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Effects of critical fluctuations and dimensionality on the jump in specific heat at the superconducting
transition temperature: Application to YBa2Cu3O7−δ, Bi2Sr2CaCu2O8+δ, and KOs2O6 compounds
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We report on a study of the superconducting order parameter thermodynamic fluctuations in YBa2Cu3O7−δ ,
Bi2Sr2CaCu2O8+δ , and KOs2O6 compounds. A nonperturbative technique within the framework of the
renormalized Gaussian approach is proposed. The essential features are reported (analytically and numerically)
through Ginzburg-Landau (GL) model-based calculations which take into account both the dimension and the
microscopic parameters of the system. By presenting a self-consistent approach improvement on the GL theory,
a technique for obtaining corrections to the asymptotic critical behavior in terms of nonuniversal parameters
is developed. Therefore, corrections to the specific heat and the critical transition temperature for one-, two-,
and three-dimensional samples are found taking into account the fact that fluctuations occur at all length scales
as the critical point of a system is approached. The GL model in the free-field approximation and the 3D-XY

model are suitable for describing the weak and strong fluctuation regimes respectively. However, with a modified
quadratic coefficient, the renormalized GL model is able to explain certain experimental observations including
the specific heat of complicated systems, such as the cup-rate superconductors and the β-pyrochlore oxides. It
is clearly shown that the enhancement, suppression, or rounding of the specific heat jump of high-Tc cup-rate
superconductors at the transition are indicative of the order parameter thermodynamic fluctuations according to
the dimension and the nature of interactions.
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I. INTRODUCTION

A survey of phase transitions and critical phenomena in
cup-rate superconductors was given by Schneider et al. [1].
Close to the critical point, the order parameter fluctuates on all
length scales and those fluctuations smear out the microscopic
details of the interactions in the system. Scalapino et al. [2]
showed that the failure of the mean-field theory (MFT) to
provide an accurate description of critical behavior and to take
into account both the microscopic details of the interactions
and the dimensionality of physical systems is due to an
improper treatment of the aforementioned fluctuations [3].
Indeed, if MFT satisfactorily accounts for some key features of
the transition mechanism at the instability point and predicts
a finite mean-field critical temperature Tc [4,5], there are
some important critical phenomena which cannot be efficiently
accounted for with the standard MFT. The Mermin-Wagner-
Hohenberg theorem [6,7], for instance, stipulates that a broken
continuous symmetry prevents long-range order in one or two
dimensions, which means that the thermodynamic parameters
of a system are dependent to a large extent on the geometry and
the dimension of space. This essential point can be well appre-
ciated from the fact that due to intrinsic fluctuations, a model
with dipolar interactions alone exhibits no phase transition
down to the lowest temperature as reported by Onsager [8].
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Intensive studies have been carried out in order to elucidate
the relevance of critical phenomena, especially critical fluctu-
ation effects in materials and physical systems in general, and
further, to study the critical fluctuation dynamics and their in-
fluence on the physical properties of real materials. The studies
are performed based on several approaches, which include the
self-consistent MFT, self-consistent phonon approximation,
low-temperature approximation, standard Gaussian approach
(SGA), dynamical MFT, dynamical self-consistent theory, etc.
However, some of these attempts seem to give divergent
and ambiguous conclusions. A common problem remains
the difficulty to assign the parameters of a model to their
characteristic quantities such as temperatures in a universal
fashion [9]. Accordingly, the idea behind the perturbation
theory is to consider an exactly solvable model, either the
Gaussian or the mean-field model, and to introduce a correction
to it by adding through a perturbation expansion, term(s) which
is (are) not taken into account in the exactly solvable model.
But the coupling constant with the φ4 model of perturbation
is not necessarily small, and as such the convergence of the
perturbation expansion cannot be ensured. Thus, some more
effective approaches to the calculation are needed.

Despite the significant experimental and theoretical effort
to understand superconductivity and its nature in materials,
there are still a number of open issues that have not been
well addressed. From the theoretical point of view espe-
cially, a number of properties have not been investigated.
The temperature-dependent electronic-specific heat Cel(T )
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measured through the superconducting transition is one such
property. The study of Cel(T ) often has complications caused
by the need for a careful subtraction of the normal state
contributions, the size of the jump in Cel at the superconducting
transition is known to depend on the microscopic details of the
superconducting state [3,10].

More precisely, the relevance of superconducting fluctu-
ations with short wavelength implies that the conventional
MF spectrum of the GL functional is no longer a valid
approximation for superconducting cup rates because thermal
fluctuations of the order parameter near the critical point
are large due to the short coherence length, which follows
directly from the high Tc through Heisenberg’s uncertainty
principle [11]. For example, depending on the nature of
fluctuations, the dimension, and the lattice type, one observes
in certain cup-rate superconductors a decrease in Tc by a factor,
τ (where 1 < τ < 2) [12], an absence of the heat capacity jump
at the transition as in Bi2Sr2CaCu2O8+δ (BSCCO) [13,14], or
an enhancement of this specific heat jump near the critical
point, which in the latter may be evidence of another type of
phase transition observed in a new class of transition metal
oxide superconductors, namely the so-called β-pyrochlore
oxides [15–17]. It is thus abnormal to believe that nonuniversal
features of critical phase transition can be described by
a simple GL functional (FGL). Instead, in order to find
explanations to all these observations, it is important to obtain
the explicit form of the effective FGL. Phase transitions in
physical systems can be described by an appropriate choice
of the coefficients in the expansion of FGL, provided that a
sufficiently large number of terms (quartic and higher-order
terms) and microscopic parameters of the system are taken
into account. This observation is valid for both weak and strong
fluctuations.

