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Perturbations of linear delay differential equations at the verge of instability
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The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the
complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the
characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts.
It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be
approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE)
without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional
SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a
specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other
articles that use multiscale approach are pointed out.
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I. INTRODUCTION

Delay differential equations (DDEs) arise when the evolu-
tion of a variable at any time depends on the history of the
variable. The evolution of many physical systems depends on
their history owing to finite conduction velocities. Naturally,
these systems are modeled by DDEs. Delay differential
equations arise in many areas: biological systems, population
dynamics, machining processes, viscoelasticity, laser optics,
etc. See [1] for a description of some examples. Many models
of physiological systems, disease models, and population
dynamics involve DDE; see the Mackey-Glass equation [2]
for example.

The subject of this paper is linear DDEs at the verge of
instability. For example, consider the equation

ẋ(t) = κx(t − 1). (1)

Seeking a solution of the form x(t) = etλ, we find that λ must
satisfy the characteristic equation λ − κe−λ = 0. When κ ∈
(−π

2 ,0), all roots of the characteristic equation have negative
real parts (see Corollary 3.3 in [3]). When κ = −π

2 a pair
of roots ±i π

2 is on the imaginary axis and all others have
negative real parts. When κ < −π

2 some of the roots have a
positive real part. Hence, the system (1) is on the verge of
instability at κ = −π

2 . We study the effect of perturbations on
such systems, for example,

ẋ(t) =
(

−π

2
+ εξ (t)

)
x(t − 1),

where ξ is a noise and ε � 1 is the strength of the perturbation.
Such instability situations arise, for example, in machining

processes. An oscillator of the form

q̈(t) + 2ζ q̇(t) + p2q(t) = −κp2[q(t) − q(t − r)] (2)

is used to describe a phenomenon called regenerative chatter
in machining processes [4]. The model is as follows. A cutting
tool is placed on a workpiece that is attached to a shaft rotating
with time period r . The tool vibrates as it cuts the material from
the workpiece. Let q(t) describe the position of a point on the
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machine tool. The force acting on the tool is proportional to
the depth of the chip being cut and the depth is approximated
as the difference between the present position q(t) of the tool
and its position one revolution earlier q(t − r). The coefficient
κ is a force coefficient that depends on, among other factors,
the width of cut. It is known that, for a fixed r , there exists
a critical κc such that the amplitude q of the oscillator de-
creases exponentially if κ < κc and increases exponentially if
κ > κc. When κ = κc oscillations of constant amplitude per-
sist. This oscillatory behavior is called chatter. In machining,
the goal is to have a large rate of cut. The greater the rate, the
larger κ is, and chatter occurs when κ is larger than a critical
value resulting in poor surface finish. Researchers explored
the possibility of achieving chatter suppression by varying
structural parameters of the tool such as damping and stiffness
(see [5,6]). Suppose there are small random perturbations in
the natural frequency p in (2) such that p = p0[1 + εσ (ξ (t))],
where σ is a mean-zero function of the noise ξ and ε � 1 is
the strength of the perturbation; then on expanding in powers
of ε and discarding terms of higher order, we have

q̈(t) + 2ζ q̇(t) + p2
0q(t)

= −κp2
0[q(t) − q(t − r)] + εσ (ξ (t))

[ − 2(1 + κ)p2
0q(t)

]
+ εσ (ξ (t))

[
2κp2

0q(t − r)
]
, (3)

which can be studied as a perturbation of (2). Also, small
random perturbations in the properties of the material being
cut could affect the tool dynamics (see [7]).

Delay equations on the verge of instability arise also, for
example, in the study of eye pupil [8] and act of human
balancing [9]. In [10] Gaudreault et al. make a case for studying
the effect of noise on oscillators with delayed feedback. As a
prototypical oscillator they consider the van der Pol model

q̈(t) + ω2
0q(t) + ηq(t − r)

= βq̇(t) + κq̇(t − r) − bq2(t)q̇(t) + q(t)ξ (t), (4)

with ξ a Gaussian white noise with zero mean and variance
〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′).

Deterministic and stochastic DDEs have been well studied
in the literature; see, for example, Refs. [11] (deterministic)
and [12] (stochastic). Deterministic DDEs at the verge of
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instability are also well studied; see [13] for the averaging
approach and [14,15] for the multiscale approach. Stochastic
DDEs at the verge of instability, with the noise being white,
have been studied by employing the multiscale approach
in [10,16–18]; the averaging approach in [19–21]; and the
center-manifold approach in [22].

However, [10,16–18] have committed serious errors in the
analysis. These are pointed out in Appendix A. Appendixes A 1
(errors of [16,17]) and A 2 (errors of [10,18]) can be read
without further preparation. References [19–21] restrict their
analysis to noise being white and do not consider stronger
deterministic perturbations as considered here in Sec. V.
Reference [23] considers a different kind of instability (one
root of the characteristic equation is zero and all other roots
have negative real parts), which is reviewed in Sec. VII.

This article deals with systems that can be studied as
perturbations of linear DDEs at the verge of instability. In
recent articles [24,25] we have shown rigorously that, under
certain conditions, the dynamics of such systems forced by
white noise can be approximated (in a distributional sense)
by the dynamics of a one-dimensional stochastic differential
equation (SDE) without delay. The purpose of this article is
threefold.

The first is to exploit the results of [24,25] to show how
the analysis of systems at the verge of instability can be
simplified. The advantage arises because equations without
delay are easier to simulate and one-dimensional SDEs are
analytically tractable. References [24,25] deal rigorously with
scalar systems forced by white noise. In this article we
give (without proofs) explicit formulas for the approximating
dynamics of vector-valued systems forced by white noise
[equations of the form (7) and (43)].

The approach taken in this article is similar to those in
[19–21], in the sense that all use the spectral theory for
DDEs and averaging. However, [19–21] consider specific
applications of the equations of the form (7), but do not
consider the stronger perturbations as in Eq. (43). When
dealing with Eq. (43), the averaging approach that we take
does not assume the existence of a center manifold (rigorous
results about a center manifold for stochastic DDEs are
not known1). Further, the formulas (55) and (56) presented
here, regarding the stronger perturbations Gq in (43), are of
independent interest. When applied in the deterministic DDE
setting, they provide an alternate way to compute the effect of
center-manifold terms on the amplitude of the critical mode
(more details are provided in Sec. V).

The second purpose is to point out the errors in existing
approaches that deal with the white noise case.

The third is to study systems forced by other general kind
of noises (for example, a continuous-time two-state Markov
chain). Theoretical results for this case [equations of the

1However, see [26] for related results. One of the special cases
of Theorem 4.1 of [26] is the following: In the case that zero is a
fixed point of a stochastic DDE and the stochastic system linearized
about zero does not have zero as a Lyapunov exponent, local stable
and unstable manifolds exist. These manifolds are the set of initial
conditions that converge to or diverge from zero at an exponential
rate.

form (8)] are dealt with in Sec. VI. A sketch of the proof
of the main result (Theorem 3) is provided in Appendix D.

These claims would become more clear after the next
two sections where the mathematical framework is explained.
Also, in the case where the perturbations are also linear, a
complex number is identified that alone dictates the stability
of the system.

The organization of the rest of the paper is given at the end
of the next section, after presenting the preliminaries.

II. MATHEMATICAL SETUP OF DDES

A. Notation

We use the following notation throughout:R denotes the set
of real numbers and C denotes the set of complex numbers;
eλ• means a function whose evaluation at θ ∈ R is eλθ ; an
asterisk as a superscript indicates a transpose; z̄ is the complex
conjugate of z; v ∈ Rn means that v is an n × 1 matrix with
each entry in R and v ∈ Rn∗ means that v is a 1 × n matrix
with each entry in R. The line underneath serves as a reminder
that the quantity is multidimensional. The notation is similar
for Cn and Cn∗.

B. Equations considered in the article

Let x(t) be an Rn-valued process governed by a DDE with
maximum delay r . The evolution of x at each time t requires
the history of the process in the time interval [t − r,t]. So the
state space can be taken as C := C([−r,0];Rn), the space2 of
continuous functions on the interval [−r,0] with values in Rn.
At each time t , denote the [t − r,t] segment of x by �tx, i.e.,
�tx ∈ C and

�tx(θ ) = x(t + θ ) for θ ∈ [−r,0].

Now a linear DDE can be represented in the form

ẋ(t) = L0(�tx), t � 0

�0x = ϕ ∈ C,
(5)

where L0 : C → Rn is a continuous linear mapping on C and ϕ

is the initial history required. For example, ẋ(t) = −π
2 x(t − 1)

can be represented using the linear operator given by L0(η) =
−π

2 η(−1) for η ∈ C.
We assume that there exists a bounded matrix-valued

function μ : [−r,0] → Rn×n, continuous from the left on the
interval (−r,0) and normalized with μ(0) = 0n×n, such that

L0η =
∫

[−r,0]
dμ(θ )η(θ ) for η ∈ C. (6)

This is not a restriction: Every continuous linear operator L0

has such a representation. For example, ẋ = −π
2 x(t − 1) can

be represented by

μ(θ ) =
{

π
2 , θ = −r

0, θ > −r.

2The space C is Banach space when equipped with a sup norm:
‖η‖ := supθ∈[−r,0] |η(θ )| for η ∈ C.
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This article deals with perturbations of linear DDEs, i.e.,
equations of the form

dx(t) = L0(�tx)dt + ε2G(�tx)dt + εF (�tx)dW (t),

�0x = ϕ ∈ C,
(7)

where F,G : C → Rn are possibly nonlinear, W is a R-valued
Wiener process, and ε � 1 is a small number signifying
perturbation. The following equations are also considered:

dx(t) = L0(�tx)dt + ε2G(�tx)dt + εσ (ξ (t))F (�tx)dt,
(8)

�0x = ϕ ∈ C,

where F,G : C → Rn are possibly nonlinear, ξ is a noise
process (satisfying some assumptions), and σ is a mean-zero
function of the noise ξ . For example, one can have ξ as a
finite-state Markov chain.

As an example, consider ˙̃x = κx̃(t − 1) − x̃3(t), where κ

has small perturbations about −π
2 according to κ = −π

2 +
εσ (ξ (t)) + ε2, where ξ is a noise. Then x(t) = ε−1x̃(t) can be
put in the form (8) with L0(η) = −π

2 η(−1), F (η) = η(−1),
and G(η) = −η3(0) + η(−1).

The operator L0 is assumed to be such that the unperturbed
system (5) is on the verge of instability, i.e., L0 satisfies the
following assumption.

Assumption 1. Define

�(λ) = λIn×n −
∫

[−r,0]
dμ(θ )eλθ ,

where I is the identity matrix. The characteristic equation

det[�(λ)] = 0, λ ∈ C (9)

has a pair of purely imaginary solutions ±iωc and all other
solutions3 have negative real parts.

