transition probabilities. Compared
with the 1D integrable systems, the transition probabilities in
the chaotic system are less regular. In particular, the quantum
transition probabilities are sparse and discrete, while the
classical ones are diffusive and quasicontinuous. While these
features make the correspondence principle in the chaotic
system less “evident,” we still observe the convergence from
the cumulative transition probabilities, thus demonstrating that
the correspondence principle of the transition probabilities
applies in the ripple billiard system. Our numerical results
indicate that the convergence, which is quantified by the
statistical quantity RMSE, becomes better when the system is
more chaotic or the driving speed gets slower. We also provide
indirect evidences that the convergence becomes better when
h decreases.

We emphasize that, similarly to integrable systems [17],
this correspondence principle is a dynamic one (the quantum
and classical transition probabilities converge when i — 0)
instead of the usual static one (probability distributions in
position space converge for large quantum number) [45].
Hence, in the context of semiclassical physics, our work
complements extensive previous studies on the static corre-
spondence principle. In the context of nonequilibrium quantum
thermodynamics, our work complements the recent progress
made in Ref. [17] and further justifies the definition of quantum
work via two point energy measurements.

In the future it would be interesting to explore the dynamic
correspondence principle in a quantum many-body system,
where indistinguishability [46] and the spin statistics effect
will make the quantum-classical correspondence principle
even more elusive. These problems are left for our future
works.
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APPENDIX A: NUMERICAL METHOD

We consider the quantum and the classical dynamics of
the ripple billiard system with both boundaries moving at
the same speed v and in the opposite directions. For the
classical case, we numerically simulate the evolution of a
classical particle undergoing Newtonian dynamics. Then we
repeat the simulation while changing the initial location and
the initial direction of the velocity of the particle. We make a
histogram by counting the number of particles [Ny, in Eq. (4)]
which fall into the energy window (Ef,EP ) at the moment
of time ¢t = t. This histogram gives the classical transition
probability P¢(n®|m*). In our numerical experiment, we
repeat the simulation for 1 million times [Ny in Eq. (4)]
for each set of parameters. We recall that the initial locations
in the coordinate space and the directions in the momentum
space are evenly sampled.

For the quantum case, the evolution is described by
the solution of the following time-dependent Schrodinger
equation:

2

_h_(ax2 + ai)w(x’y’t) = ihatl/f(%y’f),

o (AD)

which is subjected to the boundary condition v |3p = 0, where

D={xy):=fy.H) <x < f(y,0),0<y <L}

and

(A2)

f(y,t) = b(t) — acos2y/L). (A3)

In the following we set L = 1 and M = 0.5 for simplicity. One
of us, B. Wu and collaborators [23], have given the solution to
the Schrodinger equation of the static ripple billiard system

—h2(8—2 + 8—2>w<x N=EQy).  (Ad)
9xZz  9y? ’ A
with the time-independent boundary
—f) <x < fO), (AS5)
where
f(»y)=b—acosmy). (A6)

To solve Eq. (A4), they suggest to straighten the boundaries
by introducing a pair of curvilinear coordinates (u,v)

X
u=_—-:,
2f(y)

In terms of coordinates (u,v), the ripple billiard is transformed
into a square billiard. Let us introduce a set of orthogonal and
complete wave functions

Omn(x,y) = ,f(iy) sin |:m7r <% + %)} sin(nwy). (A8)

v =Y. (A7)
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QUANTUM-CLASSICAL CORRESPONDENCE PRINCIPLE ...