In this work, we show that FGL can be improved by the
confinement of critical fluctuations (at the Gaussian level) by
bringing to light a nonuniversal parameter υ(d,T ). We propose
a different way of further clarifying those long-standing issues,
at least for reduced temperature in the crossover region where
it is known that MFT fails to explain the critical behavior.
While analyzing the fluctuation effects on the electronic
specific heat within the GL theory, we take into account the
mode-mode interactions with different types of couplings. The
value of υ(d,T ) takes into account critical fluctuations and the
dimension dependence of the quadratic coefficient of FGL, and
will be used as a criterion of adiabaticity. In this context,
Tc appears as a characteristic scale of temperature related
to thermal fluctuations and finite-size effects rather than the
transition temperature [18,19]. As raised in Ref. [18], another
technical problem consists in carrying out statistical averages
over thermal fluctuations on all size scales. Therefore, the
method introduced is similar to that described by Wilson [20]
and consists in integrating out the fluctuations sequentially,
starting with fluctuations on a microscopic scale and then
moving to successively larger scales until fluctuations on all
scales have been averaged out. In the case of superconductors,
the passage from individual Cooper pairs to mesoscopic and
macroscopic superconducting fields necessarily involves a
certain smooth spatial averaging procedure, the main idea
being to show that the SCA improved GL theory is able
to explain certain experimental observations including the

specific heat of complicated systems, such as the cup-rate
superconductors and the β-pyrochlore oxides.

We emphasize that in this paper we only refer to the zero
field scaling regime which is intermediate between MFT and
the asymptotic scaling regime inaccessibly close to the critical
point where fluctuations of the electromagnetic field must also
be taken into account [21]. The paper is organized as follows.
In Sec. II we introduce the model for the effects of order
parameter fluctuations (OPFs) on the transition temperature
for 1D, 2D, 3D, and nD material samples, respectively. In
Sec. III we discuss the effects of the OPFs on the specific heat
(jump) and present some applications of the work by com-
paring our results to well-known results for homogeneously
disordered systems, among which are YBa2Cu3O7−δ (YBCO),
BSCCO, and β-pyrochlore oxide compounds such as KOs2O6.
The specific heat of these compounds can be qualitatively
and quantitatively explained using the theoretical framework
established here. Earlier results concerning fluctuation effects
in high-Tc superconductors (HTSs) were reviewed by Sala-
mon [3]. Here we discuss the results concerning specific heat
jump expressions in cup rates in the absence of magnetic fields,
which allow the elucidation of the nature of the phase transition
in HTSs. We also show that the rounding or the enhancement
of the specific heat jump of high-Tc cup-rate superconductors
is indicative of OPF effects. Finally, the conclusion is drawn
in Sec. IV.

II. MODEL FORMULATION AND RENORMALIZED
GAUSSIAN APPROACH

The phenomenological theory of superconductivity is due
to Ginzburg and Landau [1] who realized that for a supercon-
ducting phase, the natural order parameter is the condensate
wave function �(r). The order parameter is a complex scalar,
which in terms of its magnitude |�(r)| and phase ϕ(r) [22]
or its real �R(r) and imaginary �I (r) parts can be written
as

�(r) = |�(r)| exp[iϕ(r)] = �R(r) + i�I (r). (1)

An isotropic superconductor corresponds to the macroscopic
wave function of the pairs with charge 2e and effective mass
m. Hence |�(r)|2 is the probability of finding a pair at
the position vector r. Some superconductors, in particular
the cup rates, exhibit a pronounced anisotropy in their
superconducting and normal state properties. Indeed, cup rates
can be viewed as a stack of superconducting layers (parallel
to the crystallographic ab-plane, i.e., the xy plane) with
relatively weak interlayer interactions in the c or z direction.
The phenomenological properties of layered superconductors
are usually well described by anisotropic effective models
such as the Lawrence-Doniach model [23]. An alternative
way of introducing the effect of the layering is to consider
a GL theory having anisotropic masses [24]. Near the critical
temperature, the superconducting wave function � is small,
so that the free-energy difference FGL[�] between the normal
and superconducting states can be expanded in powers of
|�(r)|2, and one way of treating this anisotropy is to replace
the effective mass, m, by a diagonal effective mass tensor, so
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that

FGL[�] =
∫

ddr

[
�

2m‖
(|∇x�|2 + |∇y�|2)

+ �

2m⊥
|∇z�|2 + a(T )|�|2 + b0

2
|�|4 + · · ·

]
.

(2)

The phenomenological coefficients a(T ) = a0Tcε where ε =
T −Tc

Tc
is the mean-field reduced temperature in the absence of

fluctuations and b0 > 0 appearing in Eq. (2) can be derived in
general from experiments or from the microscopic functional:
the masses m‖,⊥ are those of the Cooper pairs. The gradient
term takes into account possible spatial inhomogeneities in
the system and corresponds to the continuum limit [25,26].
In this approximation, the free-energy functional describes
the second-order phase transition from the normal to the
superconducting state at Tc with the MF critical indices.