Since (7) and (8) would be studied as perturbations of the
linear DDE (5), a brief overview of the unperturbed system (5)
is given now.

C. Unperturbed system (5)

The content in this section can be found in [11] (see Chap. 7)
and [27] (see Chap. 4).

1. Projection onto eigenspaces

The space C can be split as C = P ⊕ Q, where P is
the eigenspace of the critical eigenvalues ±iωc. Since P

corresponds to the critical eigenvalues ±iωc, the projection
of the dynamics of the unperturbed system onto P is purely
oscillatory with frequency ωc. Since Q corresponds to the
eigenvalues with a negative real part, the projection of
the dynamics of the unperturbed system onto Q decays
exponentially fast.

3Typically there are countably infinite other roots.

Here we show, given an η ∈ C, how to find the projection
onto the space P . For details, see [11] (Chap. 7) and [27]
(Chap. 4).

Any η ∈ C can be written as η = πη + (I − π )η, where
πη ∈ P and (I − π )η ∈ Q. Here π is the projection operator
π : C → P and I is the identity operator. The projection π

can be constructed as follows. Let

� = [�1,�2], �1(•) = deiωc•, �2(•) = d̄e−iωc•, (10)

where d ∈ Cn is chosen such that

�(iωc)d = 0n×1. (11)

Note that each �i belongs to C([−r,0];Cn). Define the bilinear
form 〈·,·〉 : C([0,r];Cn∗) × C([−r,0];Cn) → C, given by

〈ψ,η〉 := ψ(0)η(0) −
∫ 0

−r

∫ θ

0
ψ(s − θ )dμ(θ )η(s)ds. (12)

Let

� =
[
�1

�2

]
, �1(•) = cd2e

−iωc•, �2(•) = c̄d̄2e
iωc•, (13)

where d2 ∈ Cn∗ is chosen such that

d2�(iωc) = 01×n (14)

and the constant c is chosen such that

〈�i,�j 〉 = δij . (15)

(Here δij = 1 if i = j and zero if i �= j .)

Writing 〈�,η〉 = [〈�1,η〉
〈�2,η〉], we obtain for the projection π :

C → P ,

π (η) = �〈�,η〉 = �1〈�1,η〉 + �2〈�2,η〉. (16)

Note that 〈�1,η〉 and 〈�2,η〉 are complex conjugates and so
are �1 and �2.

2. Behavior of the solution on the eigenspaces

The solution to the unperturbed system (5) can be written
as

�tx = π�tx + (I − π )�tx = �z(t) + yt ,

where z(t) = 〈�,�tx〉 and yt = �tx − �z(t). Note that z ∈
C2 is a two-component vector with z2 = z̄1, and �z(t) ∈ P

and yt ∈ Q. It can be shown that

ż(t) = Bz(t), B =
[
iωc 0

0 −iωc

]
, (17)

i.e., z oscillates with constant amplitude and frequency ωc. So
2z1z2 is a constant in time. Further, it can be shown that ‖yt‖
decreases4 to zero exponentially fast (because the dynamics
on Q is governed by eigenvalues with negative real parts).

4This is the sup norm on C.
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D. Perturbed systems (7) and (8)

Define the function h : C → R by

h(η) := 2〈�1,η〉〈�2,η〉, η ∈ C. (18)

As noted above,

2z1(t)z2(t) = 2〈�1,�tx〉〈�2,�tx〉 = h(�tx)

is a constant for the unperturbed system (5). When we deal with
the perturbed system (7) or (8), the quantity H(t) := h(�tx)
evolves much more slowly than x and zi . In (7), because a
Wiener process has the property that the rescaled process t �→
εW (t/ε2) has the same probability distribution as that of a
Wiener process, the noise perturbations take O(1/ε2) time to
significantly affect the H dynamics. Also, the perturbation G

is of strength ε2. Hence, significant changes in H occur only
in times of order 1/ε2. In (8), even though the strength of the
noise perturbation is ε, because σ is a mean-zero function of
the noise, significant changes in H occur only in times of order
1/ε2.

Our claim is that, under certain conditions on the coeffi-
cients F and G, the probability distribution of the process
H(t/ε2) converges to the probability distribution of a SDE
without delay. Because of the nature of decay on Q, ‖yt‖
decays to small values exponentially fast and so studying H
is enough to obtain a good approximation to the behavior of
x in (7) and (8). How to obtain the SDE is shown in later
sections.

Remark 1. The reason why studying H would be useful
is the following. For the moment assume that the part of the
solution in the stable eigenspace Q is zero, i.e., �tx = �z(t)
and (I − π )�tx = 0. Then, for the j th component of x we
have xj (t) = [�tx(0)]j = (d)j z1(t) + (d̄)j z2(t), where d is
chosen in (10). Noting that z2 = z̄1 and that the dynamics
of zi is predominantly oscillatory with frequency ωc, we
find that the dynamics of xj is predominantly oscillatory

with amplitude 2|(d)j z1| or, equivalently,
√

4(d)j (d̄)j z1z2 =
|(d)j |

√
4z1z2 = |(d)j |

√
2H. Hence the magnitude of H indi-

cates the amplitude of oscillation of x [usually the amplitude
might differ from |(d)j |

√
2H by a slight amount because the

part of the solution in Q, i.e., (1 − π )�tx, is not exactly
zero].

The rest of the paper is organized as follows. Equations of
the form (7) are considered in Sec. III and convergence of the
probability distribution of the H process for such equations
is stated in Theorem 1. Examples illustrating the usefulness
of Theorem 1 are given in Sec. IV. Equations similar to (7)
but with stronger perturbations [Eq. (43)] are considered in
Sec. V and convergence of the probability distribution of theH
process for such equations is stated in Theorem 2. The physical
arguments leading to Theorem 2 are explained in Sec. V.
However, the application-oriented reader can utilize Remark
4 to immediately apply Theorem 2 (notation is available in
Sec. V A). Analogous results for equations of the form (8) are
in Sec. VI.

A crucial role is played by the vector �(0). So the symbol
�̂ is reserved for �(0):

�̂
def= �(0).

III. PERTURBED SYSTEM (7)

As noted above, h(�tx) for the perturbed system (7) varies
slowly compared to x. Changes in h(�tx) are significant only
for times of order 1/ε2. Hence, we rescale time and write
Xε(t) = x(t/ε2), where x is governed by (7).

Under the above time scaling, the x time series would be
compressed by a factor of ε2. So, in order to be able to write the
evolution equation for Xε, we need to define a new segment
extractor �ε

t as follows: For an Rn-valued function f defined
on [−ε2r,∞), the [t − ε2r,t] segment is given by(

�ε
t f

)
(θ ) = f (t + ε2θ ), − r � θ � 0. (19)

Now the process Xε has the same probability law as that of a
process satisfying

dXε(t) = 1

ε2
L0(�ε

t X
ε)dt + G(�ε

t X
ε)dt + F (�ε

t X
ε)dW (t),

t � 0 (20)

�ε
0X

ε = ϕ ∈ C,

where W is R-valued Wiener process.5 Write Hε(t) :=
h(�ε

t X
ε) with h defined in (18). Using Itô’s formula, it can

be shown that Hε(t) satisfies

dHε(t) = b
(
�ε

t X
ε
)
dt + σ

(
�ε

t X
ε
)
dW, Hε(0) = h(ϕ),

(21)

where

b(η) = E(η)G(η) + 1
2 4[�̂1F (η)][�̂2F (η)], (22)

σ (η) = E(η)F (η), (23)

E(η) = 2(〈�1,η〉�̂2 + 〈�2,η〉�̂1). (24)

Recall that we can write the solution as �ε
t X

ε = �z(t) +
(I − π )�ε

t X
ε, where z(t) := 〈�,�ε

t X
ε〉. Note that the evolu-

tion of zi(t) = 〈�i,�
ε
t X

ε〉 is fast compared to the evolution
of Hε and is predominantly oscillatory. Heuristically, the zi

oscillate fast along trajectories of constant h (the effect of 1
ε2 L0)

while at the same time diffusing slowly across the constant h

trajectories (the effect of perturbations G,F ). Hence, the zi in
the above coefficients b and σ can be averaged.

Theorem 1. In the case when (i) F is constant and G is cubic
and has a stabilizing effect or (ii) F is either linear or constant
and G is Lipschitz continuous, the probability distribution of
Hε from (21) until any finite time T > 0 converges, as ε → 0,
to the probability distribution of a process ȟ, which is the
solution of the SDE

dȟ(t) = bH (ȟ(t))dt + σH (ȟ(t))dW (t), ȟ(0) = h(ϕ),

where bH and σH are obtained by averaging the functions
in (22) and (23) as described below in Sec. III A. The
perturbation G is said to have a stabilizing effect if the
deterministic system �̇ = bH (�) is stable.

Note that H encodes information only about the critical
component π�εXε of the solution. The above results should

5We have used the fact that for a Wiener process W , εW (t/ε2) has
the same probability law as a Wiener process.
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be augmented with the result that the stable component
(I − π )�εXε is small. Proof of Theorem 1 and a result to
the effect that the stable component of the solution is small
are presented in [25] (also see [24] for the case when G is
Lipschitz continuous and F is constant).

A. Evaluation of bH and σH

To evaluate bH and σH at a specific value � ∈ R, we
consider a solution �tx of the unperturbed system (5) that
remains in the space P for all time and such that h(�tx) = �.
For this purpose define

η�

t

def= 1

2

√
2��

[
eiωct

e−iωct

]
. (25)

Note that η�

t ∈ P for all time and the z coordinates of η�

t

given by 1
2

√
2�[ eiωc t

e−iωc t] evolve according (17). Hence η�

t is the
solution of the unperturbed system with the initial condition
η�

0 . Further, h(η�

t ) = 2( 1
2

√
2�eiωct )( 1

2

√
2�e−iωct ) = �.

Now the averaged coefficients bH and σH are given by

bH (�) = 1

2π/ωc

∫ 2π/ωc

0
b
(
η�

t

)
dt, (26)

σ 2
H (�) = 1

2π/ωc

∫ 2π/ωc

0
σ 2

(
η�

t

)
dt. (27)

The following fact would be useful in the evaluation of the
above averages: For η�

t , E defined in (24) becomes [on
using (15)]

E
(
η�

t

) =
√

2�(�̂1e
−iωct + �̂2e

iωct ).

IV. EXAMPLES

In this section we show three examples. The first is a
simple scalar system: We study the perturbations of ẋ(t) =
−π

2 x(t − 1). In Sec. IV A, while studying cubic nonlinear
perturbations and additive white noise perturbations, we
illustrate the results of the previous section and show how the
averaged process can yield information about the x process.
This example is a running one in the sense that we revisit it
when studying stronger deterministic perturbations in Sec. V
and different kinds of noise in Sec. VI.

