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We demonstrate equilibration of isolated many-body systems in the sense that, after initial transients have died
out, the system behaves practically indistinguishable from a time-independent steady state, i.e., non-negligible
deviations are unimaginably rare in time. Measuring the distinguishability in terms of quantum mechanical
expectation values, results of this type have been previously established under increasingly weak assumptions
about the initial disequilibrium, the many-body Hamiltonian, and the considered observables. Here, we further
extend these results with respect to generalized distinguishability measures which fully take into account the
fact that the actually observed, primary data are not expectation values but rather the probabilistic occurrence of
different possible measurement outcomes.
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I. INTRODUCTION

Does a macroscopic system, prepared in a nonequilibrium
initial state, and evolving in isolation from the rest of the
world, approach a steady state in the long time limit? Due to
quantum revivals, time inversion invariance, and other quite
obvious reasons (see Sec. III A), such a relaxation towards
an equilibrium state can certainly not be true in the strict
sense. On the other hand, “practical equilibration” has been
established in Refs. [1–4] under quite weak conditions in
the sense that the expectation value of quantum mechanical
observables remains extremely close to a constant value for
the overwhelming majority of all sufficiently late times. In
other words, deviations of expectation values from a steady
long time limit are either so small or so rare that they can be
safely neglected in any real experiment.

Yet, it has been pointed out by Short [2] that these findings
are still not fully satisfactory since the primary data in a
quantum mechanical measurement are not expectation values
but rather the probabilistic occurrence of different possible
measurement outcomes. Indeed, the exact probabilities of
those outcomes are generically not strictly identical to the
presumed steady state values, hence the difference unavoid-
ably must become statistically resolvable when repeating
the measurement sufficiently many times. If such a differ-
ence would already be recognizable by an experimentally
feasible number of repetitions, then practical equilibration in
the above sense would thus no longer hold true. The main
purpose of our present paper is to exclude the latter possibility
by further developing the approach from Refs. [2–4].

Two immediate next questions are as follows: Does the
steady long time limit agree (at least approximately) with the
value predicted by one of the canonical ensembles from text-
book statistical physics? What is the characteristic time scale
governing the relaxation towards equilibrium? Both questions
are clearly of great conceptual as well as practical importance,
and they have been recently addressed by numerous analytical,
numerical, and experimental works (see Refs. [5–8] for a few
representative examples). Yet, these questions are beyond the
scope of this paper.

II. GENERAL FRAMEWORK

We focus on time-independent Hamiltonians of the form

H =
∑

n

EnPn, (1)

where the Pn are projectors onto the eigenspaces of H with
mutually different eigenvalues En, and where n runs from 1 to
infinity or to some finite upper limit.

The main examples we have in mind are isolated macro-
scopic systems with, say, f ≈ 1023 degrees of freedom.
Compound systems, consisting of a subsystem of actual
interest and a much larger environmental bath, are thus
included as special cases. While the precise requirements on
H will be provided later, we anticipate that, similarly as in
Refs. [1–4], those rather weak requirements do not imply that
the system must be “non-integrable” or “chaotic” in the sense
of Refs. [6]. Moreover, our explorations may also be of interest,
e.g., for systems with few degrees of freedom [9] but with a
high dimensional “active Hilbert space.”1

As usual, system states (pure or mixed) are described by
density operators ρ and observables by Hermitian operators A.
Expectation values are given by 〈A〉ρ := Tr{ρA} and the time
evolution by ρ(t) = Ut ρ(0)U†

t with propagator Ut := e−iH t

(� = 1), implying with (1) that Ut := ∑
n Pne

−iEnt and hence
that

〈A〉ρ(t) =
∑
m,n

Amn ei(En−Em)t , (2)

Amn := Tr{Pmρ(0)PnA}. (3)

1Here, “a high dimensional active Hilbert space” means that,
analogously as in Eqs. (7) and (8), the energy level populations pn

must be small for all but one n. Apart from trivial cases this implies
that there must be many levels which are non-negligibly populated by
the system state (“active”), and which thus span a high dimensional
Hilbert space.
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Similarly as in (1), any given observable A can be written
in the form

A =
∑

ν

aν Kν, (4)

where Kν are the projectors onto the eigenspaces of A with
mutually different eigenvalues aν . According to textbook
quantum mechanics, given a system in state ρ(t), any single
measurement of the observable A results in one of the possible
outcomes aν , and the probability to obtain the specific outcome
aν is given by

kν(t) := Tr{ρ(t)Kν}. (5)

As an aside, we remark that our present approach could
be readily extended to the so-called positive-operator valued
measure (POVM) formalism [10]: The only formal difference
would be that the pertinent operators Kν are then in general
no longer mutually orthogonal, a property which we never
actually exploit in the following.

Finally, we adopt the viewpoint that no experimentally
realistic measurement yields more than, say, 20 relevant digits.
Hence, it is sufficient to consider observables with less than
1020 different measurement outcomes aν , i.e., we can and will
restrict ourselves from now on to observables A which satisfy
the conditions

ν ∈ {1,2, . . . ,NA}, NA < 1020. (6)

In view of Eq. (1), the specific observable A = Pn describes
the population of the (possibly degenerate) energy level En

with expectation value (occupation probability)

pn := Tr{ρ(t)Pn}. (7)

Since Pn commutes with H from (1), the level populations
pn are t independent (conserved quantities). Thus, they are
entirely determined already by the initial condition (system
preparation).

For typical macroscopic systems with f ≈ 1023 degrees of
freedom, the energy levels are unimaginably dense. Under
realistic experimental conditions it is therefore practically
unavoidable to notably populate a number of energy levels
which is exponentially large in f . In turn, every single
level population pn from (7) is expected to be extremely
small (compared to

∑
n pn = 1) and to typically satisfy the

very rough estimate maxn pn = 10−O(f ). In the following,
we even admit the possibility that one single energy level
exhibits a nonsmall population, for instance, a macroscopically
populated ground state. Accordingly, we may still expect that

max
n

′pn = 10−O(f ), (8)

where max′
npn indicates the second largest energy level

population.

III. PROBLEM OF EQUILIBRATION

A. Preliminary results

Our preliminary formulation of the problem of equilibration
consists in the question whether, in which sense, and under
what conditions the expectation value from (2) approaches a
constant value in the long time limit.

It is quite obvious that the expectation value (2) cannot
rigorously converge towards any long time limit apart from
trivial cases with Amn = 0 for all m �= n. Moreover, it is well
known that any ρ(t) returns arbitrarily close to the initial
state ρ(0) for certain, sufficiently late time points t (quantum
revivals).

The only remaining hope is that (2) approximately
approaches some steady value for most sufficiently large times
t . Intuitively, if any such steady asymptotics is approached at
all, then the most promising candidate appears to be the value
which is obtained by averaging (2) over all times t � 0. Since
all energies En are mutually different [see below Eq. (1)], one
readily can infer from (2) that this putative steady state should
thus be given by 〈A〉ρ̄ := Tr{ρ̄A}, where

ρ̄ :=
∑

n

Pnρ(0)Pn (9)

is a non-negative Hermitian operator of unit trace and thus a
well defined density operator. A result of this type is derived in
Appendix A by combining and refining techniques originally
due to Refs. [3,4,11]. Namely, it is shown that the following
inequality holds for all sufficiently large T :

1

T

∫ T

0
dt [σ (t)]2 � 3 Tr{ρ̄A2} g max

n

′pn, (10)

σ (t) := 〈A〉ρ(t) − 〈A〉ρ̄ , (11)

where max′
npn is the second largest energy level population

[see around Eq. (8)] and g represents the maximal degeneracy
of energy gaps

g := max
m�=n

|{(k,l) : Ek − El = Em − En}| , (12)

with |S| denoting the number of elements contained in the
set S. In other words, g is the maximal number of exactly
coinciding energy differences among all possible pairs of
distinct energy eigenvalues.

