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Quantum jump model for a system with a finite-size environment

S. Suomela,! A. Kutvonen,' and T. Ala-Nissila'-?
'Department of Applied Physics and COMP Centre of Excellence, Aalto University School of Science,
P.O. Box 11100, 00076 Aalto, Finland
2Deparlment of Physics, P.O. Box 1843, Brown University, Providence, Rhode Island 02912-1843, USA
(Received 13 January 2016; revised manuscript received 14 March 2016; published 3 June 2016)

Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric
detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open
quantum systems. However, the detection requires a finite size for the environment, which influences the system
dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum
jump model suitable for systems coupled to a finite-size environment. We use the method to study the common

fluctuation relations and prove that they are satisfied.
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I. INTRODUCTION

Rapid progress in the fabrication and manipulation of micro
and nanoscale objects [1—4] has made it necessary to extend
the concepts of thermodynamics to small systems, which by
definition are not in the thermodynamic limit.

In such systems the extensive thermodynamic quantities,
such as entropy, heat, and work, are not described by their
average values alone but, due to fluctuations, they obey
nontrivial probability distributions. Fortunately, it has been
shown that, in many cases, the stochastic thermodynamic
variables obey fluctuation relations [5—7] which often appear
in the form of relations between exponential averages of the
extensive variables.

While the two-measurement protocol of thermodynamic
variables, especially work, is now well studied in closed
quantum systems, there have been conceptual problems in
open quantum systems [8-39]. To make a connection to
classical stochastic thermodynamics, the quantum jump (QJ)
method [40—44] has recently been used to study thermody-
namics and fluctuation theorems in open quantum systems
because it tries to mimic the trajectories realized in actual
experiments [29-39]. The method unravels the master equa-
tion of the reduced density matrix as stochastic trajectories
with environment-induced jumps between system states. The
concepts of stochastic thermodynamics can be developed
by associating a jump with heat exchange. However, there
are several approximations that limit the generality of the
QJ method. In particular, it is only applicable by assuming
a memoryless or an infinitely large environment, i.e., an
ideal heat bath whose state does not change during the
drive.

Even within the QJ framework the issue of actually
measuring the energy change in a driven open quantum system
is nontrivial. It has been proposed by Pekola et al. [45] that
this could be done by a so-called calorimetric measurement,
where the immediate environment itself measures the energy
change in the system. In Fig. 1, we show a schematic of
such a setup in the case where there is a driven qubit
coupled to a finite-size calorimeter and an ideal heat bath.
The key point in the calorimetric measurement is that, in
order to observe the energy changes of the system, the
calorimeter must be finite, i.e., in contrast to the ideal bath
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it has to change its state when absorbing energy from the
system [45-47].

The standard QJ approach is not applicable to the analysis
of the calorimetric measurement setup, since the calorimeter
is not ideal bath. In this paper, we develop a modified QJ
model suitable for systems weakly coupled to a finite-size
environment; called calorimeter from here on. In the model,
a jump in the system changes both the state of the system
and the state of the calorimeter. Due to the influence of the
system on the calorimeter’s evolution, the system evolution
is no longer Markovian because the previous history of
the system affects its future evolution via the state of the
calorimeter. With the new method, we show that the common
fluctuation relations are satisfied for the system-calorimeter
composite. As a concrete example, we numerically study a
sinusoidally driven qubit weakly coupled to the calorimeter
which comprises harmonic oscillators with an energy gap
equivalent to that of the qubit. The qubit and the calorimeter are
initially thermalized with an ideal bath of inverse temperature
B, as depicted in Fig. 1.