The purpose of the second example is to propose a
conjecture. When perturbations are linear as well, we identify
a complex number and claim that it alone dictates the stability
of the system. We provide support to our conjecture using
numerical simulations on ẋ(t) = −π

2 x(t − 1).
The third is the van der Pol oscillator (4). Here we illustrate

the stabilizing and destabilizing effects of noise and show how
the averaging results obtained in the previous section give a
good enough description of the effects of noise and allow us to
compute how much bifurcation thresholds are displaced in the
presence of noise when compared to the deterministic case.

A. Scalar equation

Consider the following equation:

dx(t) = −π

2
x(t − 1)dt + ε2x3(t − 1)dt + εσdW. (28)

In this case L0η = −π
2 η(−1), G(η) = η3(−1), and F (η) =

σ . The characteristic equation λ + π
2 e−λ = 0 has countably

infinite roots on the complex plane. The roots with the largest
real part are ±iωc = ±i π

2 . Let �(θ ) = [ei(π/2)θ e−i(π/2)θ ].
Now � can be evaluated [using (12)–(15)] to be

�(•) =
[(

1 + i π
2

)−1
e−i(π/2)•(

1 − i π
2

)−1
ei(π/2)•

]
.

The averaged drift and diffusion can be calculated using (22)–
(27) as

bH (�) = 2�̂1�̂2σ
2 − 3

2 i(�̂1 − �̂2)�2, (29)

σ 2
H (�) = 4�̂1�̂2σ

2
�. (30)

In Sec. V D we illustrate how the averaged equation
d� = bH (�)dt + σH (�)dW can be used to gain information
about (28) (recall Remark 1). Section V D can be read now,
setting γq = 0 in (59).

B. Linear perturbations

In this section we consider the case where perturbations are
also linear and identify a complex number that alone dictates
the stability of the system. Note that we restrict the discussion
to systems satisfying Assumption 1. Reference [28] discusses
methods to obtain bounds on the maximal exponential growth
rates of a more general class of delay equations. However, the
bounds given in [28] are not optimal for systems satisfying
Assumption 1.

Consider

dx(t) = L0(�tx)dt + εL1(�tx)dW (t), (31)

where Li are linear operators, with L0 satisfying Assumption
1. The averaged equation corresponding to (31) is

d�(t) = bH (�)dt + σH (�)dW (t), (32)

where bH and σH can be evaluated using (22)–(27) as

bH (�) = Cb�, σ 2
H (�) = Cσ �

2,

Cb = (�̂1L1�1)(�̂2L1�2) + (�̂1L1�2)(�̂2L1�1),

Cσ = (�̂1L1�1 + �̂2L1�2)2 + 2(�̂1L1�2)(�̂2L1�1).

The solution to (32) is given by

�(t) = �(0) exp
[(

Cb − 1
2Cσ

)
t +

√
CσW (t)

]
. (33)

The Lyapunov exponent for the averaged equation (32) can be
calculated to be

λavg = lim
t→∞

1

t
ln �(t)

= lim
t→∞

1

t
ln �(0) +

(
Cb − 1

2
Cσ

)
+

√
Cσ lim

t→∞
W (t)

t

= Cb − 1

2
Cσ = −1

2
[(�̂1L1�1)2 + (�̂2L1�2)2].

Define λε
j (t) := 1

t
ln sups∈[t−mr,t] |xj (s)| with m ∈ N such

that mr > 2π
ωc

(here m is chosen so as to avoid oscillations in
the modulus of x). We conjecture that for large t , λε(t) is close
to ε2 1

2λavg. The 1
2 arises from the fact that � is quadratic in x.
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FIG. 1. Box plot of λε(t) = 1
t

ln sups∈[t−5r,t] |x(s)| for t between
110 000 and 120 000 in steps of 2000. The x process is simulated
using (34) with ε = 0.1. The line inside the box (red) is the mean of
80 realizations. The lower end of the box (blue) is the 25th percentile
and the upper end of the box (blue) is the 75th percentile.

We verify the above conjecture using the system

dx = −π

2
x(t − 1)dt + εx(t − 1)dW, (34)

i.e., L0η = −π
2 η(−1) and L1η = η(−1). The Lyapunov ex-

ponent for (32) can be calculated to be λavg ≈ −0.122 (the
matrices �̂ and � are already calculated in Sec. IV A). Eighty
realizations of trajectories of (34) are simulated with ε = 0.1
and the initial condition (�0x)(θ ) = cos(ωcθ ) for θ ∈ [−r,0].
In Fig. 1 we show a box plot for λε(t) := 1

t
ln sups∈[t−5,t] |x(s)|.

For t large, the mean of λε(t) is close to −0.0006 and we have
ε2 1

2λavg ≈ −0.0006. For details of the numerical scheme see
Appendix E.

Recalling that �̂2 and L1�2 are the complex conjugates of
�̂1 and L1�1, respectively, we find that

λavg = −Re[(�̂1L1�1)2] = −|�̂1L1�1|2 cos(2θ∗),

where θ∗ is the angle of the complex number �̂1L1�1. The
stability condition λavg < 0 translates to cos(2θ∗) > 0. If the
conjecture that for large t , λε(t) is close to ε2 1

2λavg is true,
then the complex number �̂1L1�1 alone dictates the stability
of (31).

C. van der Pol oscillator

In this section we consider the oscillator modeled by Eq. (4),
which was considered in [10]. In studying (4) our intentions
are threefold: (i) to point out6 the errors in the analysis of [10],
(ii) to illustrate the stabilizing and destabilizing effects of
noise, and (iii) to show that the averaging results obtained

6This is done in Appendix A.

in the previous section give a good enough description of the
effects of noise.

The oscillator (4) has natural frequency ω0, which would
be altered by the delayed feedbacks ηq(t − r) and κq̇(t − r).
The negative of β indicates the strength of linear damping in
the oscillator. The coefficient b, if positive, is the strength of
nonlinear damping in the oscillator.

Since we intend to study the effect of small noise pertur-
bations, we scale D = ε2D̃ with ε � 1. Since we study the
dynamics close to the zero fixed point, we zoom-in and write
x1(t) = 1

ε
q(t) and x2(t) = 1

ε
q̇(t). Then the oscillator (4) can

be put in the form (using Itô’s interpretation)

dx(t) = L0(�tx)dt + ε2

(
0

−bx2
1 (t)x2(t)

)
dt

+ ε
√

2D̃

(
0

x1(t)

)
dW (t), (35)

where W is a Wiener process and L0φ = ∫ 0
−r

dμ(θ )φ(θ ) with

dμ(θ ) =
(

0 1

−ω2
0 β

)
δ0(θ ) +

(
0 0

−η κ

)
δ−r (θ ),

where δ0 and δ−r are delta functions, i.e.,
∫

δ0φ = φ(0) and∫
δ−rφ = φ(−r) for φ ∈ C.
The characteristic equation becomes

−λβ + λ2 + (η − κλ)e−λr + ω2
0 = 0. (36)

Since our intention is to study the effect of small noise
perturbations on the oscillator when it is at the verge of
instability, we assume that the parameters of the problem are
such that the characteristic equation has two roots ±iωc on the
imaginary axis and all other roots have negative real parts. With
this assumption the unperturbed system ẋ(t) = L0(�tx) is on
the verge of instability. Figure 2 shows the stability boundary.

The matrices � and � can be evaluated [using (10)–(15)]
as

�(•) =
(

eiωc• e−iωc•

iωce
iωc• −iωce

−iωc•

)
= (�1�2),

�(•) =
(

c(ω2
0 + ηe−iωcr )e−iωc• c(−iωc)e−iωc•

c̄(ω2
0 + ηeiωcr )eiωc• c̄(iωc)eiωc•

)
=

(
�1

�2

)
,

where

c = [
ω2

c + e−iωcr
(
η + iηrωc + κrω2

c

) + ω2
0

]−1
. (37)

Remark 2. The process h(�tx) with h defined in (18) has
additional significance for this problem. If �tx is such that the
stable part (I − π )�tx is zero, then �tx = π�tx = �z(t),
which gives

x(t) = �tx(0) = �1(0)z1(t) + �2(0)z2(t)

=
[

z1(t) + z2(t)

iωc[z1(t) − z2(t)]

]
,

from which we get h(�tx)
by def= 2z1(t)z2(t) = 1

2 {[x1(t)]2 +
[x2(t)/ωc]2}, which represents some kind of energy in the
oscillator (note that x1 is the position and x2 is the ve-
locity). Usually ‖(I − π )�tx‖ decays to very small values
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FIG. 2. Boundary of stability for the fixed point (x1 = 0,x2 = 0)
of the system (35) with ε = 0, ω0 = 1, κ = 0, and η = 0.3. For
each delay r there exists a critical value βc such that for β < βc

the fixed point is stable and for β > βc the fixed point is unstable.
In the inset, the (theoretically predicted) stability boundary in the
presence of noise is shown with a dashed line [obtained using (41)].
For this, ε = 0.1, D̃ = 1, and b = 1. For β in the region below the
dashed line, theoretical results predict that the (0,0) fixed point is
stable in the presence of noise. Above the dashed line the fixed point
loses stability; nevertheless, invariant density exists. So, theoretical
results predict that the noise has destabilized the region between
solid and dashed lines. The point marked by an asterisk in the inset is
(r = 2,β = −0.301). For this point we show in Fig. 3 the invariant
density obtained by numerical simulations. The theoretically obtained
invariant density [obtained in (42)] is in very good agreement with
the actual density obtained from numerical simulations.

exponentially fast and hence h(�tx) differs from the energy
1
2 {[x1(t)]2 + [x2(t)/ωc]2} by a little amount.

Using (22)–(27) we have

bH (�) = (2D̃)2|c|2ω2
c� − bω2

c
1
2 (c + c̄)�2,

σ 2
H (�) = (2D̃){2|c|2ω2

c + [iωc(c̄ − c)]2}�2.

To understand whether noise has a stabilizing or destabilizing
effect, let us consider the damping β as a bifurcation parameter.
Write β = βc + ε2β̃ and assume that at ε = 0, β satisfies
the characteristic equation (36). Then the effect of β̃ is to
add another term β̃(c + c̄)ω2

c� to bH . Then we can write the
averaged equation as

d� = bH (�)dt + σH (�)dW, (38)

where

bH (�) = Cb� + C
(2)
b �

2, σ 2
H (�) = Cσ �

2,

Cb = (2D̃)2|c|2ω2
c

(
1 + β̃

2D̃

(c + c̄)/2

|c|2
)

,

C
(2)
b = −bω2

c

1

2
(c + c̄),

Cσ = (2D̃)2|c|2ω2
c

(
1 + 2[(c̄ − c)/2i]2

|c|2
)

.