In view of (8) and disregarding exceedingly large gap
degeneracies g, the time average on the left hand side in (10) is
extremely small, implying that the deviation (11) must be very
small in modulus for most times t ∈ [0,T ]. In order to quantify
this argument, we define for any given ε > 0 and T > 0 the
quantity

Tε := |{ 0 � t � T : |σ (t)| > ε }| , (13)

where |S| denotes the size (Lebesgue measure) of the set S.
In other words, Tε is the measure of all times t ∈ [0,T ] for
which |σ (t)| > ε holds true. It follows that [σ (t)]2 > ε2 for
a set of times t of measure Tε and that 0 � [σ (t)]2 � ε2 for
all remaining times t contained in [0,T ]. Hence the temporal
average on the left hand side of (10) must be bounded from
below by ε2Tε/T . It follows that for any given ε > 0

Tε/T � 3 Tr{ρ̄A2} g max
n

′pn/ε
2 (14)

for all sufficiently large T .
Note that the left hand side of (10) remains unchanged if

A is replaced by A + c 1, where c is an arbitrary real number
and 1 the identity operator. Accordingly, we may replace also
on the right hand side of (10) A by A + c 1 with an arbitrary c.
Denoting by amax and amin the largest and smallest eigenvalues
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of A [cf. (4) and (6)], and by �A := amax − amin the range
of A, we can and will choose c so that |aν − c| � �A/2 for
all eigenvalues aν of A. It follows that Tr{ρ̄ (A + c 1)2} �
(�A/2)2 on the right hand side of (10), and likewise in (14),
i.e.,

Tε

T
� 3 �2

A g maxn
′pn

4 ε2
(15)

for all sufficiently large T .
Relation (15) together with (8), (12), and (13) represents

the answer to the above stated, preliminary problem of
equilibration: For any given ε > 0 the “true” expectation value
〈A〉ρ(t) deviates from the constant value 〈A〉ρ̄ by more than ε

for a set of times t ∈ [0,T ], whose measure Tε is bounded
by (15) for all sufficiently large T . If ε as well as the right
hand side of (15) are both sufficiently small, which is easily
feasible in view of (8), then it follows that 〈A〉ρ(t) is practically
(within any experimentally achievable resolution) constant for
the overwhelming majority of all times t ∈ [0,T ]. In particular,
T must be so large that the initial decay process (from the
possibly far from equilibrium initial value 〈A〉ρ(0) towards the
equilibrium value 〈A〉ρ̄) is accomplished during a time interval
much smaller than [0,T ].

Note that Hamiltonians with degenerate energy gaps are,
loosely speaking, of measure zero among “all” Hamiltonians.
They only arise in the presence of special reasons like (perfect)
symmetries, additional conserved quantities (besides H ), or
fine tuning of parameters. Generically, all nontrivial energy
gaps Em − En (i.e., those with m �= n) are thus mutually
different, implying g = 1 in (12). Our above results remain
valid even for nongeneric cases with g > 1. Likewise, Hamil-
tonians with degenerate energy eigenvalues are in principle
nongeneric, but still admitted in (1).

In summary, the true system state ρ(t) becomes experimen-
tally indistinguishable from the time-independent approxima-
tion ρ̄ for practically all sufficiently late times t under very
weak conditions on the initial state, the observable, and the
Hamiltonian.

B. Reformulation of the problem

So far, the (non)distinguishability of ρ(t) and ρ̄ was always
meant with respect to the corresponding two expectation values
of the considered observable A. As pointed out by Short [2],
such a distinguishability criterion is not entirely satisfying
since the basic measurable quantities are not expectation
values, but rather the different possible measurement outcomes
aν [see above Eq. (5)]. Hence, the distinguishability of ρ(t) and
ρ̄ should be based on the actually observed, random occurrence
of each outcome aν . More precisely, one should compare in
some suitable way the probabilities kν(t) from (5) and

k̄ν := Tr{ρ̄Kν} (16)

with which the different possible measurement outcomes aν

are observed in the two states ρ(t) and ρ̄, respectively. Indeed,
it could well be that ρ(t) and ρ̄ are indistinguishable as far as
the expectation value of A is concerned, yet the two states are
clearly distinguishable (with high statistical significance) by
the frequencies of observing the different measurement out-

comes aν when repeating the same measurement sufficiently
often [2].

Here and in the following, the term “repetition” (of a
measurement) has the usual meaning, namely, to perform
a measurement of the same observable on an ensemble of
systems in the same quantum mechanical state, each of them
resulting in a random measurement outcome and a concomitant
collapse of the system state according to the common rules of
quantum mechanics [see also above Eq. (5)].

Put differently, the actual problem of equilibration is to
show that the frequencies, with which the different possible
measurement outcomes are realized in the true system state
ρ(t), are not incompatible in any statistically significant way
with the approximation ρ̄.

In this statement of the problem, t is tacitly considered as
being chosen arbitrarily but then kept fixed. (In Sec. V, we
will extend the scope of our results also to cases when the
measurement is taken at a different time in each repetition.)
Moreover, the number of repetitions, henceforth denoted as
Nrep, must remain reasonable, say

Nrep < 1030. (17)

(This bound is reached for 1012 repetitions per second during
the age of the universe.) To understand why such an upper
bound is needed, we focus on the generic case that the
probabilities (5) and (16) with which the outcomes aν are
realized in the two states ρ(t) and ρ̄, respectively, are not
exactly identical for all ν. In the limit Nrep → ∞, it then
must become apparent with arbitrary statistical significance
that the approximation ρ̄ is incompatible with the observed
measurement outcomes, which are sampled according to the
true system state ρ(t). In other words, without imposing
any upper bound on Nrep, the two states ρ(t) and ρ̄ would
generically be trivially distinguishable.

Important first steps in resolving the above stated problem
of equilibration have been achieved in Ref. [2]. In doing so,
the distinguishability of ρ(t) and ρ̄ was quantified as follows:
Imagine that one of the two states ρ(t) and ρ̄ were randomly
chosen with probability 1

2 and then used to sample one of
the different outcomes aν according to the corresponding
probabilities in (5) or (16). Now, the task is to guess from
the observed aν which state [ρ(t) or ρ̄] has been chosen,
and the probability that this guess is correct was shown in
Ref. [2] to be bounded by 1/2 + ∑NA

ν=1 |kν(t) − k̄ν |/4. Hence,
the latter quantity was adopted in Ref. [2] as the basic measure
to quantify the distinguishability of ρ(t) and ρ̄ by means of A.

We think that this approach is still unsatisfying in two
respects: (i) The underlying “state guessing task” is not
exactly equivalent to the above formulated “actual problem
of equilibration”: in the actual problem, the outcomes are
always generated by ρ(t), and not by either ρ(t) or ρ̄ with
equal probability. Moreover, the actual task is not to guess
which of the two states was realized but rather to quantify the
compatibility of the state ρ̄ with the observed measurement
outcomes. (ii) The entire approach is limited to single shot
measurements, i.e., to Nrep = 1. Indeed, already in the case
of two repetitions of the same measurement, resulting in two
outcomes aν1 and aν2 , it is not clear at all which of the two states
should be guessed according to the above described strategy
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from Ref. [2]. While a restriction like in (17) still covers all
cases of practical relevance, the same is no longer true for the
restriction Nrep = 1 considered in [2].