In the basis of ¢, ,(x,y), Eq. (A4) can be transformed into a
matrix equation,

00
Z Hm’n’mnBy[nn = Elenfn/, (A9)

m,n=1

and the Hamiltonian matrix elements are

2,252
Hywimn = JZ_ (Sm/,m (Inz’ Ir%+n)
+ 127 28,y ' mOnw n + nm2h*as,, m]n2 .
+am* WS mdy) , — 2a* 08 ),

332 1 2
+2mnan’h (K,L rym + Koy )Jn "
+2ma7r3h2(K,L '+m + Kr}1 m)‘]n3’,n
— 6ma2n3h2(K,:1,+m + K| Lm)JS,
+2m*a* W (K — Ky i) Jo s (A10)

where

. 0, n is odd Al
. lefaz (—b_vzz_“z)”/z, n is even, ( )
n is odd ALD
Zb%; f;z_)“z I', niseven, (Al2)

n=20
K'=1" _\» Al3
) ) a

1/12 n=20

2 _ <

K, = {(_nlz)ﬂjl’ n 0, (A14)
J2 = nl+n 2 + Ir}/—n—Z - Irzl’+11+2 - Irll’—n+2’ (AlS)
‘])?’,n = 1,:/7"+2 + Inl’fn 2 Inl "+n+2 In] "+n—21 (A16)

1
5 2 2 2 2
]n/,n = In’ In '4n E(ln’—n+4 + In’—n—4

]r12+n+4 [r12+n 4) (A17)
For the ripple billiard with moving boundaries, we choose

@m.n(x,y,t) as a set of orthonormal basis,
1>j| sin(ny).

S Eyat) = Lsm[ﬂ<L+
mnl Y= o0 T L 2 \Fon
(A18)

In comparison to Eq. (A8), here we only replace f(y) with
f(y,1). We expand the wave function of time # ¥ (x,y,?) in the
basis of ¢y, ,(x,y,1),

YY1 =Y Con(Obmn(x,3,1). (A19)
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Substituting ¥ (x,y,7) (A19) into Eq. (A1), and taking the inner
product with ¢,,,(x,y,t), we obtain

Z[Hm/n’mn (t) + ith’n’mn (t)]cmn (t) = ihém/n’(t)v (AZO)

m,n

where H,ypmn(t) is the Hyy iy in Eq. (A10) with b replaced
by b(t)5 and Bm’n’mn(t) is
Bunma(t) = [ésmm +m77( m+m+K1/ )]

'([r:’—n n' +n)b(t) (AZ])

Here K,L,im and Inl,in are defined in Egs. (All) and (A13).
We rewrite Eq. (A20) as

1
ém’n’ (t) = Z [E Hm’n’mn (t) + Bm’n’mn (t)] Cmn (t) (AZZ)

m,n

This is an ordinary differential equation and we solve it
numerically by using the Crank-Nicolson method, where
Eq. (A22) is approximated by

Cm’n’(tk+l) - Cm’n’(tk)

Tey1 — I

1 1
= E Z E[H(tk)]m’n/mn + Bowmn (8 { Cun (1)

+= Z { [H(tk+l)]mnmn + anmn(tk+l)}cinn(tk+l)
(A23)

According to Eq. (A23), we can solve the coefficients of the
(k 4 1D)th time step ¢,y (frr1) from those of the kth time step
¢ (t). The initial coefficients c¢,,, (0) can be easily calculated
by decomposing the initial state in the basis of ¢(x,y,0).

The biggest challenge in our numerical calculation is the
computational resources. Notice that in Eq. (A23), we need to
multiply matrices and inverse the matrices in each time step.
If the size of the matrix is too large, then the computational
resources required will be unacceptably huge. Hence, properly
choosing the cutoff of the matrix is the key point in the
numerical calculation. In our calculation, the initial state is
the 100th eigenstate (m = 100), the total time step is ~10°,
and the cutoff dimension of the matrix is 2000 when & = 1.0.
When we change the parameter £, the quantum number of the
initial state needs to be changed accordingly to keep the initial
energy as a constant. When 7 decreases, the quantum number
of the initial state changes into a larger number, so the size
of the matrix must be chosen to be larger, which means the
required computational resources will increase exponentially
and this method will soon run out of computational resources.
This is the reason we cannot guarantee the accuracy when we
decrease the value of /. This method may also fail when the
moving speed is too fast or the quantum number of the initial
state is too large and for that the cutoff dimension of the matrix
2000 is too small in these situations.
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