To focus on the effect of noise, for the moment we ignore
the nonlinearities by setting b = 0 in (35). The corresponding

averaged system then becomes

d� = Cb� +
√

Cσ �dW. (39)

The above system is unstable when7 Cb − 1
2Cσ > 0, i.e., when

β̃

2D̃|c|
(c + c̄)/2

|c| >
[(c̄ − c)/2i]2

|c|2 − 1

2
. (40)

Let ς1 = (c+c̄)/2
|c| and ς2 = ( [(c̄−c)/2i]2

|c|2 − 1
2 ). It can be shown8

that if βc < 0, then ς1 > 0.
Assume βc < 0. Then (40) holds when

β̃

2D̃|c| >
ς2

ς1
. (41)

If noise were not present, i.e., D̃ = 0 in (35), then the fixed
point (x1 = 0,x2 = 0) of (39) would have been unstable for
any β̃ > 0 (this is because −β̃ specifies how much additional
damping is present in the system). If noise is present and
ς2 > 0, then the (x1 = 0,x2 = 0) fixed point of (39) is stable
even for 0 < β̃ < 2D̃|c|ς2/ς1 So, noise has a stabilizing effect
if ς2 > 0.

Similar reasoning shows that the noise has a destabilizing
effect if ς2 < 0. If the noise were not present, then the fixed
point (x1 = 0,x2 = 0) of (39) would have been stable for any
β̃ < 0. If noise is present and ς2 < 0, then (39) is unstable
even for 2D̃|c|ς2/ς1 < β̃ < 0. So noise has a destabilizing
effect if ς2 < 0. This is the scenario presented in the inset of
Fig. 2.

The stability of (35) when b �= 0 depends on the stability
of averaged nonlinear system (38). However, Theorem 1 deals
with only weak convergence of probability distributions and
hence is not adequate to transfer the stability properties from
the averaged system to the original system (35). Nevertheless,
we give an account of the stability of the averaged system (38).
When the nonlinearity is destabilizing, i.e., C

(2)
b > 0, the

system (35) cannot be stable. When C
(2)
b < 0 and Cb − 1

2Cσ <

0 the trivial solution � = 0 is the only equilibrium point of (38)
and is stable. When C

(2)
b < 0 and Cb − 1

2Cσ > 0 the trivial
solution of (38) becomes unstable; nevertheless, an invariant
density exists. It is given by (obtained by solving steady-sate

7Note that the solution is similar to (33).
8Note that sgn(ς1) = sgn( c+c̄

cc̄
) = sgn( 1

c
+ 1

c̄
). Using (37) we have

c−1 + (c̄)−1 = 2
(
ω2

c + ω2
0

) + η(eiωcr + e−iωcr )

+ irωce
−iωcr (η − iωck) − irωce

iωcr (η + iωck).

Employing λ = ±iωc in the characteristic equation (36) we get

irωce
−iωcr (η − iωck) − irωce

iωcr (η + iωck) = −2βcrω
2
c ,

2η(eiωcr + e−iωcr ) = (
ω2

c − ω2
0

)
(eiωcr + e−iωcr )2

+ βciωc(e
2iωcr − e−2iωcr ).

Hence c−1 + (c̄)−1 = 2(ω2
c + ω2

0) + 1
2 (ω2

c − ω2
0)(eiωcr + e−iωcr )2 +

1
2 βciωc(e2iωcr − e−2iωcr ) − 2βcrω

2
c , which can be simplified

as c−1 + (c̄)−1 = 2ω2
c (1 + cos2 ωcr) + 2ω2

0(1 − cos2 ωcr) −
βcωc(2rωc + sin 2ωcr), which is positive if βc < 0.
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FIG. 3. Cumulative distribution function of the invariant density
of 1

2 [x2
1 + (x2/ω)2] obtained from numerical simulation of (35) with

parameters specified by the point marked by an asterisk in the inset
of Fig. 2 (ω0 = 1, κ = 0, η = 0.3, ε = 0.1, D̃ = 1, b = 1, r = 2,
and β = −0.301). This agrees with the CDF of the density given
in (42). For this case, the deterministic bifurcation threshold is βc =
−0.2987 and the predicted threshold in the presence of noise is βc +
ε22D̃|c|ς2/ς1 = −0.3027.

Fokker-Planck equation)

p(�) = χ2Cb/Cσ −1

�
( 2Cb

Cσ
− 1

)�
2(Cb/Cσ −1)e−�χ , χ = 2

(−C
(2)
b

)/
Cσ ,

(42)
where � is the Gamma function.

The averaging results for (35) hold for times of order 1/ε2,
whereas stability concerns times t → ∞. Nevertheless, we
expect that, for small ε, (i) the invariant density from (42) is
a good approximation to the steady-state density of 1

2 [x2
1 +

(x2/ωc)2] from (35) and (ii) the bifurcation threshold as
predicted by averaging would be a good approximation to
the actual bifurcation threshold of (35). The usefulness of
the averaging results is shown in Fig. 3. Let the parameters
be specified by the point marked by the asterisk in the inset
of Fig. 2. When ε = 0, the fixed point (x1 = 0,x2 = 0) of
the oscillator (35) would be stable because the asterisk lies
below the stability boundary (solid line in Fig. 2). However,
in the presence of noise the stability boundary is shifted
by ε22D̃|c|ς2/ς1 (dashed line in Fig. 2). Now the fixed
point loses stability; nevertheless, invariant density exists.
Numerical simulation is done with 3200 samples and the
cumulative distribution function (CDF) of the steady-state
density of 1

2 (x2
1 + (x2/ωc)2) is plotted in Fig. 3. Also shown is

the CDF arising from the averaging result (42). Figure 3 indeed
shows that the density from (42) is a good approximation to
the steady-state density of 1

2 (x2
1 + (x2/ωc)2) from (35).

Numerical simulations in the case ς2 < 0 with ε = 0.1
show very good agreement with theoretical averaging results
for β in the range βc + 0.9ε2(2D̃|c|ς2/ς1) < β < βc. Very

close to the theoretically predicted bifurcation threshold in
the presence of noise, i.e., β ≈ βc + ε2(2D̃|c|ς2/ς1), the
agreement is not very good. The actual bifurcation thresh-
old in the presence of noise (denoted by βc,noi), obtained
from numerical simulations of (35), is within 10% of the
theoretically predicted value,9 i.e., βc + 1.1ε2(2D̃|c|ς2/ς1) <

βc,noi < βc + ε2(2D̃|c|ς2/ς1). For details of the numerical
scheme see Appendix E. For the numerical simulations
verifying this claim, see the Supplemental Material [29].

V. STRONGER DETERMINISTIC PERTURBATIONS

Here we consider systems with slightly stronger determin-
istic perturbations

dx(t) = L0(�tx)dt + εGq(�tx)dt + ε2G(�tx)dt

+ εF (�tx)dW (t), (43)

where W is an R-valued Wiener process. As an example, con-
sider the noisy perturbation dx̃ = −π

2 x̃(t − 1)dt + x̃2(t)dt +
ε2σdW of the DDE ˙̃x(t) = −π

2 x̃(t − 1) + x̃2(t). Then x(t) =
ε−1x̃(t) can be put in the form (43) with L0(η) = −π

2 η(−1),
F (η) = σ , G(η) = 0, and Gq(η) = η2(0).

The effect of Gq in (43) is significant in just times of order
1/ε, whereas the effects of G and F are significant in times of
order 1/ε2. So we consider only those Gq that are such that a
certain kind of time-averaged effect of Gq is zero:

1

2π/ω

∫ 2π/ω

0
e−iωct �̂1Gq

(
η�

t

)
dt = 0, (44)

where η�

t is defined in (25). The assumption (44) is a natural
one: For example, Gq that are homogenously quadratic in η

(say Gq(η) = [η(0)]2) satisfy the property (44).
Writing Xε(t) = x(t/ε2), the equation analogous to (20)

becomes

dXε(t) = 1

ε2
L0

(
�ε

t X
ε
)
dt + 1

ε
Gq

(
�ε

t X
ε
)
dt + G

(
�ε

t X
ε
)
dt

+F
(
�ε

t X
ε
)
dW (t), t � 0

�ε
0X

ε = ϕ ∈ C. (45)

Using Itô’s formula, Hε(t) := h(�ε
t X

ε) satisfies

dHε(t) = 1

ε

[
bq,(1)

(
�ε

t X
ε
) + bq,(2)

(
�ε

t X
ε
)]

dt

+ b
(
�ε

t X
ε
)
dt + σ

(
�ε

t X
ε
)
dW, Hε(0) = h(ϕ),

(46)

where b, σ , and E are the same as in (22), (23), and (24)
respectively, and

bq,(1)(η) = E(η)Gq(πη), (47)

bq,(2)(η) = E(η)[Gq(η) − Gq(πη)]. (48)

Recall that we can write the solution as �ε
t X

ε = �z(t) +
(I − π )�ε

t X
ε, where z(t) := 〈�,�ε

t X
ε〉. Note that the evolu-

tion of zi(t) = 〈�i,�
ε
t X

ε〉 is fast compared to the evolution

9Note that the theoretical averaging results concern the limit ε → 0,
but here we take ε = 0.1.
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of Hε and is predominantly oscillatory. Heuristically, the zi

oscillate fast along trajectories of constant h (the effect of
1
ε2 L0) while at the same time diffusing slowly across the
constant h trajectories (the effect of perturbations G,Gq,F ).
Hence, the effect of zi in the above coefficients b and σ can
be averaged out. Our goal is to obtain an averaging result akin
to Theorem 1. However, the terms arising from Gq should
be dealt with carefully. The assumption (44) would entail that

1
2π/ω

∫ 2π/ω

0 E(η�

t )Gq(η�

t )dt equals zero as well.10 Hence, when
the oscillations are averaged, the leading-order contribution of
bq,(1) is zero. However, because of the 1

ε
multiplying bq,(1),

higher-order effects must be taken into account.
We give explicit formulas for the contributions from bq,(1)

and bq,(2), using solutions of the unperturbed system with
n specific initial conditions. At least when Gq is purely
quadratic, the averaged terms arising from bq,(k) would be
the same as what one gets from a formal center manifold
and normal-form calculation. However, we do not assume
the existence of a center manifold. The following method,
however, has an advantage in that numerical integration can
be used to find the answers. To provide an illustration of how
the method works, a simple example without delay is worked
out in Appendix B. To state the formulas, we need to set up
some notation.

A. Notation

For ϕ ∈ C, let T̂ (t)ϕ denote the solution at time t of the
unperturbed linear system (5) with initial condition �0x =
ϕ, i.e., T̂ (t)ϕ = �tx, where x is governed by (5). Let 1{0} :
[−r,0] → Rn×n denote the matrix-valued function

1{0}(θ ) =
{
In×n, θ = 0

0n×n, θ �= 0,
(49)

where I is the identity matrix. For a constant n × 1 vector v,
one can solve the unperturbed linear system (5) with �0x =
1{0}v. The solution is indicated by T̂ (t)1{0}v.