The main objective of our present paper is to resolve the
above issues (i) and (ii). In doing so, we will even admit
one more generalization. Namely, in every repetition j , a
measurement of a different observable Aj may be performed
(but the system state remains the same in each repetition). In
particular, some or even all Aj may still be identical, but in
general they are admitted to be different. In doing so we denote,
similarly as in (5), by K

(j )
ν the projectors onto the eigenspaces

of Aj and by a
(j )
ν the corresponding eigenvalues, where

ν = 1, . . . ,NAj
. Furthermore, their probabilities of occurrence

are denoted, similarly as in (5) and (16), as

k(j )
ν (t) := Tr

{
ρ(t)K (j )

ν

}
(18)

if the system is in the state ρ(t) and as

k̄(j )
ν := Tr

{
ρ̄ K (j )

ν

}
(19)

with respect to the state ρ̄. Accordingly, the outcome of
our Nrep measurements can be uniquely specified by a Nrep-
dimensional vector 
s, whose j th component sj ∈ {1, . . . ,NAj

}
specifies which outcome of Aj was realized in the j th
measurement. The probability to obtain the outcome 
s then
follows as

pt (
s) :=
Nrep∏
j=1

k(j )
sj

(t) (20)

if the system is in the state ρ(t), and as

p̄(
s) :=
Nrep∏
j=1

k̄(j )
sj

(21)

with respect to the state ρ̄. Finally, with the definition

Nobs := max
j

NAj
(22)

we can conclude from (6) that

NAj
� Nobs < 1020 (23)

for all j = 1, . . . ,Nrep.

IV. DISTINGUISHABILITY MEASURES

In essence, the situation encountered above is as follows:
There is a true state ρ(t) (t arbitrary but fixed) and an
approximative state ρ̄. A series of Nrep measurements of the
observables Aj (j = 1, . . . ,Nrep) is performed on the system
state ρ(t), resulting in one of the possible outcomes 
s. Within
this setup, our key question is as follows: Given the outcome

s of such a measurement series, does the approximation ρ̄

explain the observed data 
s notably worse than the truth ρ(t)
would explain them, or are ρ(t) and ρ̄ both about equally well
(or badly) compatible with the given data 
s ? If the latter is the
case with very high probability when the entire measurement
series is repeated many times [i.e., each outcome 
s is realized
with probability pt (
s) from (20)], then the two states ρ(t) and

ρ̄ are practically indistinguishable by means of the considered
observables Aj . Put differently, the approximation ρ̄ is as
good as it possibly can be since it explains the observed
measurement outcomes practically as well as the best possible
theory ρ(t) would explain them.

To further substantiate these ideas, let us focus on an
arbitrary but fixed “test” (or “rule,” “strategy,” “criterion,” etc.)
by means of which we can (or hope to) quantify (in whatever
way) how much worse (or possibly better) the approximation
ρ̄ is compatible with a given data set 
s than ρ(t). In doing
so, the two states ρ(t) and ρ̄ are thus considered as known. In
particular, all the probabilities from (20) and (21) are explicitly
available and may be exploited by our test at hand. In other
words, ρ(t), ρ̄, and 
s are the input of the test, which then acts
like a black box to produce an output in the form of a real
number q(ρ(t),ρ̄,
s).

Without any significant loss of generality we assume that
q(ρ(t),ρ̄,
s) is standardized so that it only takes values within
the interval [−1,1]. Furthermore, q(ρ(t),ρ̄,
s) = 0 indicates
that ρ(t) and ρ̄ are (approximately) equally well (or badly)
compatible with 
s. Finally, increasingly positive q values
correspond to an increasing superiority of ρ(t) over ρ̄ in
explaining the data 
s, and likewise for negative q values.

Note that we can never be “100% sure” that ρ̄ is incom-
patible with the data 
s.2 Hence, any (reasonable) test can only
make certain probabilistic statements (based on some certain
notion of probability, likelihood, confidence, plausibility, ...)
about the compatibility of ρ̄ with 
s, and likewise for ρ(t).

We also note that for some “strange” (unlikely but not
impossible) outcomes 
s of the measurement series, even the
“reality” ρ(t) may be incompatible (in the above mentioned
probabilistic sense) with 
s according to the criteria of the
given test. Likewise, the compatibility of certain 
s with ρ̄ may
actually be better (or less bad) than with ρ(t). Intuitively (or
from a Bayesian viewpoint), it seems plausible that such cases
may be realized whenever a given outcome 
s has the property
that p̄(
s) > pt (
s). Quantitatively, such cases are taken into
account by the negative q values.

A particularly simple example is

q(ρ(t),ρ̄,
s) := f [p(ρ(t)|
s) − p(ρ̄|
s)], (24)

p(ρ(t)|
s) := pt (
s)

pt (
s) + p̄(
s)
, (25)

p(ρ̄|
s) := p̄(
s)

pt (
s) + p̄(
s)
, (26)

where f [x] is some monotonically increasing function of x

with f [−1] = −1, f [0] = 0, f [1] = 1, for instance f [x] =
x. [We tacitly restrict ourselves to outcomes 
s which are
realized with nonvanishing probability, hence, the denomina-
tors in (25) and (26) are nonzero. We also note that since
p(ρ̄|
s) = 1 − p(ρ(t)|
s), the right hand side of (24) could
equally well be written as a function of p(ρ(t)|
s) alone.]

2At first sight, one might think that p̄(
s) = 0 implies “for sure” that
ρ̄ is incompatible with the data 
s. However, as shown in Appendix A
[see below Eq. (A59)], p̄(
s) = 0 implies pt (
s) = 0, i.e., such an 
s is
never realized.
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Within the framework of Bayesian inference, p(ρ(t)|
s) and
p(ρ̄|
s) in (25) and (26) can be identified with the posterior
probabilities of ρ(t) and ρ̄, given 
s has been observed, and
assuming equal prior probabilities for ρ(t) and ρ̄ (i.e., before
the observations 
s are available). Accordingly, (24) may be
interpreted as quantifying the likelihood of ρ(t) compared to
that of ρ̄. We, however, remark that even without adopting a
Bayesian viewpoint, all quantities in (24)–(26) remain well
defined and admit a decent probabilistic interpretation.

Analogously as in (24), one also could, for example,
quantify the compatibility of ρ(t) and ρ̄ with 
s in cases when
all Aj are equal by defining q(ρ(t),ρ̄,
s) in some suitable way
via the two values which are obtained by applying a χ2 test to
the two “null hypotheses” ρ(t) and ρ̄.

Returning to the general case of an arbitrary but fixed test,
any given such test may still admit many different reasonable
choices of q [e.g., different functions f in (24)]. Our first
key hypothesis is now that for any given test it is possible to
choose a function q so that the quality of this test is reasonably
quantified by the distinguishability measure

Q(t) :=
∑


s
pt (
s) q(ρ(t),ρ̄,
s), (27)

i.e., by averaging q(ρ(t),ρ̄,
s) over many measurement series
and weighting every possible outcome 
s with the frequency
pt (
s) with which it is realized. More precisely, the existence
of at least one q function is postulated for which a Q value close
to unity indicates that the given test quite reliably recognizes
the incompatibility of ρ̄ with the measurement series 
s [which
was sampled according to ρ(t)], while a Q value close to zero
indicates that there is no way to recognize by means of the
given test any significant difference between the truth ρ(t) and
the approximation ρ̄ when sampling a data set 
s according
to ρ(t). Note that small negative Q still indicates a good
compatibility of ρ̄ with the measurements, while nonsmall
negative Q values are also possible but would quite plausibly
indicate that the given test is futile, or that one rather should
employ −q instead of q.

The complete set of all tests which fulfill our above
assumptions may still admit some undesirably biased q

functions. The most trivial example is q(ρ(t),ρ̄,
s) := 1 for all

s, yielding the highest possible score of Q(t) = 1. The only
viable way out seems to admit only tests, whose q function
does not exploit the information that the data 
s were actually
sampled according to ρ(t). In particular, we may imagine (as a
hypothetical Gedankenexperiment) that the system was not in
the state ρ(t) but rather in the state ρ̄ without telling this fact
to the person working with a given q function. If we would
in this way secretly sample 
s not according to ρ(t) but rather
according to ρ̄, then the very same q function should now
be able to recognize that the data are (on the average) better
explained by ρ̄ than by ρ(t).