The cup rates exhibit a pronounced uniaxial anisotropy
characterized by

mz ≡ m⊥, mx ≈ my ≡ m‖, m⊥ � m‖. (3)

At the mean-field level, this anisotropy does not modify the
specific heat jump and the temperature dependence of the
order parameter. It affects, however, the characteristic length
scales. Therefore, using the Gaussian approximation where
FGL is truncated to second order, the specific heat (obtained by
making a transition to the continuum domain) can be factorized
as follows [18]:

CGL =
{

1
2ηd (ξ+

0 )−d
[

T
Tc

]2
ε−α, for T > Tc

C0 + ηd (ξ−
0 )−d

[
T
Tc

]2|ε|−α′
, for T < Tc

, (4)

where

ηd = kB

�(d/2)

Ld

(2π )d/2

∫ +∞

0

xd−1 dx

(1 + x2)2
(5)

is an integral quantity implied by the Gaussian approximation
which depends on the dimensionality, and

C0 = a2
0Tc

b0
(6)

is the jump of the resulting mean-field specific heat as T

decreases below Tc. ξ±
0 are not universal quantities, and ξ+

0

differs from ξ−
0 only by the factor

√
2. The dominant behavior

of CGL close to Tc is obtained through the power law [27]
CGL ∼ |ε|dν−2, which yields the (Gaussian) critical exponents
α = α′ = 2 − dν with ν = 1/2. Generally the contribution
of Gaussian fluctuations to the specific heat is given by
CGL = C±ε−α as described by Eq. (4). The amplitude ratio
C+/C− = n/2d/2, where n is the number of order parameter
components. Above Tc, phase and modulus fluctuations in
the absence of the equilibrium value of the order parameter
represent just two equivalent degrees of freedom of the scalar
complex order parameter. Below Tc, the symmetry of the
system decreases. The order parameter modulus fluctuations
remain of the same diffusive type as above Tc, while the
character of the phase fluctuations, in accordance with the
Goldstone theorem, changes dramatically. It has been shown
that the effect of phase fluctuations is dimension dependent.

Accordingly, it has been demonstrated that the inclusion of
phase fluctuations leads to a reduction in the degree of order
in d > 2 and to its complete destruction in d � 2 [4,5,27].
Carrying out the integral over the real and imaginary parts
of the order parameter, one can find an expression for the
fluctuation part of the free energy, which results in the
disappearance of the temperature dependence of the phase
fluctuation contribution, and, calculating the second derivative,
one can see that only the fluctuations of the order parameter
modulus contribute to the specific heat. As a result the specific
heat, calculated below Tc, turns out to be proportional to that
found above.

The considerable success of MFT or SGA in conventional
superconductors originates from the low value of the critical
Ginzburg width (δtG ∼ 10−14) [28]. Indeed, one observes
that the specific heat does not present any divergence, but
rather a compatible jump with the predictions of Eq. (4).
Practically, critical phenomena should not be observable in
usual conventional superconductors, which is not the case in
HTSs.

Due to the small values of coherence length and the
high anisotropy (between the in-plane and out-of-plane co-
herence lengths ξ‖, and ξ⊥) γ = ξ‖/ξ⊥ = √

m⊥/m‖ � 1, the
temperature region of critical fluctuations in the cup-rate
superconductors appears to be large and can be studied in
detail. For d < 4, the superconducting interaction in HTSs
has a short coherence length ξ which allows conserving
nonzero local Cooper pairs for T = Tc − δTc (δTc > 0), while
ξ → ∞ when T → Tc, as demonstrated with models which
take into account these local fluctuations of the Cooper
pairs by construction [29]. Fundamentally, there are several
mechanisms which can explain the reduction of the critical
temperature in HTSs, but the focal point of our concern is the
corrections due to local fluctuations of the Cooper pairs (i.e.,
OPFs) and their effects on the thermodynamic parameters.
Accordingly, it is convenient to discriminate corrections due
to the OPFs and write the result for the reduction or suppression
of the transition temperature δTc in the form

δTc

Tc

= υdc, (7)

where υdc represents a dimensionless quantity which char-
acterizes the width of the critical region about the transition
temperature through the value of the scaled correction term
at the transition point. Following the usual terminology, n =
1,2, and 3 correspond, respectively, to the so-called “Ising,”
“XY”, and “Heisenberg” models. Contrary to the case of
the basic GL model, these are discrete models defined on
a lattice and are therefore suited for numerical simulations.
The XY Hamiltonian describes phase transitions with a single
complex order parameter where phase fluctuations dominate.
This is opposite to the GL functional, which accounts for
predominant weak fluctuations of the amplitude of the order
parameter [10]. In 3D systems, fluctuations of the order
parameter will, in general, vary in space. The GL free energy
form can still be used, if we assume that fluctuations are
small. In 1D or 2D systems, we will still take into account
only amplitude fluctuations, with the assumption that the
quadratic coefficient now takes into account the correlations
of fluctuations and the dimension dependence of the order
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parameter. Taking into account the fact that superconducting
interactions are not uniform in HTSs and that the order
parameter depends to a large extent on the geometry and
the dimensionality (spatial dimension), we will assume an
additional dimension dependence of the critical temperature
Tc(d), which, like the expressions of the critical exponents
α and α′, is an indication of the increased fluctuation effects
as the dimensionality of the system decreases [19]. However,
taking into account all fluctuation degrees of freedom involves
a certain spatial averaging procedure that allows us to pass
from the microscopic to mesoscopic and macroscopic levels,
by adding a new quantity to the scaled quadratic coefficient.
Then the new scaled quadratic coefficient ε∗(d,T ) of FGL

replacing ε is defined as

ε∗(d,T ) = ε + υ(d,T ), (8)

where the additional scaled coefficient υ(d,T ), which includes
a new contribution to the (d, q)-mode autocorrelation function,
is determined by solving the following self-consistent equa-
tion [18]

υ(d,T ) = Kd

[
T

Tc

]
[ε + υ(d,T )]

d
2 −1. (9)

The integral correction constant Kd related to stacking faults
and other defects intrinsic to the layered structure of HTSs is
given by

Kd ∝ ξ−d
0

∫ xc

0

xd−1

1 + x2
dx. (10)