Recall that π is the projection operator onto the critical
eigenspace and is given by (16). Even though 1{0}v does
not belong to C (because it is not continuous), the definition
π (1{0}v) := �〈�,1{0}v〉 still makes sense11 using the bilinear
form (12). On evaluation of the bilinear form we find that

π (1{0}v) = ��̂v. (50)

The meaning of T̂ (t)π1{0}v and T̂ (t)(I − π )1{0}v should now
be clear.

Suppose that G : C → Rk and let η,ξ ∈ C. Then (ξ ·
∇)G(η) denotes the Fréchet differential of G evaluated at η in
the direction of ξ , i.e.,

(ξ · ∇)G(η) = lim
δ→0

G(η + δξ ) − G(η)

δ
.

10This follows from the fact that E(η�

t ) = √
2�(e−iωct �̂1 + eiωct �̂2)

and �̂2 is the conjugate of �̂1.
11A rigorous way to extend the space C to include the discontinuities

and the decomposition of the extended space as P ⊕ Q̂ is discussed
in [11].

Later we will see the motivation for defining the following:

ρ(η) := inf

{
t > 0 : 〈�,T̂ (t)πη〉 = 1

2

√
2h(η)

[
1

1

]}
, (51)

a(1)
q (η) =

∫ ρ(η)

0
((T̂ (s)π1{0}Gq(η)) · ∇)bq,(1)(T̂ (s)πη)ds,

(52)

a(2)
q (η) =

∫ ∞

0
((T̂ (s)1{0}Gq(η)) · ∇)bq,(2)(T̂ (s)πη)ds. (53)

B. Averaging

Theorem 2. In the case when F is constant, G and Gq are
Lipschitz continuous, and Gq satisfies (44), the probability
distribution of Hε until any finite time T > 0 converges, as
ε → 0, to the probability distribution of a process ȟ, which is
the solution of the SDE

dȟ(t) = (
bH + b

q,(1)
H + b

q,(2)
H

)
(ȟ(t))dt + σH (ȟ(t))dW (t),

ȟ(0) = h(ϕ),

where bH and σH are the same as in (26) and (27) and b
q,(k)
H

for k = 1,2 are given by

b
q,(k)
H (�) = 1

2π/ωc

∫ 2π/ωc

0
a(k)

q

(
η�

t

)
dt, (54)

with η�

t defined in (25). The coefficients b
q,(k)
H are written more

explicitly in (55) and (56).
The proof of the above result can be found in [24]. The key

idea in obtaining the averaged effect of Gq is this: Let cq,(1) be
the function whose differential along the trajectory of the un-
perturbed system equals bq,(1) defined in (47). Then the average
effect of bq,(1) is the negative of the average of the differential
of cq,(1) along the direction of the perturbations. In symbols,
the function cq,(1)(η) = − ∫ ρ(η)

0 bq,(1)(T̂ (s)η)ds is such that
d
dt

|t=0c
q,(1)(T̂ (t)η) = bq,(1)(η). The differential of cq,(1) along

the direction of the perturbations is (1{0}Gq(η) · ∇)cq,(1)(η),
which evaluates to −aq,(1)(η) [plus an additional term whose
average turns out to be zero due to the assumption (44)]. The
average effect of bq,(1) is the average of aq,(1). The reasoning is
similar for bq,(2). For details see12 Sec. 9 of [24]. To illustrate
the above idea, a simple example without delay is worked out
in Appendix B. We urge the reader to study Appendix B to gain
intuition about the process of obtaining the drift coefficients
b

q,(i)
H .

12Reference [24] deals with scalar systems and does not employ
polar coordinates. Hence the form of expression differs from here.
However, Ref. [24] evaluates to the same numbers as here. The key
difference is that in [24] an element η ∈ P is written as z1 cos(ωc·) +
z2 sin(ωc·) with zi ∈ R. Here we write z1e

iωc · + z2e
−iωc · with zi ∈ C

and z2 = z̄1.
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The term b
q,(1)
H is solely due to the critical eigenspace and the term b

q,(2)
H arises from the interaction between the stable

eigenspace and critical eigenspace. When Gq is purely quadratic, these are the same terms that arise from a formal center-manifold
calculation.

Note that H encodes information only about the critical component of the solution π�εXε. The above results
should be augmented with a result that the stable component (I − π )�εXε is small. Proof of Theorem 2 and a
result to the effect that the stable component of the solution is small are presented in [24].

Remark 3. It is clear from (48) that, if we had totally ignored the stable component, i.e., if we had set (I − π )�ε
t X

ε = 0 at
the very beginning of the analysis, we would have missed the term b

q,(2)
H .

Remark 4. The coefficients b
q,(k)
H can be written more explicitly as

b
q,(1)
H (�) = 1

2π/ωc

∫ 2π/ωc

0
dt

∫ (2π/ωc)−t

0
ds

(
2
(
�̂Gq

(
η�

t

))∗
[

0 eiωcs

e−iωcs 0

]
�̂Gq

(
η�

t+s

))

+
√

2�

2π/ωc

∫ 2π/ωc

0
dt

∫ (2π/ωc)−t

0
ds

((
�esB�̂Gq

(
η�

t

)) · ∇)(
Et+sGq

(
η�

t+s

))
, (55)

b
q,(2)
H (�) =

√
2�

2π/ωc

∫ 2π/ωc

0
dt

∫ ∞

0
ds

n∑
j=1

(
Gq

(
η�

t

))
j ((T̂ (s)(I − π )1{0}ej ) · ∇)

(
Et+sGq

(
η�

t+s

))
, (56)

where η�

t is defined in (25),

Et := e−iωct �̂1 + eiωct �̂2, (57)

and ej denotes the unit vector in the j th direction of Rn. To
check how these explicit forms follow from (51)–(54) refer
to Appendix C. If Gq is a polynomial, the terms in (55)
can be put in Mathematica to get an explicit functional
dependence on �; otherwise numerical integration can be
done at specific � values. For the term in (56) the integral∫ 2π/ωc

0 can be evaluated first using Mathematica and then∫ ∞
0 can be done using numerical integration. All that we

would need are the solutions of the unperturbed system
with n different initial conditions (I − π )1{0}ej for j =
1, . . . ,n. Since the initial condition (I − π )1{0}ej belong to

the stable space Q, the solution T̂ (s)(I − π )1{0}ej decays

exponentially fast to zero and hence integral
∫ ∞

0 need not
be evaluated until infinity; a reasonable large upper limit
would be enough to get a good enough approximation. An
example is done in the next section to illustrate the above
computations. Note that, when applied in a deterministic
DDE setting, the above formulas provide an alternate way to

compute the effect of center-manifold terms on the amplitude
of critical mode.

C. Example

Consider Eq. (28) with added quadratic nonlinearity
Gq(η) = [η(−1)]2:

dx(t) = −π

2
x(t − 1)dt + ε2x3(t − 1)dt + εσdW

+ εx2(t − 1)dt. (58)

We apply Theorem 2. Note that bH and σH have already been
evaluated [see Eqs. (29) and (30)]. We continue using the �

and � from Sec. IV A.
Now we evaluate b

q,(1)
H and b

q,(2)
H using (54). In Sec. V D

we show by numerical simulations how the averaged dynamics
would be useful to gain information about (58).

Note that (ξ · ∇)Gq(η) = 2η(−1)ξ (−1). We also write it
as 2η|−1ξ |−1 to avoid writing too many brackets. Using the
formula (55), we have

b
q,(1)
H (�) = 1

2π/ωc

∫ 2π/ωc

0

( ∫ (2π/ωc)−t

0
G (t,s)ds

)
dt,

where

G (t,s) = 2�̂1�̂2(eiωcs + e−iωcs)
(
η�

t

∣∣
−1

)2(
η�

t+s

∣∣
−1

)2 +
√

2�Et+s2
(
η�

t+s

∣∣
−1

)
(�|−1e

sB�̂)
(
η�

t

∣∣
−1

)2
,

where η�

t is defined in (25). Using Mathematica we get b
q,(1)
H (�) = −64�

2/(4 + π2)2 ≈ −0.3327�
2.

To evaluate b
q,(2)
H (�) using (56), we first evaluate the

∫ 2π/ωc

0 integral. We have

b
q,(2)
H (�) =

∫ ∞

0

(
1

2π/ωc

∫ 2π/ωc

0

√
2�Et+s2

(
η�

t+s

∣∣
−1

)
[T̂ (s)(I − π )1{0}|−1]

(
η�

t

∣∣
−1

)2
dt

)
ds

= − 4�
2

4 + π2

∫ ∞

0
[2π + π cos(πs) + 2 sin(πs)][T̂ (s)(I − π )1{0}|−1]ds.
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The
∫ ∞

0 integral can be evaluated numerically by simulating
the unperturbed system with the initial condition (I − π )1{0},
i.e., 1{0} − ��̂. We get b

q,(2)
H (�) ≈ −0.7893�

2.

D. Verification by numerical simulations

This section illustrates the results of Theorems 1 and 2
using numerical simulations and also shows how the averaged
� process can be used to gain information about the original
x dynamics (recall Remark 1). For details of the numerical
scheme see Appendix E.

Consider

dx(t) = −π

2
x(t − 1)dt + ε2γcx

3(t − 1)dt + εσdW

+ εγqx
2(t − 1)dt. (59)

Draw a random sample of size Nsamp with � values {�0
i }Nsamp

i=1 .
Simulate them according to

d�(t) = (
bH + b

q,(1)
H + b

q,(2)
H

)
(�(t))dt + σH (�(t))dW (60)

for 0 � t � Tend, where bH and σH are obtained from (29)
and (30) and b

q,(i)
H are obtained in Sec. V C:

(
bH + b

q,(1)
H + b

q,(2)
H

)
(�) = 2�̂1�̂2σ

2 − γc
3
2 [i(�̂1 − �̂2)]�2

− γ 2
q (0.3327 + 0.7893)�2,

σ 2
H (�) = 4�̂1�̂2σ

2
�. (61)

Fix ε. Simulate (59) for 0 � t � Tend/ε
2 using the initial

history {
√

2�
0
i cos(ωc•)}Nsamp

i=1 .
Fix a number H ∗ and let τ ε be the first time |x(t)| exceeds√

2H ∗ and τ� be the first time �(t) exceeds H ∗, i.e.,

τ ε := inf{t � 0 : |x(t)| �
√

2H ∗},
τ� := inf{t � 0 : �(t) � H ∗}.

We can check whether the following pairs are close: (i) the
distribution of h(�Tend/ε2x) from (59) [where h is defined
in (18)] and the distribution of �(Tend) from (60) and (ii) the
distribution of ε2τ ε and the distribution of τ�. We take ε =
0.025, H ∗ = 1.5, Tend = 2, Nsamp = 4000, and

√
2{�0

i }Nsamp

i=1 =
1.2. Figures 4 and 5 answer the above questions. Three
cases are considered with σ = 1 fixed: (γq = 0,γc = 0), (γq =
0,γc = 1), and (γq = 1/

√
3,γc = 0).