Therefore, our second key hypothesis is that it is sufficient
to focus on tests, whose q functions satisfy the following
additional symmetry property: imagine many repetitions of
our so far considered measurement series. But now, in
every repetition, either ρ(t) or ρ̄ is randomly selected with
probability 1

2 and then used to randomly generate (via the usual
quantum mechanical measurement process) a measurement

series 
s according to the corresponding probability (20) or (21).
In this case, we require that the q function must be unbiased
on the average, i.e.,

∑

s

pt (
s) + p̄(
s)

2
q(ρ(t),ρ̄,
s) = 0 . (28)

While the above two hypotheses seem difficult or impos-
sible to derive from some more fundamental principles, they
appear quite reasonable as they stand and are thus taken for
granted from now on. Their most important virtue is that they
imply, as demonstrated in detail in Appendix B, the general
rigorous bound

|Q(t)| � Qmax(t) := 1

2

∑

s

|pt (
s) − p̄(
s)| (29)

for the distinguishability measure Q(t) from (27), indepen-
dently of any further peculiarities of the considered test and
the concomitant q function. This is the first main result of our
paper.

In particular, one readily verifies that the example
from (24)–(26), with f [x] = x, exhibits the symmetry (28) and
respects the bound (29). More generally, the symmetry (28)
imposes a nontrivial constraint on f [x] and a direct verification
of (29) (without recourse to Appendix B) becomes difficult.

In hindsight, the original task to quantify the compatibility
of ρ̄ with the measurement series 
s may have appeared quite
daunting since this can be done in so many different ways,
most of which one possibly did not even think of in the first
place. The appeal of our main result (29) is that it applies inde-
pendently of the concrete manner in which the compatibility
is quantified. In particular, no explicit knowledge is needed
about the best possible way to quantify the compatibility of ρ̄

with 
s. The only, very weak and plausible, requirements are
that all considered distinguishability measures can be written
in the form (27) for some suitable q function, and that they
respect the symmetry condition (28).

V. FINAL RESULT AND CONCLUSIONS

The upshot of the previous section is as follows: If we
can show that Qmax(t) from (29) is a small quantity, then
there is no way to experimentally detect any statistically
significant deviation of the approximation ρ̄ from the true
system state ρ(t). The latter statement applies for an arbitrary
but fixed time t and for an arbitrary but fixed measurement
series A1, . . . ,ANrep . Hence, if we can show that the same
statement holds simultaneously for all measurement series
which satisfy (17) and (23) and for the overwhelming majority
of all sufficiently late times t , then it follows, analogously as
in Sec. III A, that approximating ρ(t) by ρ̄ can be considered
as perfect for all practical purposes.3

As detailed in Appendix C, it is indeed possible to show
that a result of the above type holds true. Quantitatively, the

3We recall that (23) follows from our assumption (6) and the
definition (22).
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result is analogous to Eqs. (13) and (15), stating that

T ∗/T � ε, (30)

T ∗ := |{ 0 � t � T : Qmax(t) > ε }|, (31)

ε := (122 g max
n

′pn)1/4 N
1/2
obs Nrep (32)

for all sufficiently large T . This is the main final result of
our paper. Its discussion can be conducted along very similar
lines as in Sec. III, hence, we only recapitulate here the
main points: On the right-hand side of (32), g denotes the
maximal degeneracy of energy gaps from (12) (with g = 1 for
Hamiltonians with a generic spectrum). Furthermore, max′

npn

is the second largest level population and, according to (8), is
typically exponentially small in f for a system with f � 1
degrees of freedom. In view of (17) and (23), we thus can
conclude that ε in (32) becomes an extremely small number
already for systems with, say, more than 103 degrees of
freedom. In turn, the Lebesgue measure (31) of those times
t ∈ [0,T ], for which there possibly may exist a non-negligible
chance to observe a resolvable difference between ρ(t) and
ρ̄ by some suitable measurement procedure, is [according
to (30)] negligibly small compared to all times t ∈ [0,T ],
provided T is sufficiently large.

To summarize, the steady state ρ̄ approximates the true
state ρ(t) practically perfectly for all sufficiently large times
t . While the two states are rigorously speaking never close to
each other in some mathematically obvious way, the observ-
able differences are either unresolvably small or negligibly
rare from all practical points of view.

We finally note that by admitting the possibility to employ
in every repetition of the experiment a different observable
Aj , our approach actually also covers the case when the
measurement is performed in every repetition at a different
time point (which strictly speaking applies to every real
experiment). The reason is the usual equivalence of the
Schrödinger and Heisenberg pictures, i.e., a temporal change
of the system state can be replaced by an equivalent change of
the considered observable.
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APPENDIX A

In this Appendix, we provide the derivation of Eqs. (10)
and (11), i.e., we show that for all sufficiently large T ,

∫ T

0

dt

T
[σ (t)]2 � 3 Tr{ρ̄A2} g max

n

′pn, (A1)

σ (t) := Tr{ρ(t)A} − Tr{ρ̄A}, (A2)

where g is the maximal degeneracy of energy gaps from (12),
and max′

npn is the second largest among all energy level
populations from (7).

1. Preliminaries

We recall that the Pn in (1) are the projectors onto the
eigenspaces of the Hamiltonian H , where n runs from 1
to infinity or to some upper finite limit. In other words,
n ∈ I , where the index set I is either equal to N or of the
form {1, . . . ,L} with a finite upper limit L ∈ N. Hence, the
projectors Pn satisfy the usual orthogonality and completeness
relations, i.e.,

PmPn = δmnPn (A3)

for all m, n ∈ I and ∑
n

Pn = 1, (A4)

where 1 is the identity operator and, as in (1), the sum runs
over all n ∈ I . Next, we define

ρn := Pnρ(0)Pn (A5)

and we denote by SO the set of operators which contains all
the Pn’s and all the ρn’s. It follows that all operators in SO

are Hermitian and commute with each other, hence, there
must be a common eigenbasis for all operators contained
in SO . In other words, there is an orthonormalized basis
{|γ 〉}Dγ=1, whose dimension D may be either finite or infinite,
and whose associated projectors Pγ := |γ 〉〈γ | commute with
all operators contained in SO . As a consequence, also the
projectors

X :=
d∑

γ=1

|γ 〉〈γ |, (A6)

Y := 1 − X =
D∑

γ=d+1

|γ 〉〈γ | (A7)

commute with all Pn and ρn, i.e.,

XPn = PnX , Xρn = ρnX (A8)

for all n, and likewise for Y . With the definition

Ã := XAX (A9)

for arbitrary observables A, it follows with (A8) that

P̃n := XPnX = PnX = XPn. (A10)

In particular, if one defines Ãmn analogously as in (3), then
one readily verifies that

Ãmn := Tr{Pmρ(0)PnÃ} = Tr{P̃mρ(0)P̃nA} (A11)

by exploiting (A9), (A10), and the cyclic invariance of the
trace.

For any given basis vector |γ 〉, one can infer from (A3)
and (A4) that Pn|γ 〉 equals |γ 〉 (eigenvalue 1) for exactly one
index n, and equals the null vector |0〉 (eigenvalue 0) for all
other indices n. Since d in (A6) is finite, it follows that at
least one and at most d among all the P̃n’s in (A10) are not
identically zero. Without loss of generality, we can and will
choose the labels n and some suitable integer N ∈ {1, . . . ,d} so
that P̃n is nonzero if and only if n ∈ {1, . . . ,N}. Furthermore,
we can and will choose the labels γ and n so that the energy
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level populations pn from (7) assume their maximal value for
n = 1, i.e.,

max
n

pn = p1. (A12)

Accordingly, the second largest level population can be written
as

max
n

′pn = max
n�2

pn. (A13)

It follows that Ãmn in (A11) must vanish unless m � N and
n � N . With (2) we thus can conclude that

Tr{ρ(t)Ã} =
N∑

m,n=1

Ãmn ei(En−Em)t . (A14)

Likewise, one can infer from (9) and (A9) that

Tr{ρ̄Ã} =
N∑

n=1

Ãnn. (A15)