II. THE STANDARD QUANTUM JUMP METHOD

Let us first give a short introduction to the standard
QJ method in the literature [40-44]. Instead of evolving
the density matrix as done in the direct master equation
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FIG. 1. Schematic drawing of the calorimetric measurement
in a driven open quantum system. Here, a qubit is coupled to
the calorimeter, which is described by finite number of harmonic
oscillators with an energy gap equivalent to that of the qubit. The
qubit and the calorimeter are initially thermalized with an ideal
bath of inverse temperature §. The qubit is driven by a classical
source A(t).
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calculations, the quantum jump method unravels the master
equation into quantum trajectories with stochastically evolving
wave functions. For a single trajectory, the probability for a
jump between time ¢ and ¢ + 4t is given by

5p = 8pw = 8t(y|C},Crlyr(1)). (1)

for §t — 0, where |y(¢)) is the state of the system before
the jump, 8p,, is the probability for a jump correspond-
ing to a jump operator C,, = /T,,A,. The matrix A,
gives the form of the jump and I',, is the transition rate.
If a jump corresponding to C,, occurs, the new state is
given by |yt + 81)) = Cu |¥/(1)) //(8pu/51), where 8p,, /61
normalizes it. If no jumps occur during the time interval
[t,¢t + 5¢t], the state evolution is not given by the system
Hamiltonian H,(¢) alone but by the nonunitary Hamiltonian

H() = H,(t) — % Yom Che,, yielding

Wt + 1)) = (1 - %ﬁ<z>5r) (1) .

1
J1—=236p
Although the jump operator can be time dependent, the past
history of the trajectory, e.g., the number of jumps, does not
affect the jump operators at all. As a consequence, the evolution
of a stochastic trajectory depends only on the current state of
the system |y (¢)). This is a good approximation when the
environment is ideal. However, such an environment makes
the calorimetric measurement infeasible because the system
evolution leaves no traces to the environment.

III. QUANTUM JUMP METHOD WITH A FINITE
ENVIRONMENT

We now wish to extend the standard QJ method to the
case corresponding to Fig. 1, where transitions in the system
influence the state of the calorimeter, both initially thermalized
with an ideal heat bath. We assume the calorimeter to be large
enough to allow a semiclassical treatment such that there is an
orthonormal eigenbasis where the calorimeter density matrix
is diagonal. In practice, this basis will be the einselected
basis of the calorimeter determined by the detector and the
super bath [48]. We call these eigenbasis states microstates.
We also assume the system-calorimeter coupling to be weak
enough such that it can be neglected in the energy terms and
modeled by stochastic jumps alone. We take into account only
transitions that conserve the energy of the calorimeter-system
composite.

To be precise, instead of using jump operators that only
depend on the system degrees of freedom, we define new jump
operators D, = gmA ® Bm, where Am causes a transition
between system states and Bm between the calorimeter mi-
crostates defined above [49]. The coefficient g, is proportional
to the coupling strength. We define the probability for a
transition in the time interval [¢,# + §¢] as

Sp=Y Spm=y 8tTr, D} Du6,®6),  (2)

where 3p,, is the probability for a jump corresponding to the
jump operator D,,, &5(t) = |¥(¢)) (¥ (¢)| is the matrix form
of the system state, 6.(t) = |W(¢)) (W(¢)] is the instantaneous
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calorimeter microstate, and the trace is over both the system s
and calorimeter ¢ degrees of freedom.

If a jump corresponding to D,, occurs, the new sys-
tem and calorimeter states are given by &(f 4 8t) =
Tto{ D6 ® 6.D},}/(8pn/8t) and &.(t + 81) = Try{ D6, ®
D}/ (8pum /1)

If no jumps occur during the time interval [z,f + 6¢], the
time evolution is given by the nonunitary Hamiltonian

o N A i h AL A
Aw = A0+ A, = 5 Y D}, D,. 3)

where I—AIX and I:IC are the system and calorimeter Hamil-
tonians, respectively. The new system state &,(t + 6t) =
TrL{U(t+6t 16, ® acU'(t—HSt 1)}/(1=8p)+0(dt?), where
U (t+dot,t)y=1-— H (t)6t. Similarly, the new calorimeter
state 6.(t + 81) = TrS{U(t +68t,0)6, ® 6.0t + 81,1)} /(1 —
8p) + O(dt?), which gives 6.(t + §t) = 6.(t) because we
assumed that 6.(¢) is in a microstate. As a consequence, it
is sufficient to focus in detail only on the system dynamics,
where the calorimeter’s state only affects the transition rates.