From the figures we can see that it is enough to study the
averaged equations for h(�tx) to get a good approximation of
the behavior of x. The distribution of h(�tx) (note that

√
2h

gives the amplitude of oscillations) is well predicted by the
distribution of the averaged system � and the distribution of
time taken by x to exceed a threshold

√
2H ∗ is well predicted

by the time taken by the averaged process � to exceed H ∗.
Because the averaged equations do not contain any delay, they
are easier to analyze and simulate numerically.

0 2 4
0

0.2

0.4

0.6

0.8

1

h

C
D

F

 

 

(0,0)

(0,1) (1/
√

3,0)

org
avg

FIG. 4. Cumulative distribution function of h(�2/ε2x) (org) and
�(2) (avg). The numbers in parentheses are (γq,γc) values.

VI. OTHER KINDS OF NOISE

Here we consider equations of the form

dx(t) = L0(�tx)dt + εσ (ξt )F (�tx)dt, t � 0

�0x = ϕ ∈ C,
(62)

where F : C → Rn is Lipschitz continuous, with at most linear
growth and three bounded derivatives; ξ is a noise process
whose state space is denoted by M; and σ : M → R.

We make the following assumptions about the noise ξ .
Assumption 2. The noise ξ is an M-valued time-

homogeneous Markov process with transition probability
function ν given by

ν(t,ξ,B) = P{ξt ∈ B|ξ0 = ξ}
for B a Borel subset of M. There exist a unique invariant
probability measure ν̄ and positive constants c1 and c2 such

0 1 2
0

0.2

0.4

0.6

0.8

ε2τε, τh

C
D

F

 

 

(0,1)

(0,0)

(1/
√

3,0)

org
avg

FIG. 5. Cumulative distribution function of ε2τ ε (org) and CDF
of τ� (avg). The numbers in parentheses are (γq,γc) values. The CDF
value at ε2τ ε = 2 indicates the fraction of the sample whose modulus
exceeded

√
2H ∗ before the time 2/ε2.
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that for all t � 0,

sup
ξ∈M

∫
M

|ν(t,ξ,dζ ) − ν̄(dζ )| � c1e
−c2t ,

i.e., the transition probability density converges to a stationary
density exponentially fast. The function σ is bounded, and is
such that

∫
M σ (ξ )ν̄(dξ ) = 0.

Other requirements are that M is a locally compact
separable metric space and the transition semigroup is a
Feller semigroup with σ (·) in the domain of the infinitesimal
generator. For example, a finite-state continuous-time Markov
chain satisfies the above requirements.

The autocorrelation of the noise process ξ is denoted by R:

R(s) =
∫

M
σ (ξ )

(∫
M

σ (ζ )ν(s,ξ,dζ )

)
ν̄(dξ ). (63)

For the perturbed system (62), h(�tx) varies slowly compared
to x. Changes in h(�tx) are significant only for times of order
1/ε2. Hence, we rescale time and write Xε(t) = x(t/ε2),
where x is governed by (62). Also, we write ξε

t =
ξ (t/ε2).

Using the segment extractor �ε
t defined in (19), Xε satisfies

dXε(t) = 1

ε2
L0

(
�ε

t X
ε
)
dt + 1

ε
σ
(
ξε
t

)
F

(
�ε

t X
ε
)
dt, t � 0

�ε
0X

ε = ϕ ∈ C. (64)

Write Hε(t) := h(�ε
t X

ε). Then Hε(t) satisfies

dHε(t) = 1

ε
σ
(
ξε
t

)
b
(
�ε

t X
ε
)
dt, Hε(0) = h(ϕ), (65)

where

b(η) = E(η)F (η), (66)

with E defined in (24).
Using the technique of martingale problem, we can prove13

the following result (a sketch of proof is given in Appendix D).
Theorem 3. Under the conditions on F and noise ξ listed

before, the probability distribution of Hε converges, as ε → 0,
to the distribution of the process ȟ, which is the solution of the
SDE

dȟ(t) = bH (ȟ(t))dt + σH (ȟ(t))dW (t), ȟ(0) = h(ϕ),

with coefficients bH and σH given by

σ 2
H (�) = 1

2π/ωc

∫ 2π/ωc

0
2b

(
η�

t

)( ∫ ∞

0
R(s)b

(
η�

t+s

)
ds

)
dt,

bH (�) = 1

2π/ωc

∫ 2π/ωc

0

( ∫ ∞

0
R(s)

(
T̂ (s)1{0}F

(
η�

t

) · ∇)
b
(
η�

t+s

)
ds

)
dt,

where η�

t is defined in (25).
We urge the reader to study Appendix D to gain intuition about the process of obtaining the coefficients bH and σH . Akin to

the formulas (55) and (56), the coefficient bH can be written more explicitly as

bH (�) = 1

2π/ωc

∫ 2π/ωc

0
dt

∫ ∞

0
ds

(
2R(s)

(
�̂F

(
η�

t

))∗
[

0 eiωcs

e−iωcs 0

]
�̂F

(
η�

t+s

))

+
√

2�

2π/ωc

∫ 2π/ωc

0
dt

∫ ∞

0
dsR(s)

n∑
j=1

(
F

(
η�

t

))
j ((T̂ (s)1{0}ej ) · ∇)

(
Et+sF

(
η�

t+s

))
,

with η�

t defined in (25), E defined in (57), and ej the unit vector in the j th direction of Rn. Similarly,

σ 2
H (�) = 4�

2π/ωc

∫ 2π/ωc

0
dt

∫ ∞

0
ds

(
EtF

(
η�

t

))
R(s)

(
Et+sF

(
η�

t+s

))
.

It would be easier to do the
∫ 2π/ωc

0 integral before the
∫ ∞

0
integral.

Analogous results for systems without delay are found in
Sec. 4 of [30]. Even systems with delay can be put in the
framework of [30]. Equations of the form (62) with F (0) = 0
and

∫
M σ (ξ )ν̄(dξ ) �= 0 (i.e., noise is not mean zero) are studied

in [31].
Remark 5. In Eq. (62) we could have included the

deterministic perturbations G and Gq as in Eq. (43), but the
averaged drift terms arising from these would be the same as
in the previous sections.

13Proof of Theorem 3 and a result to the effect that the stable
component of the solution is small are not included herein.

A. Linear perturbations

When F (η) = L1η, where L1 : C → Rn is a linear operator,
the expressions for bH and σH can be more explicitly evaluated
using the autocorrelation function as follows. Let ϒ be the
2 × 2 matrix ϒij = �̂iL1�j . Let

R0 =
∫ ∞

0
R(s)ds,

R2c =
∫ ∞

0
R(s) cos(2ωcs)ds,

R̂1 =
∫ ∞

0
R(s)e−iωcs�̂1L1(T̂ (s)(I − π )1{0}L1�1)ds,

R̂2 =
∫ ∞

0
R(s)eiωcs�̂2L1(T̂ (s)(I − π )1{0}L1�2)ds.
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Then

bH (�) = Cb�, σ 2
H (�) = Cσ �

2,

where

Cb = (ϒ11 + ϒ22)2R0 + 4ϒ12ϒ21R2c + R̂1 + R̂2,

Cσ = 2[(ϒ11 + ϒ22)2R0 + 2ϒ12ϒ21R2c].

Remark 6. Note that if we had totally ignored the stable
modes, i.e., if we had set (I − π )�ε

t X
ε = 0 at the very

beginning of the analysis, we would not have the terms R̂1

and R̂2.
The Lyapunov exponent for the averaged equation

d�(t) = bH (�)dt + σH (�)dW (67)

can be calculated to be

λavg = Cb − 1
2Cσ = 2ϒ12ϒ21R2c + R̂1 + R̂2. (68)

Using singular perturbation methods and the Furstenberg-
Khasminskii formula, the following theorem for scalar pro-
cesses is proved in [32,33].

Theorem 4. Consider (62) with F (η) = L1(η), where L1 :
C → R is linear. Let the top Lyapunov exponent of the process
x be defined by

λε := lim sup
t→∞

1

t
ln sup

s∈[t−r,t]
|x(s)|. (69)

Then λε = ε2 1
2λavg + O(ε3).

The same can be said about vector-valued processes.

B. Verification by numerical simulation

Consider the system

dx(t) = −π

2
x(t − 1)dt + εσ (ξt )x(t − 1)dt. (70)

Let ξ be a two-state symmetric Markov chain with switching
rate g/2, i.e.,

lim
t↓0

1

t
P1→2(t) = g/2 = lim

t↓0

1

t
P2→1(t), (71)

where Pi→j (t) is the probability of transition from state i to
state j in time t . Let σ (ξ = 1) = −σ (ξ = 2) = σ0. We then
have the autocorrelation as R(s) = σ 2

0 e−gs .
We consider two cases g = 2 and g = 6 with σ0 = 1. The

averaged equations are

d�(t) = 0.3734�dt +
√

0.9873�dW for g = 2,

d�(t) = 0.1715�dt +
√

0.4245�dW for g = 6.

Using the same notation as in Sec. V D, we fix ε =
0.025, Tend = 1, H ∗ = 1, Nsamp = 4000, and

√
2{�0

i }Nsamp

i=1 = 1.

Equation (70) is simulated for time Tend/ε
2 with initial history

{
√

2�
0
i cos(ωc•)}Nsamp

i=1 . We obtain Figs. 6 and 7, which show that
the averaged system gives a good approximation of the original
system. For details of the numerical scheme see Appendix E.
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FIG. 6. Cumulative distribution function of h(�1/ε2x) (org) and
�(1) (avg).

VII. DISCUSSION

Delay equations with noise perturbations as considered in
Sec. VI display interesting similarities to nondelay systems.
For example, Ref. [34] considers coupled oscillators with one
of the oscillators stable, in the following form. Let J be the
symplectic matrix ( 0 1

−1 0), I be the 2 × 2 identity matrix, and

O be the 2 × 2 zero matrix. Let x ∈ R4 be governed by

ẋ(t) =
(

ω1J O

O −δI + ω2J

)
x(t) + εσ (ξ (t))

(
K M

N L

)
x(t),

(72)

where K,L,M,N are 2 × 2 matrices. The oscillator with
frequency ω1 is coupled to the stable oscillator of frequency
ω2. Reference [34] shows that the Lyapunov exponent of the
above system can be written in terms of quantities analogous
to R0,R2c,R̂i defined in Sec. VI A. Further, they show that both

0 0.5 1
0

0.2

0.4

ε2τε, τh

C
D

F

 

 

g=6

g=2
org
avg

FIG. 7. Cumulative distribution function of ε2τ ε (org) and CDF
of τ� (avg). The CDF value at ε2τ ε = 1 indicates the fraction of
particles whose modulus exceeded

√
2H ∗ before the time 1/ε2.
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FIG. 8. Lyapunov exponent 1
2 λavg as a function of the delay in the

perturbation r1 and the rate of switching of the noise g for Eq. (73).
The top Lyapunov exponent λε is close to ε2 1

2 λavg by Theorem 4.
Note that both λavg < 0 (stabilization) and λavg > 0 (destabilization)
are possible.

stabilization and destabilization are possible depending on the
matrix coefficients K , M , and N .