Together, we thus obtain

σ̃ (t) := Tr{ρ(t)Ã} − Tr{ρ̄Ã} =
N∑

m�=n

Ãmn ei(En−Em)t , (A16)

where the sum runs over all m,n ∈ {1, . . . ,N} with m �= n.
Since ρ(0) is a Hermitian, non-negative operator, there

exists a Hermitian, non-negative operator, which we denote
by ρ1/2, and which satisfies the relation ρ1/2ρ1/2 = ρ(0). With
the Cauchy-Schwarz inequality

|Tr{B†C}|2 � Tr{B†B}Tr{C†C} (A17)

for the scalar product Tr{B†C} of arbitrary operators B and
C [for which all traces in (A17) exist], and exploiting Pm =
P 2

m [cf. (A3)] and the cyclic invariance of the trace, we can
conclude from (A11) that

|Ãmn|2 = Tr{(Pmρ1/2)(ρ1/2PnÃPm)}
� Tr{Pmρ(0)Pm} Tr{Pnρ(0)PnÃPmÃ}. (A18)

The first factor in the last line can be identified with the
level population pm from (7). In combination with (A5), (A9),
and (A10), we thus obtain

|Ãmn|2 � pm Tr{ρnXAXPmXAX}
= pm Tr{XρnAP̃mA}. (A19)

Next, we observe that AP̃mA as well as ρn from (A5) are
both Hermitian, non-negative operators, and that every |γ 〉 is
an eigenvector of both ρn and X from (A6). Upon employing
the basis |γ 〉 to evaluate the trace in (A19), one thus obtains

|Ãmn|2 � pm Tr{ρnAP̃mA}. (A20)

With P 2
m = Pm [cf. (A3)] and (A10) we can infer that P̃m =

PmXPm. Exploiting the cyclic invariance of the trace, we thus
can rewrite the last factor in (A20) as Tr{XB} with B :=
PmAρnAPm. Since B is a Hermitian, non-negative operator, it
follows that Tr{XB} � Tr{B} and by the same steps as before
that Tr{B} = Tr{ρnAPmA}. Altogether, we finally obtain

|Ãmn|2 � pm Tr{ρnAPmA}. (A21)

2. Step 1

In this section, we closely follow the line of reasoning from
Ref. [4]. The main result will be (A36). Due to (A6) and (A7),
it follows for arbitrary density operators ρ and observables A

that

Tr{ρA} = Tr{(X + Y )ρ(X + Y )A} = R1 + R2 + R3,

(A22)

R1 := Tr{XρXA}, (A23)

R2 := Tr{Yρ(X + Y )A} = Tr{YρA}, (A24)

R3 := Tr{XρYA}. (A25)

Exploiting the cyclic invariance of the trace and the defini-
tion (A9) yields

R1 = Tr{ρÃ}. (A26)

By a similar line of reasoning as in the derivation of (A18),
we can rewrite (A24) as

|R2|2 � Tr{YρY } Tr{AρA}. (A27)

Exploiting that for arbitrary Hermitian, non-negative operators
B and C

Tr{BC} � ‖B‖Tr{C}, (A28)

where ‖B‖ denotes the standard operator norm (largest
eigenvalue), the last term in (A27) can be rewritten as

Tr{AρA} = Tr{ρA2} � ‖A‖2Tr{ρ} = ‖A‖2 < ∞. (A29)

The last inequality follows from (4) and (6). Finally, we can
conclude from (A7) that

Tr{YρY } = Tr{Yρ} =
D∑

γ=d+1

〈γ |ρ|γ 〉 (A30)

and hence from (A27) that

|R2|2 � ‖A‖2
D∑

γ=d+1

〈γ |ρ|γ 〉. (A31)

Analogously, one finds for R3 from (A25) that

|R3|2 � Tr{YρY }‖A‖2Tr{XρX} � ‖A‖2
D∑

γ=d+1

〈γ |ρ|γ 〉.

(A32)

Introducing (A26), (A31), and (A32) into (A22) finally yields

|Tr{ρA} − Tr{ρÃ}| � 2‖A‖
⎛
⎝ D∑

γ=d+1

〈γ |ρ|γ 〉
⎞
⎠

1/2

(A33)

for arbitrary density operators ρ.
Next, we focus on the two specific density operators ρ(t)

and ρ̄ from Secs. II and III A. With the definition

δ(t) := σ (t) − σ̃ (t), (A34)
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it readily follows from (A2), (A16), (A33), and (A34) that

|δ(t)| = |Tr{ρ(t)A} − Tr{ρ̄A} − Tr{ρ(t)Ã} + Tr{ρ̄Ã}|
� |Tr{ρ(t)A} − Tr{ρ(t)Ã}| + |Tr{ρ̄A} − Tr{ρ̄Ã}|

� 4‖A‖
⎛
⎝ D∑

γ=d+1

〈γ |ρ̄|γ 〉
⎞
⎠

1/2

. (A35)

The last step exploited that 〈γ |ρ(t)|γ 〉 = 〈γ |ρ̄|γ 〉 for all t and
γ , as can be verified by choosing A = |γ 〉〈γ | in (2) and (9).

Observing that ‖A‖ is finite [cf. (A29)] and that∑d
γ=1〈γ |ρ̄|γ 〉 is monotonically increasing with d and bounded

from above by Tr{ρ̄} = 1, it follows from (A35) that for any
given ε > 0 there exists a finite d with

δ2(t) � ε (A36)

for all t . This is the main result of this section.

3. Step 2

In this section, we closely follow the line of reasoning
from Ref. [11], which in turn amounts to a simplification of
the previous approach from Ref. [3]. The main results will
be (A45) and (A49).

Denoting the set of unequal label pairs as

G := {(m,n) : m,n ∈ {1, . . . ,N},m �= n} (A37)

and defining for any α = (m,n) ∈ G
Gα := Em − En , vα := Ãmn, (A38)

it readily follows with (A16) that

σ̃ 2(t) =
∣∣∣∣∣
∑
α∈G

vα e−iGαt

∣∣∣∣∣
2

=
∑

α,β∈G
v∗

αvβ ei(Gα−Gβ )t (A39)

and hence that

σ̃ 2(t) = R(t) + S, (A40)

R(t) :=
∑

α,β∈G
Gα �=Gβ

v∗
αvβei(Gα−Gβ )t , (A41)

S :=
∑

α,β∈G
Gα=Gβ

v∗
αvβ. (A42)

Note that both R(t) and S are real numbers and that their sum
must be non-negative.

Abbreviating the time average of an arbitrary function f (t)
as

〈f (t)〉T :=
∫ T

0

dt

T
f (t), (A43)

one readily finds by integrating over the exponential in (A41)
that

〈R(t)〉T � 1

T

∑
α,β∈G
Gα �=Gβ

|v∗
αvβ | 2

|Gα − Gβ | . (A44)

Since the number of summands is finite [cf. (A37)], we can
conclude from (A40)–(A44) that for any given ε > 0 there

exists a finite Tε with

〈σ̃ 2(t)〉T � ε + S (A45)

for all T � Tε .
Next, we consider subsets Gj of G from (A37), defined via

the property that all elements α = (m,n) which belong to the
same subset Gj exhibit identical energy gaps Gα := Em − En

[cf. (A38)], while for any pair α ∈ Gj , β ∈ Gk with j �= k the
corresponding energy gaps Gα and Gβ are different. It follows
that the number of subsets Gj is finite, say j = 1, . . . ,J , that G
is the disjoint union of all those subsetsGj , and that each subset
Gj contains a finite number of elements, which we denote by
gj . Recalling that g from (12) denotes the maximal number of
degenerate energy gaps, it follows that

gj � g (A46)

for all j . Furthermore, we can rewrite S from (A42) as

S =
J∑

j=1

∑
α,β∈Gj

v∗
αvβ. (A47)

Next, we define the scalar product 〈B|C〉 := ∑M
k,l=1 B∗

klCkl

for arbitrary M × M matrices B and C. For the special choice
Bkl := xk (independent of l) and Ckl := xl (independent of k),
the Cauchy-Schwarz inequality implies∣∣∣∣∣

M∑
k,l

x∗
k xl

∣∣∣∣∣
2

�
M∑
k,l

|xk|2
M∑
k,l

|xl|2 =
(

M

M∑
k

|xk|2
)2

(A48)

for arbitrary complex numbers x1, . . . ,xM . Observing that the
last sum in (A47) is exactly of this structure with M = gj , it
follows with (A46) that

S �
J∑

j=1

gj

∑
α∈Gj

|vα|2 � g

J∑
j=1

∑
α∈Gj

|vα|2 = g
∑
α∈G

|vα|2.