This quantity takes into account the fact that the mag-
nitude and the temperature dependence of the fluctuation
corrections strongly depend on the impurity concentration
and the anisotropy of the electron spectrum [11,22,30,31]
and that superconducting properties show possibly related
anomalies. The taking into account of the cutoff xc allows us
to regularize the model and is used to absorb infinities arising
in the integral correction constant [22,31,32]. The present
approach with cutoff included can be used to account for the
deviations of experimental data on amorphous alloys and low-
dimensional superconducting materials from the predictions of
the standard GL theory [10,11]. Equation (9), which presents
a self-consistent condition with respect to the dimensionless
correction term υ(d,T ) ∝ 〈|�|2〉d,T , is derived by making use
of the renormalized Gaussian partition function and by taking
into account the expected fact that it does not explicitly depend
on the wave number q (for more details, see especially the
Appendix in Ref. [18] and also the references therein). The
correction quantity υ(d,T ) is responsible for the crossover
from mean-field to critical behavior and corresponds to the
variance of the order parameter at a single point in space
evaluated at any temperature.

It is well known that the transitions in two and three
dimensions are radically different. The decrease of the critical
temperature is specially pronounced in the case of bad metals
such as synthetic metals and optimally doped or slightly
underdoped HTS compounds [33,34]. In order to determine
the plausible influence of the OPFs on the critical temperature,
let us estimate the static susceptibility of the system. From the
thermodynamic definition, the inverse static susceptibility is

given by the following analytical expression:

χ∗−1 = a0Tc[ε + υ(d,T )]. (11)

Accordingly, the temperature at the critical point where the
static susceptibility diverges is determined as

T ∗
c = Tc(1 − υdc). (12)

Here υdc = υ(d,T ∗
c ) characterizes the crossover from classical

mean-field critical behavior to fluctuation-dominated critical
behavior and provides an insight into the critical behavior
(phase transition) of the typical system. Although the critical
value υdc is useful for the evaluation of the Ginzburg criterion
(which indicates in a semiquantitative manner the range within
which the distance from the modified Gaussian transition
temperature is important [28]), a rigorous calculation which
consists, first, in solving Eq. (9) according to the dimension,
and, second, in inserting the obtained result in the equation

ε + υ(d,T ) = 0 (13)

allows us to derive the expression of T ∗
c and the following

results for υdc:⎧⎪⎪⎨
⎪⎪⎩

υ1c ∼ 1, for d = 1

υ2c = K2D

1+K2D
, for d = 2

υ3c ≈ 0, for d = 3
υdc = 0, for d � 4.

(14)

K2D ∝ ln(1 + x2
c )/ξ 2

0 is the 2D integral correction constant. It
is worth noting that in 1D and 3D cases, a numerical method
is used to approximate the solutions. The superconducting
observables generally change as a result of finite size effects,
since the phase transition is smeared over some temperature
range. The susceptibility of bulk materials is assumed to be
infinite at the critical temperature. This will naturally never be
observed in an experiment, although the signal can be huge.
A limited size not only reduces the maximum, but also shifts
it to a lower temperature. The density of the Cooper pairs
is also influenced by finite sizes, and it shows a rounding
instead of an abrupt decrease at Tc, which makes it hard
to determine the true critical temperature. The most striking
consequence of limiting the physical extensions is seen in
the critical temperature; merely decreasing the dimension can
shift Tc from several degrees to tens of Kelvin or suppress
the superconducting order completely [29,35]. Obviously
Eq. (14) establishes the importance of OPFs and shows that
for d � 3, Tc is a characteristic scale of temperature related
to thermal fluctuations rather than the transition temperature.
More precisely, for d � 3, Eqs. (12) and (14) show that
the modified value of the critical temperature T ∗

c is shifted
to lower temperatures compared to Tc. It appears also that
for d � 4, υdc = 0, which means that above dimension 4,
the present SCA acts exactly like the MFT, whereas it
predicts correctly the universal quantities for dimension 4
and below. In the case of 4D systems, the correction term
υ(d,T ) is reduced to a linear function of temperature as
υ(d,T ) ∝ (T − Tc) and the renormalized quadratic coefficient
becomes a∗(T ) = a∗

0Tcε with, however, a∗
0 �= a0. Analyzing

the critical region, the critical width δTc = Tc − T ∗
c increases

as the dimensionality of the system decreases. For two- and
three- dimensional systems, the renormalized functional leads
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to two superconducting transitions, one at Tc where the system
becomes superconducting and locks to produce a state with
very short-range phase coherence, and the second at T ∗

c < Tc,
where the superconducting phase locks to produce a state with
long-range phase coherence. Only the lower transition is a true
phase transition, with a divergent correlation length [36–39]. In
3D systems, the scaled width υ3c = δTc

Tc
is of the order of 10−14

to 10−10, much too small to be accessible experimentally. In
such a case, the SCA acts like a quasi-mean-field approxi-
mation and is a useful tool of estimating the importance of
fluctuations in a given superconductor. However, there is a
difference in the thermodynamic observables where the SCA
results differ quantitatively from the MF ones. As we shall see
in the next section, intrinsic critical fluctuations in 3D lead
in certain cases to a divergence of the specific heat jump at
the critical point. This divergence, expected from the 3D-XY

model, is visible in the high-Tc cup rates because of their short
coherence length [14].