The delay system that we considered under Assumption 1
can be thought of as a coupled oscillator system with one
critical mode and infinitely many stable modes (the charac-
teristic equation has a pair of roots ±iωc and all other roots
have a negative real part). The Lyapunov exponent obtained
in (68) suggests that both stabilization and destabilization are
possible. To illustrate this, consider

dx(t) = −π

2
x(t − 1)dt + εσ (ξt )x(t − r1)dt, (73)

with ξ a two-state symmetric Markov chain with states σ (ξ ) ∈
{+1,−1} and rate of switching g/2 [defined in (71)]. Theorem
4 says that the Lyapunov exponent λε [defined in (69)] is close
to ε2 1

2λavg, where λavg is evaluated in (68). Figure 8 shows
how 1

2λavg varies with the delay in the perturbation r1 and the
rate of switching g of the two-state Markov chain. Note that
both λavg < 0 (stabilization) and λavg > 0 (destabilization) are
possible.

Even the white noise allows for both possibilities. As
mentioned in Sec. IV B, the Lyapunov exponent λavg cor-
responding to (31) equals −Re[(�̂1L1�1)2]. Applying to
dx(t) = −π

2 x(t − 1)dt + εx(t − r1)dW , we find that λavg <

0 for r1 < 0.8609 and λavg > 0 for 0.8609 < r1 � 1.
The above examples raise the question whether stabilization

or destabilization is possible when the noise is additive, i.e.,
the coefficient F is a constant independent of the state x.
To answer this question, as an example consider (59). The
corresponding averaged equation is (60), with the averaged
drift and diffusion coefficients given by (61). Note that the
diffusion σ 2

H is zero only if � = 0 and when � = 0, the drift is
2�̂1�̂2σ

2 = 2|�̂1|2σ 2 > 0. Thus additive noise destroys the
fixed points and hence stabilization is not possible.

The averaging results presented in this article allow us to
simplify the analysis of delay systems at the verge of instability.
The averaged dynamics does not involve any delay and hence
is easier to analyze. Using numerical simulations, we have
amply demonstrated the usefulness of the theoretical results

in approximating the probability distribution of the time-delay
system with that of the averaged system. In Sec. IV C we
have shown how these results would be useful in computing
an approximation to the shift of bifurcation thresholds in the
presence of noise.

Note that the H process only deals with the amplitude of
oscillations and does not concern the phase. In applications
where phase is also important, the following methods might
be useful.

One method is the study of the individual projections
zi(t) = 〈�i,�tx〉 without averaging. However, to study the
behavior of x for times of order 1/ε2, the zi processes should
also be studied for times of order 1/ε2. However, the averaged
H equations need to be simulated only for times of order 1
to study the amplitude of oscillations of x for times of order
1/ε2.

Another method is the study of the slowly varying process
α(t) := z1(t)

z2(t)e
−2iωct . As an example consider the scalar process

dx = L0(�tx)dt + εσdW , with L0 satisfying Assumption 1.
Let zi(t) = 〈�i,�tx〉 and let δt be the angle of the complex
number z1(t). Since the dynamics of zi is predominantly an
oscillation with frequency ωc, the quantity α(t) = cos[2(δt −
ωct)] + i sin[2(δt − ωct)] is slowly varying. Writing αε(t) =
α(t/ε2) and zε

i (t) = z(t/ε2) and applying It’s formula, we find
that Hε and αε have the same distribution as the equations

dHε = 2σ 2�̂1�̂2dt + 2σ
(
�̂1z

ε
2 + �̂2z

ε
1

)
dW,

dαε = σ 2αε

(
�̂2

2(
zε

2

)2 − 2�̂1�̂2

Hε

)
dt + σαε

(
�̂1

zε
1

− �̂2

zε
2

)
dW,

where zε evolve according to dzε = 1
ε2 Bzεdt + σ�̂dW.

Heuristically, on averaging the fast oscillations of zε
i we get14

that the distribution of (Hε,αε) converges as ε → 0 to the
distribution of (�,α◦),

d� = 2σ 2�̂1�̂2dt + 2σ

√
�̂1�̂2�dW1,

dα◦ = −(2σ 2�̂1�̂2/�)α◦dt + iσα◦
√

4�̂1�̂2/�dW2,

(74)

where W1 and W2 are independent R-valued Wiener pro-
cesses. The phase of the oscillation of xε(t) = x(t/ε2)
is δt/ε2 = (ωct/ε

2) + 1
2 arg(αε(t)), the distribution of which

can be approximated by the distribution of (ωct/ε
2) +

1
2 arg(α◦(t)) where α◦ is the process from (74). Writing β◦ :=
1
2 arg(α◦(t)) = 1

2i
ln α◦(t) and applying It’s formula, we find

that β◦ evolves according to dβ◦ = σ
√

�̂1�̂2/�dW2.
We conclude this article with one other related work in this

context. The instability in Assumption 1 is not the only kind of
instability possible. For example, one can have the following.

Assumption 3. The characteristic equation (9) has zero as a
simple root and all other roots have negative real parts.

14Note that zε
i are fast oscillating and hence (zε

i )2 are also fast
oscillating, but 2zε

1z
ε
2 = Hε is slow varying. Denoting the average

by A, we have A[(�̂1z
ε
2 + �̂2z

ε
1)2] = �̂2

1A[(zε
2)2] + �̂2

2A[(zε
1)2] +

�̂1�̂2Hε = �̂1�̂2Hε . Similarly, A[( �̂1
zε

1
− �̂2

zε
2

)2] = −4�̂1�̂2/Hε and

A[(�̂1z
ε
2 + �̂2z

ε
1)( �̂1

zε
1

− �̂2
zε

2
)] = 0.
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The analysis under Assumption 3 is similar to the analysis
in previous sections. Choose d such that �(0)d = 0n×1 and d2

such that d2�(0) = 01×n. Define � by the constant �(•) = d

and � by �(•) = cd2, where the constant c is chosen so that
〈�,�〉 = 1 for the bilinear form in (12). The space C can be
split as C = P ⊕ Q, where P is the space spanned by the
constant function �. The projection operator is π : C → P

given by π (η) = �〈�,η〉. Define �̂
def= �(0). Let T̂ and 1{0}

be as defined in Sec. V A. For the unperturbed system (5),
writing �tx = π�tx + (1 − π )�tx = �z(t) + (I − π )�tx,
we find that ż = 0 and ‖(I − π )�tx‖ decays exponentially
fast. So, defining h(η) = 〈�,η〉, we find that H(t) = h(�tx) is
a constant for the unperturbed system (note that H is the same
as z). Now consider equations of the form (43). Akin to the
condition (44), we need to impose that

�̂Gq(�h) = 0 for h ∈ R. (75)

[If the above is not imposed, then the dynamics of H for
times of order 1/ε converges to that of a deterministic
process15 given by Ḣ = �̂Gq(�H).] When (75) is imposed,
significant changes in H occur only for times of order 1/ε2.
So writing Xε(t) = x(t/ε2), we find that Xε has the same
probability distribution as the process satisfying (45). Defining
Hε(t) := h(�ε

t X
ε) and using Itô’s formula, we get that

H satisfies (46) with bq,(1)(η) = �̂Gq(πη) = 0, bq,(2)(η) =
�̂(Gq(η) − Gq(πη)), b(η) = �̂G(η), and σ (η) = �̂F (η). It
can be shown that a result analogous to Theorem 2 holds
with the averaged drift and diffusion coefficients given by
bH (�) = �̂G(�h), σ 2

H (�) = [�̂F (��)]2, b
q,(1)
H = 0, and

b
q,(2)
H (�) =

∫ ∞

0
((T̂ (s)(I − π )1{0}Gq(��)) · ∇)�̂Gq(��)ds.

(76)

For scalar systems the condition (75) would necessarily mean
that Gq(��) = 0, which would result in 1{0}Gq(��) = 0 and
hence b

q,(2)
H = 0. This means that, when (43) is scalar valued,

Gq terms would have a negligible effect on the dynamics on
P subspace for times of order 1/ε2.

Reference [23] considers scalar systems satisfying Assump-
tion 3, but do not impose (75). Reference [23] gives a method
to construct higher-order corrections to the center manifold in
the presence of periodic forcing and white noise. They show
that having higher-order corrections in the center manifold
would improve accuracy of reconstructing the trajectories
(Figs. 2 and 6 in [23]). However, these corrections should be
evaluated through numerical simulations of a delay equation;
for example, the correction to the center manifold in Eq. (52)
of [23] should be numerically simulated. In scalar equations
this task can be circumvented by employing series solutions
as in Eq. (53) of [23]. However, for a multidimensional system
this involves evaluating a reasonable number of eigenvalues
and eigenvectors of the linear delay system. Further, the
computations require memory for storing the history of
Brownian motion for computing the convolutions [Eq. (55)
in [23]]. The extra effort required from the methods in [23]

15A stochastic limit can be obtained by strengthening the noise.

allows one to reconstruct trajectories. The averaging methods
presented in our article deal with distributions alone in the
limit of small ε and cannot reconstruct trajectories.

Finally, for completeness, we consider equations of the
form (62) with Assumption 3. In this case it can be shown that
Theorem 3 holds with

bH (�) =
( ∫ ∞

0
R(s)ds

)
(1{0}F (��) · ∇)�̂F (�h),

σ 2
H (�) = 2

( ∫ ∞

0
R(s)ds

)
(�̂F (�h))2. (77)
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APPENDIX A: ERRORS IN [16,17] AND [10,18]

1. Errors in [16,17]

One of the equations considered in [17] is

dXε(t) = 1

ε2
(−αXε(t) + βXε(t − ε2τ ))dt + Xε(t)dW (t),

(A1)

where W is a Wiener process.16 The above system is studied
as a perturbation of the linear system

ẋ(t) = 1

ε2
(−αx(t) + βx(t − ε2τ )). (A2)

Seeking a solution of the form eλt/ε2
, the characteristic

equation is found to be λ = −α + βe−λτ . Let the parameters
α,β,τ = τc + ε2τ2 be such that when τ2 = 0, a pair of roots
±iω is on the imaginary axis and all other roots are with
a negative real part. In this scenario we have iω = −α +
βe−iωτc , which on solving gives17

ω =
√

β2 − α2, β cos(ωτc) = α, β sin(ωτc) = −ω. (A3)

Reference [17] employs multiscale analysis and for that
purpose is written18

dW (t) = K0dW0(t) + K2,1 cos

(
2ωt

ε2

)
dW2,1(t)

+ K2,2 sin

(
2ωt

ε2

)
dW2,2(t), (A4)

16This is a time-rescaled version of Eq. (1.1) in [17]. The analysis
below appears in Sec. 2 of [17].