Returning to our original notation via (A37) and (A38), we
finally obtain

S � g

N∑
m�=n

|Ãmn|2. (A49)

This relation together with (A45) is the main result of this
section.

4. Step 3

In this section, we closely follow the line of reasoning from
Ref. [4]. The main result will be (A57). Denoting by �1 the
partial sum on the right hand side of (A49) over all summands
with n = 1 implies with (A21) that

�1 :=
N∑

m=2

|Ãm1|2 � max
n�2

pn W1, (A50)

W1 :=
N∑

m=2

Tr{ρ1APmA}. (A51)
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Since ρnAPmA is a non-negative operator for arbitrary m,n

[see also (A5)], it follows that

W1 �
∑
m,n

Tr{ρnAPmA}

= Tr

{(∑
n

ρn

)
A

(∑
m

Pm

)
A

}
, (A52)

where, similarly as in (1) and (2), the sums run over the full
range of admitted m and n values. With (7), (A4), and (A50),
we thus obtain

�1 � max
n�2

pn Tr{ρ̄A2}. (A53)

From the definition (A11) it readily follows that Ãnm =
Ã∗

mn. Hence, �1 can also be considered as the partial sum on
the right hand side of (A49) over all summands with m = 1.
As a consequence, we can rewrite (A49) as

S � g �1 + g �′, (A54)

�′ :=
N∑

m=2

N∑
n=1
n �=m

|Ãmn|2. (A55)

Analogously as in (A50)–(A53), one can conclude that

�′ � max
n�2

pn Tr{ρ̄A2}. (A56)

For the sake of convenience only, we have so far assumed
that the largest energy level population is given by p1

[see (A12)]. In order to get rid of this convenient but unnec-
essary special role of n = 1, we introduce (A13) into (A53)
and (A56), yielding with (A54)

S � 2 g max
n

′pn Tr{ρ̄A2} (A57)

as the main result of this section.

5. Final result

We first address the case Tr{ρ̄A2} = 0. Since A2 as well as
all the summands on the right hand side on (9) are Hermitian,
non-negative operators, it follows that

Tr{Pnρ(0)PnA
2} = 0 (A58)

for all n. Similarly as in (A18), we can conclude from (3) that

|Amn|2 = Tr{(Pmρ1/2)(ρ1/2PnA)}
� Tr{Pmρ(0)Pm} Tr{Pnρ(0)PnA

2}. (A59)

With (A58) it follows that Amn = 0 for all m,n and with (2)
that Tr{ρ(t)A} = 0 for all t . Likewise, one finds with (9) that
Tr{ρ̄A} = ∑

n Ann = 0. As a consequence, (A1) is trivially
fulfilled.

Next, we turn to the case Tr{ρ̄A2} > 0 (since ρ̄ and A2 are
non-negative, the case Tr{ρ̄A2} < 0 is excluded). It follows
that

β := g max
n

′pn Tr{ρ̄A2} > 0. (A60)

We thus can choose d in (A36) so that δ2(t) � β/20 for all t

and hence that

〈δ2(t)〉T � β/20 (A61)

for all T > 0. Likewise, we can choose ε = β/20 in (A45),
implying with (A57) that

〈σ̃ 2(t)〉T � 2.05 β (A62)

for all sufficiently large T . In view of (A34), we can conclude
that

〈σ 2(t)〉T = 〈σ̃ 2(t)〉T + 2 V + 〈δ2(t)〉T , (A63)

V := 〈σ̃ (t)δ(t)〉T . (A64)

Observing that 〈f1(t)f2(t)〉T represents a well-defined scalar
product for arbitrary real valued functions f1,2(t), the Cauchy-
Schwarz inequality implies

|V |2 � 〈σ̃ 2(t)〉T 〈δ2(t)〉T . (A65)

With (A61) and (A62) it follows that |V | � 0.4 β, and
with (A63) that

〈σ 2(t)〉T � 3 β (A66)

for all sufficiently large T . Due to (A43) and (A60), we thus
recover (A1).

APPENDIX B

In this Appendix, we derive the general bound from Eq. (29)
by generalizing the approach of Short in Ref. [2]. We imagine
many repetitions of the measurement series considered in
Sec. IV. As above Eq. (28), in every repetition, either ρ(t)
or ρ̄ is randomly selected with probability 1

2 and then used
to randomly generate a measurement outcome 
s according to
the corresponding probability (20) or (21). But, in contrast to
Sec. IV, the task is now to guess in every single repetition from
the given data 
s whether ρ(t) or ρ̄ had been used to generate 
s.

This decision problem is a generalization of the one
considered by Short [2] (see also Sec. III B). It is in many
respects also similar to those considered in Sec. IV. However,
it is crucial to note that it is not identical and that quantitative
statements in one case do not immediately imply any rigorous
conclusions in the other case (see also Sec. III B). Yet, such
rigorous conclusions are not impossible, as we will now show.

A key observation is that the above specified problem
assigns well defined, objective probabilities (frequencies of
occurrence) to each of the two “models” ρ(t) and ρ̄ (namely,
1
2 to each of them). As a consequence, the conventional
probabilistic (frequentist) approach happens to coincide with
the concepts of Bayesian inference in this specific case.

In other words, in every single repetition we are given the
data 
s and we have at our disposition the full knowledge about
ρ(t) and ρ̄, but about nothing else. Now, we are forced to
produce a decision based on this information. The salient
point consists in the observation that for any given 
s, the
only information of use is the pair of probabilities pt (
s)
and p̄(
s), following from ρ(t) and ρ̄ according to (18)–(21).
Any other information contained in ρ(t), ρ̄, and 
s is of no
use for our decision problem. Obviously (or by invoking
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Bayesian inference), the best one can do is to opt for ρ(t)
if pt (
s) > p̄(
s) and vice versa [any other way of using the
two numbers pt (
s) and p̄(
s) would not lead to a better
decision]. In case pt (
s) = p̄(
s) we introduce as a third option
the answer “undecided” (alternatively, one could randomly
choose one of the two options with probability 1

2 ). Counting a
correct decision as 1 and a wrong decision as −1, the success
probability (symbol P succ), i.e., the probability of opting by
means of the above optimal decision strategy for the correct
state minus opting for the wrong state, follows as

P succ
opt =

∑

s

pt (
s)

2

1 + qopt(ρ(t),ρ̄,
s)
2

+
∑


s

p̄(
s)

2

1 − qopt(ρ(t),ρ̄,
s)
2

, (B1)

qopt(ρ(t),ρ̄,
s) := 1 if pt (
s) > p̄(
s),

qopt(ρ(t),ρ̄,
s) := −1 if pt (
s) < p̄(
s), (B2)

qopt(ρ(t),ρ̄,
s) := 0 if pt (
s) = p̄(
s).

The detailed justification is as follows: The first factor pt (
s)/2
on the right hand side of (B1) represents the joint probability
that the random event (ρ(t), 
s) is realized. The second factor
[1 + qopt(ρ(t),ρ̄,
s)]/2 is unity if our guess was right, zero if it
was wrong, and 1

2 if we were undecided (or randomly picked
one of the two options). Similar considerations apply to the
second sum in (B1).