IV. FLUCTUATION RELATIONS

For studying stochastic thermodynamics and the associated
fluctuation relations with this method, we focus on a generic
two-level system (qubit) with I:IO = hwoa'a that is weakly
driven by a classical source V(¢) = A(t)(a +a"), where a
and a' are the annihilation and creation operators in the
undriven basis. The system Hamiltonian is then given by
H,(1) = Hy + V(1). The qubit is coupled to the calorimeter
by V(1) =« Zm(&'fl;m + &EL), where the coupling strength
« is real and the operators b, depend on the exact form
of the calorimeter. The calorimeter Hamiltonian is given by
H. = > enﬂﬁn. For a bosonic calorimeter d, and c?,,T are the
annihilation and creation operators associated with energy €,
and the operators b,, form a set of all the annihilation operators
associated with energy hay, i.e., D, by = > c?,,asm ho [30].
Before and after the driving protocol, both the qubit and the
calorimeter states are measured by monitoring the calorimeter
state only. The qubit state can be indirectly determined from
the previous jump before the drive and from the next jump
after the drive in the calorimeter. However, this calorimetric
monitoring is equivalent to performing the measurements by
using the two-measurement protocol for both the qubit and the
calorimeter, as shown in Appendix A.

The total system is initially prepared such that both the
qubit and the calorimeter start as a pure state given by
the joint probability P[i,Wy], where |i) and |W,) are the
initial qubit and calorimeter states, respectively. Similar to
the standard perturbative treatment [51], we define the jump
operators in the undriven basis, i.e., D¢ m = gman ® b and

D bom = 8md ® bm, where the coefficient g,, o« x. Due to the
energy change with the qubit, the calorimeter can jump to
a different microstate such that the energy difference of the
microstates corresponds to the energy change in the qubit.
If the calorimeter is assumed to stay in the same microstate
between the jumps, we can write the calorimeter traced jump
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operators [52] as C ,,(W;) = /Ty ,(¥pa' and C |, (W) =
Iy . (Wr)a, where the transition rates are

T (W) = g *Tro{bn6.(¥)b] 1, 4)
Ty (W) = g *Tro{b),6.(¥)bn}, ®)

with 6,.(Wy) = [W;) (Wy|. If a jump caused by C‘i,m(\lfk) oc-
curs, the new calorimeter state is | Wy 1) = BL (W) /| |13j,l Wl
According to stochastic thermodynamics [53,54], the entropy
production associated with a jump is defined as the logarithmic
ratio of the forward and backward transition rates. Due to the
symmetry Iy ,,(Wi) = I'y ,,, (Wi41), this entropy production is
always zero and the total entropy production of a trajectory
depends only on the initial and final states of the qubit and the
calorimeter, i.e.,

ASr = In{P[i, ]/ P[f,¥n1}, (6)

where P[f,Wy]is the probability to start a reversed trajectory
with the final qubit state | f) and the final calorimeter state |\W )
of the forward trajectory. The entropy production satisfies the
fluctuation theorem (see Appendix B for details):

(e7%m) =1, (7)

where the average is over all the forward trajectories. If the
initial probability distribution of the forward trajectory follows
the canonical ensemble in equilibrium with the ideal heat
bath, the probability distribution of the reversed trajectories
can be chosen to follow a canonical ensemble with the same
temperature. By defining the work W associated with a single
trajectory to be the energy difference between the final and
initial states of the qubit-calorimeter composite, Eq. (7) gives
the Jarzynski equality for work as

(e7PVy = e PAF, 8)

where AF is the free-energy difference between the final and
initial states.