In the particular case of 2D lattice systems, while recovering
critical fluctuations through theK2D term, the modified critical
temperature can be expressed as

T ∗
c = Tc(1 + K2D)−1. (15)

In the Ginzburg region, the fluctuation correction becomes
important. We observe a factor of 1 � τ � 2 decrease in Tc

and an order of magnitude increase in υ2c between K2D ≈ 0
and K2D = 1 (as shown in Fig. 1), resulting in a progression
from relatively weak 2D fluctuations for K2D ≈ 0 to strong
2D critical fluctuations over a wide temperature range. The
crossover from weak 2D to strong 2D critical behavior can be
achieved with a fairly modest increase in K2D , which implies
the existence of an intermediate high-dimensional regime
between two-dimensional regimes [11]. In the framework of
weakly localized fluctuations, intrinsic critical fluctuations
no longer affect the electron correlations, thus, υ2c → 0
and T ∗

c → Tc. However, the small coherence lengths, high
anisotropy, high transition temperatures, and quasi-2D nature
of HTSs greatly enlarge the temperature region in which OPFs

0 0.2 0.4 0.6 0.8 1
12

14

16

18

20

22

24

26

κ
2D

T
c∗ (K

)

FIG. 1. The modified critical temperature T ∗
c plotted against the

fluctuation term K2D for 2D lattice systems. The curve indicates the
decrease of the renormalized critical temperature as intrinsic critical
fluctuations of the system increase. It is assumed that Tc = 25 K as
an indication.

are important. A detailed analysis of critical fluctuations can
provide important information regarding the dimensionality
and the order parameter of the superconducting state. It is
possible to obtain a complete suppression of the transition
temperature due to large values of K2D . The superconducting
phase transition in such a case is expected to belong to the 2D-
XY model which does not exhibit any true long-range order,
but does, however, undergo a Kosterlitz-Thouless transition
at a finite temperature from a high-temperature phase where
υ(d,T ) has an exponential decay to a low-temperature phase
with quasi-long-range order where υ(d,T ) has a power-law
decay [18,40,41]. However, this behavior is not very probable
for 2D-cup-rate superconductors according to the GL model
which accounts for predominant weak fluctuations of the
amplitude of the order parameter.

Of particular significance is the problem associated with
the absence of phase transitions in a 1D system. It was
well known that phase transitions involving a classical order
parameter, such as the liquid-gas transition in a system of
particles with finite-range interactions, cannot occur in 1D
systems. Stimulated by a suggestion of the possibility of
superconductivity in polymeric systems, it was shown by
Rice [41] and more rigorously by Hohenberg [7] that this
could be extended to include the superconducting phase tran-
sition [42]. In the framework of our model, the 1D corrections
are more pronounced and true long-range order from the
breaking of a continuous symmetry is absent in accordance
with the Mermin-Wagner-Hohenberg theorem. The modified
static susceptibility χ∗(d = 1,T ) becomes infinite at T ∗

c ∼
0 K, showing that there is no phase transition when the spatial
dimensionality is restricted to one dimension. Equation (14)
shows that υ1c = δTc

Tc
→ 1 for 1D systems. Mathematically this

circumstance implies that interactions between fluctuations are
significant and that the quartic term and higher-order terms
in FGL are no longer negligible. However, it is important
to note that we take into account only OPFs. This means
that the ground state obtained is marginal and can be easily
destroyed by any (other) small corrective term (interlayer
coupling or axial anisotropy), which should be inherent to
all real materials (such as cup-rate superconductors). Real
systems are not isolated 1D systems but are composed of
parallel chains that are in some sense coupled. Because of
this such a system can undergo phase transitions at finite
temperature exhibiting 3D long-range order, although this
will usually occur at a temperature significantly lower than
Tc. Although the quantity υ(d,T ) is confined at the Gaussian
level, its presence allows a low-temperature behavior, and it
is appropriate for model calculations in a number of critical
systems, especially those with relatively small size or with the
presence of inhomogeneities, reducing the effective size of the
coherent region [25,43].

III. ORDER PARAMETER FLUCTUATIONS AND
DIMENSION EFFECTS ON THE SPECIFIC HEAT (JUMP)

OF HIGH-TEMPERATURE SUPERCONDUCTORS

Studies of the fluctuation and dimension effects at phase
transitions in the HTSs provide valuable information con-
cerning the mechanisms responsible for superconductivity and
enable the derivation of certain constraints for the microscopic
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theory. Generally, according to the essential singularities
exhibited by the thermodynamic quantities characteristic of
phase transitions with in some cases a probable signature of
global broken symmetry, there is a strong evidence of observed
anomalies in the behavior of thermodynamic quantities in
terms of microscopic models and interactions such as a loss
of entropy S∗

d , a specific heat C∗
d jump, and a gain

in renormalized free energy F ∗
d between the high- and

low-temperature phases. Here we are considering only the
electronic component, assuming that the ion dynamics is
basically not affected by this transition. From its expressions
in the high- and low-temperature phases, the free energy
difference is determined as

F ∗
d = −a2

0T
2
c

[ε + υ(d,T )]2

2b0
. (16)

By using Eq. (16), the increase in the entropy associated with
the suppression of the order parameter at T ∗

c can be obtained
as follows:

S∗
d = a2

0Tc

b0

[
1 + Tc

∂υ(d,T )

∂T

]
[ε + υ(d,T )]|T =T ∗

c
= 0,

(17)
showing that there is no change in the entropy at the modified
transition point T ∗

c . It appears clearly that the energy required
to destroy the order of the system at the transition point or
the latent heat is equal to zero. This result is not surprising,
since for the second order phase transition, fluctuations
suppress the transition but conserve entropy. Therefore, the
specific heat jump modified by fluctuations has the following
expression:

C∗
d = a2

0T

b0

{[
1 + Tc

∂υ(d,T )

∂T

]2

+ T 2
c [ε + υ(d,T )]

∂2υ(d,T )

∂T 2

}
, (18)

which results from the integration over all fluctuation degrees
of freedom. Within the framework of the SCA, while taking
into account the fact that [ε + υ(d,T )]|

T =T ∗
c

= 0, the anoma-

lous part of the specific heat is given at T ∗
c by

C∗
0 = (1 − υdc)

[
1 + Tc

∂υ(d,T )

∂T

∣∣∣∣
T =T ∗

c

]2

C0, (19)

where C0 is the mean-field specific heat jump de-
fined in Eq. (6). For 1D and 2D systems, one

gets{
C∗

0 � 0, for 1D systems (a)

C∗
0 = (1 + K2D)C0, for 2D systems (b).