Since
∑


s pt (
s) = ∑

s p̄(
s) = 1, it readily follows

from (B1) that

P succ
opt = 1

2
+

∑

s

pt (
s) − p̄(
s)

4
qopt(ρ(t),ρ̄,
s). (B3)

Without loss of generality, we can restrict the sum to summands
with pt (
s) �= p̄(
s) and rewrite qopt(ρ(t),ρ̄,
s) from (B2) for
those summands as |pt (
s) − p̄(
s)|/{pt (
s) − p̄(
s)}, yielding

P succ
opt = 1

2
+

∑

s

|pt (
s) − p̄(
s)|
4

. (B4)

Next, we consider the very same decision problem, but
now by employing any of the q functions from Sec. IV
as follows: If q(ρ(t),ρ̄,
s) � 0 then we opt with probabil-
ity p+ := q(ρ(t),ρ̄,
s) for ρ(t) and with with probability
1 − p+ our answer is “undecided” [randomly pick ρ(t) or
ρ̄]. Likewise, if q(ρ(t),ρ̄,
s) < 0, then we opt with probability
p− := −q(ρ(t),ρ̄,
s) for ρ̄ and with probability 1 − p− we are
undecided. Similarly as in (B1), the success probability of this
decision strategy now takes the form

P succ =
∑


s

pt (
s)

2

1 + q(ρ(t),ρ̄,
s)
2

+
∑


s

p̄(
s)

2

1 − q(ρ(t),ρ̄,
s)
2

(B5)

and, like in (B2), it follows that

P succ = 1

2
+

∑

s

pt (
s) − p̄(
s)

4
q(ρ(t),ρ̄,
s). (B6)

On the other hand, subtracting (28) from (27) yields

Q(t) =
∑


s

pt (
s) − p̄(
s)

2
q(ρ(t),ρ̄,
s). (B7)

Upon comparison with (B6) it follows that P succ = [1 +
Q(t)]/2. Since this success probability cannot exceed the op-
timal value P succ

opt from (B4), we obtain [1 + Q(t)]/2 � P succ
opt .

Likewise, by employing the decision strategy −q(ρ(t),ρ̄,
s)
instead of q(ρ(t),ρ̄,
s), one recovers [1 − Q(t)]/2 � P succ

opt .
Combining both inequalities implies [1 + |Q(t)|]/2 � P succ

opt .
Together with (B4) this yields our final result (29).

Note that in order to derive this result, we employed a
different decision problem than the one considered in Sec. IV.
Yet, the so obtained inequality (29) itself is valid independently
of this specific decision problem.

APPENDIX C

In this appendix, we provide the derivation of (30)–(32).
Focusing on any of the projectors K

(j )
ν appearing in (18)

and (19), one readily finds upon replacing A by K
(j )
ν in (11)–

(14) that for any given ε
(j )
ν > 0,

T (j )
ν /T � α Tr

{
ρ̄

[
K (j )

ν

]2} [
ε(j )
ν

]−2 = α k̄(j )
ν

[
ε(j )
ν

]−2
(C1)

for all sufficiently large T , where

α := 3 g max
n

′pn, (C2)

T (j )
ν := ∣∣{ 0 � t � T :

∣∣σ (j )
ν (t)

∣∣ > ε(j )
ν

}∣∣, (C3)

σ (j )
ν (t) := 〈

K (j )
ν

〉
ρ(t) − 〈

K (j )
ν

〉
ρ̄

= k(j )
ν (t) − k̄(j )

ν , (C4)

and where we exploited (18), (19), and [K (j )
ν ]2 = K

(j )
ν in the

last equalities in (C1) and (C4).
For any given pair (j,ν) (where j ∈ {1, . . . ,Nrep} and

ν ∈ {1, . . . ,NAj
}) and any given ε

(j )
ν > 0, the quantity T

(j )
ν

in (C3) is the Lebesgue measure of all times t ∈ [0,T ] for
which |σ (j )

ν (t)| > ε
(j )
ν holds true. Since the number of pairs

(j,ν) is finite, it follows that for any given set of positive ε
(j )
ν

values, the inequality (C1) applies simultaneously for all pairs
(j,ν) provided T is sufficiently large. Hence, the measure of
all times t ∈ [0,T ] for which |σ (j )

ν (t)| > ε
(j )
ν is true for at least

one among all pairs (j,ν) can be estimated from above by

Ttot :=
Nrep∑
j=1

NAj∑
ν=1

T (j )
ν (C5)

for all sufficiently large T . For all other times t ∈ [0,T ], it
is true that |σ (j )

ν (t)| � ε
(j )
ν simultaneously for all pairs (j,ν).

From now on, we exclusively focus on the latter subset of
[0,T ], i.e., on times t for which∣∣σ (j )

ν (t)
∣∣ � ε(j )

ν for all j ∈ {1, . . . ,Nrep},ν ∈ {1, . . . ,NAj
}.
(C6)

Thus, the Lebesgue measure of all times t ∈ [0,T ] for which
the subsequently derived implications of (C6) may possibly
not apply is bounded by Ttot from (C5).
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A particularly convenient choice of the quantities ε
(j )
ν turns

out to be

ε(j )
ν := k̄(j )

ν F/Nrep if k̄
(j )
ν > kth, (C7)

ε(j )
ν := (

kth k̄(j )
ν

)1/2
F/Nrep if kth � k̄

(j )
ν > 0, (C8)

ε(j )
ν := kth F/Nrep if k̄

(j )
ν = 0, (C9)

where the “factor” F and the “threshold” kth are positive real
numbers, whose explicit values will be fixed later. For the
moment, we only require that

0 < F � 1/2. (C10)

Introducing (C7)–(C9) into (C1) and (C5) implies for all
sufficiently large T that

Ttot

T
�

Nrep∑
j=1

NAj∑
ν=1

α
N2

rep

F 2 kth

. (C11)

Exploiting (22), the number of summands in the double sum
can be readily bounded from above by NrepNobs, yielding

Ttot

T
� α

Nobs N3
rep

F 2 kth

=: ε (C12)

for all sufficiently large T .
Recalling the notation 
s := (s1, . . . ,sNrep ) from below

Eq. (19), we divide the set of all possible measurement
outcomes

S := {
s : sj ∈ {1, . . . ,NAj
}, j ∈ {1, . . . ,Nrep} } (C13)

into the two subsets

S ′ := {
s ∈ S : k̄(j )
sj

> kth for all j
}
, (C14)

S ′′ := S \ S ′. (C15)

Likewise, the sum over all 
s ∈ S appearing in (29) is split into
two parts according to

Qmax(t) = (�′ + �′′)/2, (C16)

�′ :=
∑

s∈S ′

|pt (
s) − p̄(
s)|, (C17)

�′′ :=
∑

s∈S ′′

|pt (
s) − p̄(
s)|. (C18)

To evaluate �′, we note that 
s ∈ S ′, implies k̄
(j )
sj

> kth for
all j according to (C14) and hence∣∣σ (j )

sj
(t)

∣∣ � k̄(j )
sj

F/Nrep (C19)

according to (C6) and (C7). With (C10) and Nrep � 1 it follows
that |σ (j )

sj
(t)| � k̄

(j )
sj

/2 and with (C4) that

k(j )
sj

(t) � k̄(j )
sj

− ∣∣σ (j )
sj

∣∣ � k̄(j )
sj

/2 (C20)

for all j . Thus, all quantities in Eqs. (20) and (21) are positive
real numbers, i.e., we can logarithmize those equations to

obtain

x := ln

[
pt (
s)

p̄(
s)

]
=

Nrep∑
j=1

ln

[
k

(j )
sj

(t)

k̄
(j )
sj

]
, (C21)

|pt (
s) − p̄(
s)| = |p̄(
s) (ex − 1)| = p̄(
s) |ex − 1|. (C22)

We first focus on the case x � 0. Observing that
ln(1 + y) � y for all y > −1, it follows that ln(a/b) =
ln(1 + [a − b]/b) � [a − b]/b for all a, b > 0, and hence
with (C21), (C4), and (C19) that

0 � x �
Nrep∑
j=1

∣∣σ (j )
sj

(t)
∣∣

k̄
(j )
sj

�
Nrep∑
j=1

F

Nrep
= F. (C23)

In conclusion,

|ex − 1| � eF − 1 (C24)

whenever x � 0 in (C22). Turning to x < 0, we observe that

|ex − 1| = ex(e−x − 1) < e−x − 1, (C25)