The results above were derived by assuming that the
calorimeter stays in the same microstate until the next
jump. However, in many systems such as in electronic
devices [55,56], the relaxation rate inside the calorimeter
is the fastest timescale. Consequently, the calorimeter does
not stay in a single microstate between jumps but shifts
quickly between the microstates that correspond to the same
energy. We can still calculate the qubit dynamics with
Egs. (2) and (3) by using an averaged calorimeter state
instead of a single calorimeter microstate. According to
the microcanonical ensemble, the averaged calorimeter state
6.(E) =[1/N(E)])Y_y |¥) (V| 8k, £, where the sum is over
all the microstates, N(FE) is the number of microstates with
energy E, and Ey is the energy of microstate |\W). Let us
call this state a macrostate. We assume that the calorimeter
reaches the macrostate instantaneously after a jump. The
probability to start with the qubit state |i) and the calorimeter
macrostate of energy E is given by P[i, Ey]. Due to the energy
change with the qubit, the calorimeter can jump to another
macrostate. Because the calorimeter reaches the macrostate
immediately after a jump, we can sum over all the transition
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rates corresponding the same energy change. The resulting
total transition rates are given by

1

M) = 55 > T (¥, ©)
m,¥
1
) D Trm(¥)k, (10)
m,¥

and they satisfy the detailed balance condition
[ \(E — hawo)/T'1(E) = N(E)/N(E — hay), (11)

which resembles the fluctuation relation derived for micro-
canonical ensembles [57,58]. The entropy production of a
jump up with the calorimeter energy E is given by

mw—mm):m<mE—mm>

B = _1“< T/(E) N(E)

12)

which gives a natural interpretation of the entropy production
as the Boltzmann entropy change of the calorimeter. The
entropy productions of up and down jumps are related by
Asy(E) = —As | (E — hawo). The total entropy production is
then given by

N
ASy =1In{Pli,Eol/PIf.EN]) + ) Asy (Eiy), (13)
i=1
where N is the number of jumps, E; is the calorimeter
energy after the ith jump, x; = 1/| is the direction of ith
jump, and P[f,Ey] is the probability to start a reversed
trajectory with the forward trajectory’s final qubit state | f)
and calorimeter energy Ey. Because Eq. (7) still holds, we
recover the Jarzynski equality if we start from the canonical
ensemble.

V. NUMERICAL RESULTS

To illustrate the method, we have done numerical simula-
tions of the coupled qubit-calorimeter composite, where the
calorimeter is described by n quantum harmonic oscillators,
with an energy gap equivalent to that of the qubit Awy. The
harmonic oscillators can be noninteracting or they can interact
fast enough such that the calorimeter can be assumed to reach
the macrostate instantaneously after a jump. In both cases, the
transition rates are the same and depend only on the calorimeter
energy:

[ (E) = |gI*(E + nhay), TH(E)=|gl*E, (14

where we have for convenience chosen £ = 0 when all the
oscillators are in the ground state. Consequently, the qubit’s
evolution depends only on the energy of the calorimeter. Be-
cause the calorimeter energy does not change between jumps,
we can calculate the qubit dynamics by using Egs. (2) and (3)
with environment traced jump operators C 1 = /T (E)a and
CA’T = JIW(E Ya' [52]. The calculations are done in the
interaction picture with respect to Hy + H,.

In order to compare the results with differing numbers
of oscillators, we use the value |g|*> = 0.025/(nh) in the
simulations such that the total coupling strength remains the
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FIG. 2. The difference between the populations of the qubit
excited state for n and an infinite number of oscillators p.(t) =
pl(t) — p°(t). The data are from numerical simulations of the
coupled qubit-calorimeter system. The protocol ends at time t. The
inset shows the excited state population when n = co. The drive is
discretized by using 2 x 103 time steps and the number of trajectories
is 10°. See text for the values of the other system parameters.

same. We start the qubit and the calorimeter from a canonical
ensemble with respect to the inverse temperature 8 = 1/(hwy).
The qubit is driven sinusoidally with A(¢) = 0.05hw sin(wg?).
The protocol consist of driving, no driving, driving, no driving
parts; each lasting a time interval equal to 50 driving periods.

Figure 2 nicely illustrates the influence of the calorimeter’s
size on the qubit dynamics. Due to its finite size, the calorimeter
is driven out of equilibrium. During the drive, the effect of
the calorimeter on the qubit dynamics is suppressed by the
drive since it is stronger than the qubit-calorimeter coupling.
However, when the drive is stopped and the qubit equilibrates,
the effect of the calorimeter becomes apparent. The drive
causes the qubit to emit energy to the calorimeter. For a very
large calorimeter (here the largest n = 400), this additional
energy is very small compared with the initial energy, which
scales with size. However, for a smaller n the change in
the relative energy becomes more pronounced, as depicted
in Fig. 3(b).