(20)

For 3D systems, the resolution of Eq. (9) leads to two solutions,
and we obtain at the critical temperature the following
expression:

C∗
0 =

{
0, (a)

4
(
1 + K2

3D

)2
C0 (b).

(21)

Taking into account the contribution of fluctuations, it can be
concluded that, if the transition takes place, the anomalous
part of the specific heat will not be detected experimentally,
particularly for 1D systems, and 3D systems in certain cases
[see (a) of Eqs. (20) and (21)]. The modified specific heat
as T approaches T ∗

c from above is proportional to the MF-
specific heat jump, with a prefactor which depends on the
dimension and microscopic parameters of the system. The
solution (b) of Eq. (21) shows that the jump in the ratio
of the modified and the MF specific heats at the transition
point is at least 4. This result is interesting because it leads
to nontrivial predictions and is in reasonable agreement with
certain experiments as will be discussed shortly. During the
preparation of compounds like YBCO, it is difficult to avoid
the appearance of impurity phases. In some of them, such
as the Y2Cu2O5 phase, the low-temperature specific heat is
10–100 times larger than the electronic specific heat in the
YBCO compounds [44,45]. The present approach leads to
an asymptotic behavior for temperatures appreciably far from
Tc, while in the crossover region δTc or for finite size, the
results obtained differ quantitatively from that of SGA or
MFT.

If the true test of the validity of an approach is in its
comparison with experiments, another is the establishment
and evaluation of the importance of the obtained results.
Therefore, in order to proceed further with our investigation,
we discuss the same issue for cup rates, whose transitions
indeed apparently belong to the same universality class. For
these superconductors, we expect an even larger departure of
the experiments from the above universal predictions because
of the extremely short correlation length. For this reason, we
demonstrate the usefulness of the results obtained in this paper
through the cup-rate superconductors, which present the case
of the contribution of OPFs to the electronic specific heat.
Moreover, for the cup-rate superconductors and in order to
attain a phenomenological interpretation of the experimental
results, we perform the renormalized Gaussian approximation
where FGL is again truncated to second order resulting to the
factorization of the partition function, and by integrating over
all fluctuation degrees of freedom, the modified GL specific
heat of the system is factorized as follows:

C∗
GL =

{
1
2ηd (ξ+

0 )−d
[

T
Tc

]2[
1 + Tc

∂υ(d,T )
∂T

]2[
ε + υ(d,T )

]−α
for T > T ∗

c

C∗
0 + ηd (ξ−

0 )−d
[

T
Tc

]2[
1 + Tc

∂υ(d,T )
∂T

]2∣∣ε + υ(d,T )
∣∣−α′

for T < T ∗
c .

(22)

C∗
0 = g(Kd )C0 is the modified specific heat jump and

ηd is the same integral quantity defined in Eq. (4) for the
Gaussian approximation and which is dimension-dependent.
The modified specific heat jump is proportional to the MF one,
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with a prefactor

g(Kd ) =

⎧⎪⎨
⎪⎩

0, for d = 1
(1 + K2D), for d = 2

4
(
1 + K2

3D

)2
, for d = 3,

(23)

which obviously leads to the enhancement, suppression, or
rounding of the specific heat jump at the transition according
to the dimension and the nature of interactions. The modified
specific heat jump increases linearly for d = 2 and shows
nearly exponential behavior for d = 3 (see Fig. 3). Now, the
dominant behavior of C∗

GL close to T ∗
c is obtained through the

power law C∗
GL ∼ | T −T ∗

c

Tc
+ (υ(d,T ) − υdc)|dν−2

giving rise
to another temperature dependence of the specific heat and
thermodynamic quantities in general. The correction terms[

1 + Tc

∂υ(d,T )

∂T

]2
and υ(d,T )

bring significant contributions to the specific heat. Indeed, the

quantity [1 + Tc
∂υ(d,T )

∂T
]
2

indicates either a small or a large
specific heat step as the case may be, as observed in certain
superconductors [46].

A different deviation from MF behavior is seen in the
transition of YBCO7−δ single crystal for 0 � δ � 0.18, as
shown in Refs. [10,12,13,47,48]. For example, large values
of δTc and a strong 2D critical behavior are clearly defined
as reported by Loram et al. [12]. One also notes the sharp
decrease of the specific heat jump at the transition which might
be attributed to OPFs. It is possible that some of this rounding
may actually be due to the inhomogeneity of the sample as one
goes from fully oxygenated, overdoped, to slightly underdoped
samples, but it may also indicate the fluctuation-dominated
critical regime [10]. The jump reported experimentally by
Fisher et al. [48] was found to be rounded, on the scale of
order, a tenth of a degree K, for δ = 0. Due to the fact that the
conducting CuO chains in YBCO7−δ equally play a crucial role
in enhancing the interplanar coupling, relative changes in the
phonon term due to δ in YBCO7−δ can be reliably determined
and the fluctuation term clearly established with confidence
over a wide temperature range [12].