0 < −x =
Nrep∑
j=1

ln

[
k̄

(j )
sj

k
(j )
sj

(t)

]
, (C26)

where we exploited (C21) in the last step. Similarly, as in (C23)
it follows that

−x �
Nrep∑
j=1

∣∣σ (j )
sj

(t)
∣∣

k
(j )
sj

(t)
�

Nrep∑
j=1

k̄
(j )
sj

k
(j )
sj

(t)

F

Nrep
. (C27)

Since k̄
(j )
sj

/k
(j )
sj

(t) � 2 according to (C20) we can conclude that
−x � 2F and with (C25) that |ex − 1| < e2F − 1 whenever
x < 0 in (C22). With (C24), we thus obtain

|ex − 1| < e2F − 1 (C28)

for arbitrary x in (C22). Due to the elementary inequality
ez − 1 � (e − 1)z � 2z for all z ∈ [0,1], it follows with (C10)
that e2F − 1 � 4F and hence with (C22) and (C28) that

|pt (
s) − p̄(
s)| � 4 F p̄(
s). (C29)

Accordingly, �′ from (C17) can be estimated as

�′ � 4 F
∑

s∈S ′

p̄(
s) � 4 F
∑

s∈S

p̄(
s) = 4 F. (C30)

Next, we upper bound �′′ in (C18) as

�′′ � �1 + �2, (C31)

�1 :=
∑

s∈S ′′

pt (
s), (C32)

�2 :=
∑

s∈S ′′

p̄(
s). (C33)

Furthermore, we introduce the following subsets of S

from (C12):

Sj := {
s ∈ S : k̄(j )
sj

� kth

}
, (C34)

where j = 1, . . . ,Nrep. According to (C14) and (C15) there
exists for every 
s ∈ S ′′ at least one j ∈ {1, . . . ,Nrep} with the
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property that k̄
(j )
sj

� kth. It follows that the union of all the
subsets Sj from (C34) reproduce S ′′ and hence that

�2 �
Nrep∑
j=1

�
(j )
2 , (C35)

�
(j )
2 :=

∑

s∈Sj

p̄(
s) =
∑

s∈Sj

Nrep∏
l=1

k̄(l)
sl

, (C36)

where we exploited (21) in the last step. With (C34) it follows
that

�
(j )
2 �

∑

s∈Sj

kth

Nrep∏
l �=j

k̄(l)
sl

�
∑

s∈S

kth

Nrep∏
l �=j

k̄(l)
sl

, (C37)

where the symbol l �= j indicates that the j th factor is omitted
and where we exploited that Sj ⊂ S in the last step [cf. (C34)].
In view of (C13), we can conclude that

�
(j )
2 �

NAj∑
sj =1

kth

⎛
⎝Nrep∏

l �=j

NAl∑
sl=1

k̄(l)
sl

⎞
⎠ = kth NAj

, (C38)

where we exploited that
∑NAl

sl=1 k̄(l)
sl

= 1 for all l. Taking into
account (22) and (C35), we finally obtain

�2 � kth Nobs Nrep. (C39)

Similarly as in (C35)–(C37), it follows with (C32) and (20)
that

�1 �
Nrep∑
j=1

�
(j )
1 , (C40)

�
(j )
1 :=

∑

s∈Sj

pt (
s) =
∑

s∈Sj

Nrep∏
l=1

k(l)
sl

(t)

�
∑

s∈Sj

k(j )
sj

(t)
Nrep∏
l �=j

k(l)
sl

(t). (C41)

For all sj appearing in the last sum over 
s ∈ Sj , Eq. (C34)
implies that k̄

(j )
sj

� kth and hence that ε
(j )
sj

� kth according
to (C8)–(C10). With (C4) and (C6), we thus can infer that

k(j )
sj

(t) � k̄(j )
sj

+ ∣∣σ (j )
sj

(t)
∣∣ � k̄(j )

sj
+ ε(j )

sj
� 2 kth. (C42)

By combining this result with (C41), one finds exactly as
in (C37) and (C38) that

�
(j )
1 � 2

∑

s∈Sj

kth

Nrep∏
l �=j

k(l)
sl

(t) � 2 kth NAj
. (C43)

Like in (C39) it follows that �1 � 2 kth Nobs Nrep, and
with (C31) that

�′′ � 3 kth Nobs Nrep. (C44)

Introducing (C30) and (C44) into (C16) implies

Qmax(t) � [4F + 3kthNobsNrep]/2, (C45)

where kth > 0 and F ∈ (0,1/2] can still be chosen arbitrarily
[see below (C9)]. We thus may choose kth so that the right
hand side of (C45) equals ε from (C12), i.e.,

kth = [2ε − 4F ]/3Nobs Nrep. (C46)

Altogether, Eqs. (C12), (C45), and (C46) imply for all
sufficiently large T that

Ttot/T � ε, (C47)

Qmax(t) � ε, (C48)

ε = 3αN2
obs N4

rep

2F 2[ε − 2F ]
. (C49)

Finally, we make the choice F = ε/3, which is obtained
by minimizing (C49) with respect to F . Upon inserting α

from (C2) and F = ε/3 into (C49) and then solving for ε, one
recovers (32).

As announced below (C6), the result (C48) is valid for
all t ∈ [0,T ] apart from a subset of [0,T ], whose Lebesgue
measure is bounded by Ttot, and provided T is sufficiently
large. It follows that T ∗ from (31) cannot exceed Ttot, i.e.,
T ∗ � Ttot. Upon comparison with (C47), we thus recover (30).

Strictly speaking, the above conclusions are only valid if
our choice F = ε/3 [see below (C49)] is self-consistent with
the constraint from (C10). Equivalently, this means that ε must
be smaller than 3

2 . In the opposite case, i.e., if ε in (32) should
happen to exceed 3

2 , then our above arguments no longer apply,
but obviously (30) is still trivially fulfilled.
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[10] I. Bengtsson and K. Życzkowski, Geometry of Quantum States
(Cambridge University Press, Cambridge, UK, 2006).

[11] D. Hetterich, M. Fuchs, and B. Trauzettel, Phys. Rev. B 92,
155314 (2015); L. P. Garcia-Pintos, N. Linden, A. S. Malabarba,
A. J. Short, and A. Winter, arXiv:1509.05732.

062107-13

http://dx.doi.org/10.1103/PhysRevE.90.012121
http://dx.doi.org/10.1103/PhysRevE.90.012121
http://dx.doi.org/10.1103/PhysRevE.90.012121
http://dx.doi.org/10.1103/PhysRevE.90.012121
http://dx.doi.org/10.1088/1367-2630/17/4/045002
http://dx.doi.org/10.1088/1367-2630/17/4/045002
http://dx.doi.org/10.1088/1367-2630/17/4/045002
http://dx.doi.org/10.1088/1367-2630/17/4/045002
http://dx.doi.org/10.1038/ncomms10821
http://dx.doi.org/10.1038/ncomms10821
http://dx.doi.org/10.1038/ncomms10821
http://dx.doi.org/10.1038/ncomms10821
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1103/PhysRevLett.113.170403
http://dx.doi.org/10.1103/PhysRevLett.113.170403
http://dx.doi.org/10.1103/PhysRevLett.113.170403
http://dx.doi.org/10.1103/PhysRevLett.113.170403
http://dx.doi.org/10.1088/1612-2011/11/8/085501
http://dx.doi.org/10.1088/1612-2011/11/8/085501
http://dx.doi.org/10.1088/1612-2011/11/8/085501
http://dx.doi.org/10.1088/1612-2011/11/8/085501
http://dx.doi.org/10.1103/PhysRevB.92.155314
http://dx.doi.org/10.1103/PhysRevB.92.155314
http://dx.doi.org/10.1103/PhysRevB.92.155314
http://dx.doi.org/10.1103/PhysRevB.92.155314
http://arxiv.org/abs/arXiv:1509.05732