For the setup, the work is obtained as the energy difference
between the final and initial states of the qubit plus the heat
released to the calorimeter. This yields the same result as the
two-measurement protocol for the composite. As shown in
Figs. 3(a) and 3(c), the finite size of the calorimeter causes
the work distribution to deviate from the infinite-size limit as
overheating changes the transition rates. The transition rates
are strongly influenced by the previous jumps for small values
of n. This is illustrated in Fig. 3(c), where work values between
+5hwy are more probable for small n. Independent of n, the
work distributions were found to be consistent with the Jarzyn-
ski equality within the statistical errors, as shown in Fig. 3(d).

VI. CONCLUSIONS

Measurement and definition of work in driven open quan-
tum systems poses an interesting theoretical and experimental
challenge. In the present work, we consider the proposal of a
calorimetric measurement that offers a simple and transparent
way of measuring energy exchange between the system and
the calorimeter. To theoretically analyze a calorimetric setup,
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FIG. 3. Influence of finite-size calorimeter on the work and
energy statistics when it consists of n harmonic oscillators. (a)
Probability distribution of work in the case of n = 00, P (W).
(b) Time evolution of the average calorimeter energy for differ-
ent values of n. (c) Deviation of the probability distribution of
work AP(W) = P,(W) — Py(W). (d) Numerical verification of
the Jarzynski equality. The error bars are the standard deviation
multiplied by 1.96 and correspond to a 95% confidence interval.
The parameters are the same as in Fig. 2.

we developed a modified QJ model suitable for systems with a
finite-size environment. We show that, due to the finite size, the
calorimeter is driven out of equilibrium, leading to changes in
the reduced system’s dynamics and in the work statistics. These
changes cannot be modelled with the standard QJ method,
which assumes that the whole environment is an ideal heat
bath. With the model, we have analytically and numerically
shown that the standard fluctuation relations are still valid and
remain unaltered by the finite size of the calorimeter. This is in
contrast with Ref. [55], where the transition rates violate the
detailed balance condition of Eq. (11) (see Appendix C).
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APPENDIX A: EQUIVALENCE BETWEEN
CALORIMETRIC MEASUREMENT AND
TWO-MEASUREMENT PROTOCOL

Let us assume that, after the drive, the qubit is in a
superposition state |¥) = ¢ |0) + o |1), where |0) and |1)
are the ground and excited states of the undriven qubit,
respectively. The calorimeter is assumed to have energy E.
A double projection measurement of both the qubit and the
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calorimeter then gives E with probability P(E) = |oag|?> and
E + hawy with probability P(E 4 hwg) = |o|> = 1 — |ag|*.

In the calorimetric measurement, the qubit state is measured
by waiting for the qubit to collapse to an eigenstate due to a
jump. Let us first study the case where the calorimeter is in
a single microstate |W;) and does not change between jumps.
In this case, we can use the calorimeter traced jump operators
Crm(Wy) = /Ty n(Wpa and Cy ,, (¥) = /T n(Wy)a. The
probability that the first jump after the drive is caused by jump
operator C 1,m takes the form

0
P¢,m = /(; dtri,m(qjk)

x| (1]e~% Zall a0l (171 (W10 011 |y |2
[e9]
= [ e S
0

_ ot 12Ty (W)
> Ty

The probability that the first jump after the drive is a jump
down is obtained by summing over all m,

P¢ = Zm Pi,m = |Ol] |2'

In the case of a jump down, the qubit is known to be in the
ground state after the jump and thus the total energy measured
is simply the calorimeter energy after the jump, E + hwy.
Similarly, the probability that the first jump after the drive is a
jump up takes the form

o0
Py = Zfo diTs (W)

x| (0| e—% Z,,[U,n(q’k)l1><1|+I‘¢,n(‘l’k)\0><0\]l|w) |2

(AL)

(A2)

= |aol? (A3)

giving total energy E. Thus, both measurement schemes
produce equivalent energy distributions.