Whereas investigations indicate a considerable weight of
the specific jump in YBCO7−δ , possibly with a modified
temperature dependence, the jump is absent in the specific heat
of the highly anisotropic BSCCO compound where the more
radically different form of the specific heat transition given
by the first solution (a) of Eq. (21) is well observed [14]. We
note that both specific heat [47] and thermal expansion [13]
data find a nearly symmetric anomaly at the critical point
with practically no jump component. This critical behavior,
which is better described by Bose condensation [49], can also
be well described by a GL theory renormalized by intrinsic
critical fluctuations at the Gaussian level as discussed here.
In BSCCO compounds, the heat capacity transition looks
very much different from that in YBCO7−δ . In YBCO7−δ ,
the ratio γ is about 5, while in BSCCO, it is about 30 [14].
The effective number of degrees of freedom is less significant
in BSCCO than in YBCO7−δ . As a result, the Cooper pairs
in quasi-two dimensions fall off more rapidly than in three
dimensions with increasing temperature around the critical

point. This difference in behavior is also apparent in the
variation of the critical temperature with the superfiuid density.
In the BSCCO compound, there is no range of superfiuid
density since it remains constant, contrary to what is seen
in YBCO7−δ [10,50,51].

Another deviation from MF behavior predicted here con-
cerns the ratio C0/Tc (between the specific heat jump and the
critical temperature). With the standard GL theory, this ratio
is a constant, while for high-Tc superconductors it strongly
depends on critical fluctuations. Basing our analysis on a
renormalized Gaussian approach that takes into account both
the influence of a nonuniform Tc and the microscopic relation

between the GL parameters [i.e., a2
0

b0
= 8π2

7ζ (3)ν where ζ (x) is
the Riemann zeta function], the modified ratio in the 3D case
[taking into account Eq. (21)] is given by

C∗
0/T ∗

c = 32π2

7ζ (3)
ν
(
1 + K2

3D

)2
. (24)

This result gives clear evidence for a systematic increase in the
electronic specific heat jump with increasing superconducting
fluctuations and describes a more detailed GL analysis yielding
values for coherence lengths and critical temperatures. This re-
markable behavior is well observed in a new class of transition
metal oxide superconductors of the β-pyrochlore oxide type,
such as KOs2O6 [15,17]. The jump at the critical temperature
is much larger than that in other superconductors [52]. It is
possible that some of this enhancement may actually be due
to a large lattice contribution, which survives down to low
temperatures, and which enhances the C/T ratio near the
critical temperature, but it may also indicate the fluctuation-
dominated critical regime and many anomalous features found
in KOs2O6. These pyrochlores commonly posses characteristic
Fermi surfaces involving a strong tendency for nesting [53].
To account for this nonlinear behavior of the specific heat, the
taking into account of critical fluctuations is necessary and
the Sommerfeld constant, which characterizes these materials
should take at the critical point the following form:

γ (T �
c ) = g(Kd )γ0, (25)

where γ0 ∝ a2
0

b0
is the Sommerfeld constant extrapolated to zero

temperature from the superconducting state.Kd determines the
critical line and hence incorporates both the asymptotic critical
behavior and the crossover to the regular regime.

In general, depending on the coherence length, different
types of critical behavior at a superconducting phase transition
can be distinguished. Here we are concerned with the short-
coherence length cup rates, which, combined with their small
density of Cooper pairs has raised the question of the existence
of critical fluctuations in the whole fluctuation region and,
consequently, the breakdown of the MF regime [10]. In the
case of purely Gaussian fluctuations, no divergence of the
mean-field jump is expected to occur, whereas (as appears
to be the case here), the predictions suggest a divergence of
the fluctuation contribution with critical exponent α = 2 −
d/2 = 0.5 for d = 3 (see the dashed line in Fig. 2). In the
case of critical fluctuations described by the 3D-XY model, a
logarithmic divergence of the jump is expected. Experimental
data on YBCO7−δ single crystals reported in Refs. [54,55] are
in better agreement with the latter prediction than with the
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FIG. 2. Specific heat as a function of the temperature for 3D-
lattice systems. The dashed curve represents the specific heat with
MF critical exponent |α| = 0.5, and the solid line represents the
specific heat with 3D-XY critical exponent |α| = 0.013 according to
Eq. (22).

first one, as discussed in Ref. [47]. Also, measurements of the
specific heat in YBCO7−δ compounds, with sharp transitions,
suggest a crossover of the critical exponent from the 3D-mean-
field value (|α| = 0.5) to the value |α| � 0.018 [54] given by
the 3D-XY model. The zero-field specific heat of YBCO7−δ

is well described by the 3D-XY model, with the same critical
parameters as those found for liquid 4He, over a temperature
range of 10 K above and below Tc [55]. This range agrees well
with the range over which the electronic specific heat has been
claimed to vary logarithmically with temperature.

Although confined at the Gaussian level, the quantity
υ(d,T ) represents a deviation from the standard Gaussian
model, as it contains the recipe for taking into account the
quartic and higher-order terms in the case of strongly localized
fluctuations. The taking of account of higher-order terms can
result in an adjustment of critical exponents in the vicinity of
the critical point. However, the change of value of the critical
exponents does not occur “brutally” at a “given temperature,”
it occurs within a certain interval of temperatures close to
the true critical point T ∗

c (and often far from Tc). Using the
3D-XY critical exponent |α| = 0.013, we perform practically
the same fits as in YBCO7−δ compounds [10,14] (see the
solid line of Fig. 2) with the difference, however, that the
specific heat jump now takes into account the intrinsic critical
fluctuations. For 3D systems, as displayed in Fig. 3, the jump
in the ratio of the modified and the mean-field specific heats
rapidly increases with the fluctuation term, showing nearly
exponential behavior. The crossover from no divergence to a
divergence of the mean-field jump can be achieved with a fairly
modest increase inKd = K3D expected from high-Tc cup rates
because of their short coherence length. In such a case, the
dashed and solid curves in Fig. 2 can merge, thus rendering
the renormalized GL and the 3D-XY models indistinguishable.
In such a case, it is difficult to discriminate definitively if such
a divergence is really associated with the value of the critical
exponent throughout the critical region or if it is due to intrinsic
effects associated with sample inhomogeneities, which may
be present even in apparently very good compounds. This
principal aspect will be discussed in more detail elsewhere.

0 0.2 0.4 0.6 0.8 1
0
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6
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14

16

K
d

ΔC
* 0/Δ

C
0

 

 

2D
3D

FIG. 3. The scaled specific heat jump (C∗
0 /C0) as a function

of the fluctuation term Kd for 2D and 3D lattice systems. The dashed
curve represents 3D lattice systems, and the solid curve shows the
corresponding curve for 2D lattice systems.

In the case of 2D systems, the modified specific heat
jump increases in a rather slow manner with increasing
Kd = K2D . The solid line plotted in Fig. 3 shows a weak
fluctuation-dependent behavior at low K2D . It can be seen
that the dependence of the modified specific heat jump on
critical fluctuations is linear and a logarithmic divergence
of the jump is expected according to K2D . Among other
things, of central importance is the rounding behavior of
the specific heat jump at the transition for short-coherence
length systems. This behavior can be understood in terms
of OPFs. The GL model in the free-field approximation and
the 3D-XY model are two classic examples of universality
class with one complex order parameter. These two classes
are suitable for describing the weak and strong fluctuation
regimes respectively. However, with a modified quadratic
coefficient, the renormalized GL model can also describe
strong fluctuation regimes as described in this paper.

IV. CONCLUSION

The dimension and temperature dependence of the specific
heat is evaluated using a renormalized method of calculation
of averages, which retains a significant part of the spatial
features of the fluctuations of the Cooper pairs. The obtained
expressions of this specific heat are discussed as the sample
dimensions are lowered from 3D bulk materials through two
and one dimensions. The approach presented confirms the
fact that the standard GL functional is no longer a valid
approximation for high-temperature superconductors. This is
because the thermal fluctuations of the Cooper pairs near the
critical point are large due to the short coherence length, which
follows directly from the high critical temperature through
Heisenberg’s uncertainty principle. From the developed self-
consistent approach, the prefactor of the logarithmic increase
of the specific heat jump is determined for 2D systems. For 3D
systems, the renormalized specific heat jump is at least four
times higher than the mean-field specific heat jump as shown
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in Fig. 3 . We believe that this behavior is also due to a large
lattice contribution, which survives down to low temperatures
and which enhances the specific jump near the critical point
as observed in the β-pyrochlore oxide KOs2O6. The case
where the specific heat jump obtained is zero as observed
in Bi2Sr2CaCu2O8+δ suggests that if the transition takes place,
the anomalous part of the specific heat can not be detected
experimentally. Another interesting feature of the calculations
is the existence of a microscopic parameter υdc, which
incorporates both the asymptotic critical behavior and the
crossover to the regular regime. The present model reproduces
the MFT for dimension four and above with thermodynamic
observables modified by intrinsic critical fluctuations. It also
correctly predicts the universal quantities for dimensions lower
than four, taking into account the Mermin-Wagner-Hohenberg
theorem. At all temperatures below and above Tc, the SCA
matches the superconducting observables, thus providing a
unified picture for both the Gaussian and the critical (non-
Gaussian) regimes. However, we recall that our fluctuation
studies probe only the integral of the renormalized Gaussian
spectrum taking into account the expected fact that the newly
introduced non-universal quantity υ(d,T ) which represents
a deviation from the standard Gaussian model does not
explicitly depend on the wave number q. This quantity does
not modify the critical exponents but affects, however, the

characteristic length scales, the specific heat jump and the
crossover region where critical exponents are supposed to vary.
It would therefore be essential to determine more precisely
the momentum dependence of the renormalized Gaussian
spectrum and compare it with the Lorentzian dependence of the
conventional MF spectrum. This should enable us to determine
other corrective terms of the conventional GL Hamiltonian,
which are expected to give a better description of the
superconducting state of cup rates. In this respect, a systematic
study of other fluctuation properties, such as the fluctuation
diamagnetism, would be important. Fluctuation studies on
other short-coherence length superconductors would also be
useful for exploring possible new aspects of the physics of
phase transitions in short-coherence length systems.
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[43] J. A. Tuszyński and A. Wierzbicki, Phys. Rev. B 43, 8472 (1991).
[44] A. Junod, in Physical Properties of High Temperature Super-

conductors, Vol. 2, edited by D. M. Ginsberg (World Scientific,
Singapore, 1990), p. 13.

[45] N. Plakida, High-Temperature Cuprate Superconductors:
Experiment, Theory, and Applications (Springer, Berlin,
2010).

[46] S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. B 79,
220516(R) (2009).

[47] A. Junod, in Studies of High Temperature Superconductors
(Nova Science Publishers, New York, 1996), Vol. 18.

[48] D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43,
130 (1991).

[49] A. S. Alexandrov, W. H. Beere, V. V. Kabanov, and W. Y. Liang,
Phys. Rev. Lett. 79, 1551 (1997).

[50] A. Bussmann-Holder and H. Keller, High-Tc Superconduc-
tors and Related Transition Metal Oxides (Springer, Berlin,
2007).

[51] C. P. Poole, Jr., Handbook of Superconductivity (Academic
Press, New York, 2000).

[52] S. M. Kazakov, N. D. Zhigadlo, M. Bruhwilder, B. Batlogg, and
J. Karpinski, Supercond. Sci. Technol. 17, 1169 (2004).

[53] J. Kunes, T. Jeong, and W. E. Pickett, Phys. Rev. B 70, 174510
(2004).

[54] V. Pasler, P. Schweiss, C. Meingast, B. Obst, H. Wühl, A. I.
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