In the case that the calorimeter reaches the macrostate
immediately after a jump, the calculation is similar with
only two jump operators C‘T(E) = I*T(E)ézT and C’i(E) =

vV Fl,m(E)&-

APPENDIX B: FLUCTUATION THEOREM FOR QUANTUM
JUMP MODEL WITH FINITE-SIZE ENVIRONMENT

Let us consider an open quantum system coupled to a
calorimeter through dissipative channels described by jump
operators Dm = gmA ® Bm, where A and B depend on
the system and calorimeter degrees of freedom, respectively,
and g, is the coupling strength. We also assume that the jump
operators follow detailed balance such that, for every Dm,
there is D, such that A, = A}, and B, = B/, Let us first study
the case where the calorimeter is in a single microstate |Wy)
and does not change between the jumps. In this case, we can
use the calorimeter traced jump operators C‘m =4 Fm(\llk)fim
that are defined such that Tr,{C,,6,Ch} = Tryso{ Dby ®
W) (W] DL}, where 6, is the matrix form of the system
state, Trs denotes trace over the system degrees of freedom, and
Trg,. denotes the trace over both the system and calorimeter
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degrees of freedom. Due to the system-calorimeter energy
change, the energy of the calorimeter evolves stochastically.
The probability to traverse a single N-jump QIJ trajectory is
given by

PQJ[i’fﬂlIJO"’IJN9{émk }I](v:] 7{tk}]1(V:1]
N
= P[i, Y] |:1_[ Pt ti—1) Py (tk)] PN P YN,

k=1
B1)

where the protocol starts at time 7y = 0 and ends at time r,
P[i, W] is the probability to start with the system state |i)
and the calorimeter state |Wy), pm,(#) is the probability for
a jump to occur along the myth channel during [z, + §¢],
and p°(f41.4) is the probability of no jump during the time-
interval [f,#1], and Py[ f,Wy] is the probability to measure
the system state | f) and the calorimeter state |V ) at the end of
the protocol. Because the jump probabilities can be calculated
simply by using the calorimeter traced jump operators, we can
use the results derived for time-dependent jump operators [38],
yielding

PQ./ [i,f;\llo,\IIN,{ka }llgv:p{tk}llcvzl]

N
= (80" Pli, W] []‘[ kawkl)}

k=1

N 2

(f1Uete(T,t3) |:l_[

’

—_—_ Ueff(tN+1—k,tN—k)j| i)

(B2)
where | W) is the calorimeter state after the kth jump and the
no-jump evolution is given by

i A0=i% , Ti 0] At

Uetr(tis1,0) = Te al , (B3

where I?x(t) is the system Hamiltonian and 7 is the time-
ordering operator.

We can formulate a time-reversed counterpart for the
forward trajectory of Eq. (B2). In the time-reversed trajectory,
we measure system state | /) and calorimeter state |Wy) at the
beginning (f = 0) and states |i) and | W) at the end (f = 7). In
the time-reversed trajectory, all the jumps are reversed and
they happen in reverse order, i.e., a jump caused by C’,,—lk
occurs at time f = ty — t, where the index 71, is related to the
forward index m; such that A,;,k = ALk and f?,;,k = f?),;k. By
demanding that the time-reversed no-jump evolution between
jumps is given by ﬁ!'ff(tiJrl,t,-), the probability for the reverse
QJ trajectory can then be written as

ﬁQJ [f,l.,\IJN,\IJ(),{émk }]iV:] 1{t_k}]1¢v:1]

N
= 60V P[f,Wy] []‘[ ka(wo}
k=1
2

(B4)

N
(il []‘[ Ugffak,rkl)fif,,k} Ulsw.tml f)

k=1

where P[ f,Wy] is the probability to start a reversed trajectory
with the system state | f) and the calorimeter state |V ). The
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ratio of the forward and reversed trajectory probabilities is of
the form

AST[i7fa\IJO7\IJN7{émk}]1(V:[a{tk};(v:]]

—1In PQJ[ivfﬂlIJOleJNv{CA‘Mk}IZCV:l’{tk}]](\/v:]]
pQJ[fvialIJNv\I’Ov{élﬁk}]ivzli{fk}]](vzl]

N
Pli,¥ T (g
:n{M}—}—ln HM . (B5)
PLf.Wy] LT ()
We denote this term as the total entropy production of the
model. As the reversed trajectories’ probabilities sum up to

unity, it can be straightforwardly shown that
(™) =1, (B6)

where the average is over all the forward trajectories.

As discussed in the main text, the transition rates satisfy
the condition I'y, (Wy) = Ty, (Wi—1) when the calorimeter is
assumed to be in a single microstate. As a consequence, the
second term of Eq. (B5) is zero and the entropy production
depends only on the forward and reversed trajectory initial
probability distributions. If the initial probability distribution
of the forward trajectory follows canonical ensemble, the prob-
ability distribution of the reversed trajectories can be chosen
to follow a canonical ensemble with the same temperature.
In this case, the total entropy production becomes equivalent
with the energy difference between the final and initial state
of the total system. By defining the work of a single trajectory
as the energy difference between the final and initial state of
the total system, Eq. (B6) gives the Jarzynski equality.

If the relaxation rate inside the calorimeter is the fastest
timescale, then the calorimeter does not stay in a single
microstate between jumps but shifts quickly between the
microstates |W;) that correspond to the same energy. We
can still derive a theorem similar to Eq. (B5) with W
denoting calorimeter energies instead of states. The transition
rates are then given by Egs. (9) and (14) of the main text.
In this case, the product of the transition rate ratio gives
N(Eyp)/N(Ey) in Eq. (BS), where Ej and Ey are the initial
and final energies of the calorimeter, respectively, and N(E)
denotes the number of microstates corresponding to energy
E. If both the forward and backward process start from
the canonical ensemble, i.e., P[i,Eg] = N(Eg)e PwitEn /7
and P[f,Ex]= N(Ey)e PPor+EN) /7' we get again the
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Jarzynski equality with AF = —(1/8)In(Z’'/Z). Here, hw;
and hws denote the energies of system states |i) and |f),
respectively.

APPENDIX C: DETAILED BALANCE CONDITION
FOR TRANSITION RATES

When the energy fluctuations are small in the canonical
ensemble, they are often approximated by a Gaussian distri-
bution around the average energy Ej. If the heat capacity C is
constant, these energy fluctuations are often expressed as the
effective temperature fluctuations 7 = E/C in mesoscopic
systems [55,59,60]. We will now show that the assumption of
a constant heat capacity can lead to violation of the main text’s
Eq. (11) when temperature fluctuations 7 are used together
with the standard temperature-dependent transition rates

Ty (hwo,T(E)) = |g|*/(1 £ ¢ 0/ ks, (C1)

Ty (hwo, T(E)) = |g|*/(e"0/®sT) £+ 1), (C2)

where g is the coupling strength, fwy is the energy gap of the
qubit, T'(E) is the effective temperature corresponding to the
calorimeter energy E, and +(—) is used in the case fermionic
(bosonic) transition rates. If a jump up occurs in the qubit, the
energy of the calorimeter decreases by fuwy and consequently
the effective temperature decreases by hwy/C.

For Gaussian energy fluctuations, the left-hand side of
Eq. (11) simplifies to

NE)  _ jrontpsthon-2E-Ea (3
N(E — ha)())

where N(E) and N(E — hwy) are the number of microstates
corresponding to calorimeter energies E and E — hwy, re-
spectively, B is the inverse temperature of the ideal bath that
is used to thermalized both the qubit and the calorimeter, and
02 = Ckz' B2 is the variance of the Gaussian calorimeter
energy distribution. However, if now the transition rates of
Egs. (C1) and (C2) are used, the right-hand side of Eq. (11)
does not agree with Eq. (C3) and thus the detailed balance
condition is not satisfied. This explains the apparent violations
of Jarzynski equality in Ref. [55], where similar types of
transition rates were used with Gaussian effective temperature
fluctuations and a constant heat capacity.
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