17This is Eq. (2.1) in [17].
18This is Eq. (2.11) in [17].
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where Wi are independent Brownian motions. Reference [17]
assumes that the solution Xε is of the form19

Xε(t) = A(t) cos(ωt/ε2) + B(t) sin(ωt/ε2). (A5)

Here A,B vary on a different scale (in the spirit of multiscale
analysis) than cosine and sine.

According to [17], on one the hand, applying Itô’s formula
we have20

dXε = 1

ε2
(−ωsA + ωcB)dt + cdA + sdB, (A6)

where c = cos(ωt/ε2) and s = sin(ωt/ε2). On the other hand,
since Xε must satisfy (A1) we must have21

dXε = 1

ε2

{
− α(cA + sB) + β

[
Aτ cos

(
ω(t − ε2τ )

ε2

)

+ Bτ sin

(
ω(t − ε2τ )

ε2

)]}
dt

+ (cA + sB)

[
K0dW0(t) + K2,1 cos

(
2ωt

ε2

)
dW2,1(t)

+ K2,2 sin

(
2ωt

ε2

)
dW2,2(t)

]
, (A7)

where Aτ means A(t − ε2τ ).
Using τ = τc + ε2τ2 and (A3) we have

β cos

(
ω(t − ε2τ )

ε2

)
= (αc − ωs) + ε2ωτ2(ωc + αs), (A8)

β sin

(
ω(t − ε2τ )

ε2

)
= (ωc + αs) + ε2ωτ2(−αc + ωs).

(A9)

Using the above in (A7) and comparing the resulting equation
with (A6) we have

1

ε2
[−α(cA + sB) + Aτ (αc − ωs) + Bτ (αs + ωc)]dt + ωτ2[ω(cAτ + sBτ ) + α(sAτ − cBτ )]dt

+ (cA + sB)

[
K0dW0(t) + K2,1 cos

(
2ωt

ε2

)
dW2,1(t) + K2,2 sin

(
2ωt

ε2

)
dW2,2(t)

]

− 1

ε2
(−ωsA + ωcB)dt − cdA − sdB = 0. (A10)

Reference [17] then multiplies the above with c or s and integrates over a time period, while treating A and B as constants, to get
the following equations:

dA = −αd̂A − ωd̂B + ωτ2(ωAτ − αBτ )dt + AK0dW0 + 1
2AK2,1dW2,1 + 1

2BK2,2dW2,2,

dB = ωd̂A − αd̂B + ωτ2(αAτ + ωBτ )dt + BK0dW0 − 1
2BK2,1dW2,1 + 1

2AK2,2dW2,2,
(A11)

where d̂A means A(t)−A(t−ε2τ )
ε2 dt .

In (A11) the constants K are not yet determined. Ref-
erence [17] determines them in the following way: Refer-
ence [17] compares the diffusive part of the generator for Xε

and for (A,B). The diffusive part of the generator for (A,B) is

(A2∂A∂A + B2∂B∂B + 2AB∂A∂B)K2
0

+ 1
4 (A2∂A∂A + B2∂B∂B − 2AB∂A∂B)K2

2,1

+ 1
4 (B2∂A∂A + A2∂B∂B + 2AB∂A∂B)K2

2,2. (A12)

The diffusive part of the generator for x is

x2∂x∂x = (cA + sB)2(c∂A + s∂B)2. (A13)

Averaging (A13) over one time period, Ref. [17] obtains22

3A2 + B2

8
∂A∂A + 3B2 + A2

8
∂B∂B + 1

2
AB∂A∂B. (A14)

19This is Eq. (2.2) in [17].
20This is Eq. (2.4) in [17].
21This is Eq. (2.5) in [17].
22This is Eq. (2.16) in [17].

Reference [17] equates (A14) and (A12) to find that

K0 = 1

2
, K2,1 = K2,2 = 1√

2
. (A15)

Then [17] presents a figure showing that the density of
A(T ) cos(ωT/ε2) + B(T ) sin(ωT/ε2), with A,B simulated
from (A11), gives a good approximation to the density of
Xε(T ).

The above procedure is not convincing due to the following
reasons.

(i) It is not clear whether the error in transferring from (A10)
to (A11) would go to zero in some sense as ε → 0.

(ii) Note that (A11) is still a delay equation and hence there
would not be much advantage in simulating A,B compared
to simulating Xε. The delay itself is small O(ε2), but the
difference A(t) − A(t − ε2τ ) is magnified by ε−2.

(iii) Note that, heuristically, the left-hand side of (A4) is
a normal random variable with variance dt and hence, for
consistency, we must have

K2
0 + K2

2,1 cos2

(
2ωt

ε2

)
+ K2

2,2 sin2

(
2ωt

ε2

)
= 1. (A16)

The above is possible only if we take |K2,1| = |K2,2| and set

K2
0 + K2

2,1 = 1. (A17)
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However, note that (A15) contradicts the consistency equa-
tion (A17). We have from (A15) that K2

0 + K2
2,1 = 3

4 �= 1.
We show by means of numerical simulation that the above

procedure is indeed wrong. In (A1) set α = 0, β = −π
2 ,

τc = 1, and τ2 = 0. Then ω = π
2 and this system satisfies

Assumption 1. Equations (A11) in this case become(
dA

dB

)
= 1

ε2

(
0 −ω

ω 0

)(
A(t) − A(t − ε2)

B(t) − B(t − ε2)

)
dt

+ 1

2

(
1 0

0 1

)(
A(t)

B(t)

)
dW2,0

+ 1

2
√

2

(
1 0

0 −1

)(
A(t)

B(t)

)
dW2,1

+ 1

2
√

2

(
0 1

1 0

)(
A(t)

B(t)

)
dW2,2. (A18)

Numerical simulations show that splitting W into harmon-
ics as in (A4) is unnecessary. For this purpose consider(

dA

dB

)
= 1

ε2

(
0 −ω

ω 0

)(
A(t) − A(t − ε2)

B(t) − B(t − ε2)

)
dt

+
(

1 0

0 1

)(
A(t)

B(t)

)
dW2,0, (A19)

i.e., K0 = 1 and K2,1 = 0 = K2,2.
We set ε = 0.05 and T = 1. The initial condition is

Xε(t) = cos(ωt/ε2) for t ∈ [−ε2,0], i.e., �ε
0X

ε(θ ) = cos(ωθ )
for θ ∈ [−1,0], i.e., A(t) = 1 for t � 0 and B(t) = 0 for t � 0.
The cumulative distribution in Fig. 9 is obtained with 2400
realizations.

−1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Xε(1)

C
D

F

 

 

X (actual)

Kuske (Acos+Bsin)

Kuske altered (Acos+Bsin)

FIG. 9. Cumulative distribution function of Xε(T ) with ε = 0.05
and T = 1: X (actual) is obtained from simulating the origi-
nal dynamics (A1), Kuske (A cos +B sin) is A(T ) cos(ωT/ε2) +
B(T ) sin(ωT/ε2) obtained from simulating (A18), and Kuske al-
tered (A cos +B sin) is A(T ) cos(ωT/ε2) + B(T ) sin(ωT/ε2) ob-
tained from simulating (A19).

Figure 9 shows that (A19) better matches the actual
dynamics (A1) than (A18). However, note that (A19) is still a
delay equation and there is no advantage in simulating (A,B)
compared to simulating X.

2. Errors in [10,18]

There are two errors in the analysis of [10,18], one of which
is similar in nature to the previous section. We illustrate the
errors using a special case of the equation considered in [10].

Reference [10] considers

ẍ(t) + x(t) + ηx(t − 1) − βẋ(t) =
√

2Dx(t)ξ (t), (A20)

where ξ is a white noise process with correlation
E[ξ (t)ξ (t ′)] = δ(t − t ′). For now, let us set D = 0. The
characteristic equation is λ2 + 1 + ηe−λ − βλ = 0. Given η,
solve η cos ω = ω2 − 1 for ω and get βc = −η sin ω/ω. With
β = βc the system (A20) (with D = 0) satisfies Assumption
1 with critical roots of the characteristic equation being ±iω.
We assume β = βc.

Reference [10] assumes that the solution is of the form

x(t,T ) = εA(T ) cos ωt − εB(T ) sin ωt, (A21)

where T = ε2t is the slow time scale. Then

x(t − 1,T − ε2) = x(t,T ) cos ω − (sin ω/ω)∂tx(t,T )

− ε2ε
A(T ) − A(T − ε2)

ε2
cos[ω(t − 1)]

+ ε2ε
B(T ) − B(T − ε2)

ε2
sin[ω(t − 1)].

(A22)

However, Ref. [10] sets the last two terms on the right-hand
side to zero claiming A(T ) ≈ A(T − ε2) and B(T ) ≈ B(T −
ε2). However, as ε → 0 it is easy to see that (if derivatives of
A and B exist) these terms go to ∂T A and ∂T B, respectively.
At which ε should we ignore these and which ε should we
consider it as a derivative?

Differentiating, we get

ẋ(t) = (ε2∂T + ∂t )x(t,T )

= ε2(ε∂T A cos ωt − ε∂T B sin ωt) + ∂tx(t,T ), (A23)

ẍ(t) = (ε2∂T + ∂t )
2x(t,T ) = ε4

(
ε∂2

T A cos ωt − ε∂2
T B sin ωt

)
− ε22ω(ε∂T A sin ωt + ε∂T B cos ωt) − ω2x(t,T ).

(A24)

Putting (A22)–(A24) together in (A20), using η cos ω =
ω2 − 1 and βc = −η sin ω/ω, and ignoring terms of order
more than ε3 we get that

−2ωε3(∂T A sin ωt + ∂T B cos ωt)

− ε3η{�A(T ) cos[ω(t − 1)] − �B(T ) sin[ω(t − 1)]}
− ε3βc(∂T A cos ωt − ∂T B sin ωt)

=
√

2Dε[A(T ) cos ωt − B(T ) sin ωt]ξ (t), (A25)
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where �A(T ) means A(T )−A(T −ε2)
ε2 , etc. The corresponding

equation that [10] arrives at23 is

− ωε3(∂T A sin ωt + ∂T B cos ωt)

=
√

2Dε[A(T ) cos ωt − B(T ) sin ωt]ξ (t), (A26)

Equation (A26) does not match with (A25) when �A and �B

are set to zero or when they are set as actual derivatives ∂T A

and ∂T B. Reference [10] proceeds with (A26), multiplies by
sin ωt , and averages over a time period to arrive at

−ωε3 1
2∂T A =

√
2Dε{A(T )[[cos ωt sin ωtξ (t)]]

− B(T )[[sin2 ωtξ (t)]]}
=

√
2Dε 1

2 {A(T )[[sin 2ωtξ (t)]] − B(T )[[ξ (t)]]

+ B(T )[[cos 2ωtξ (t)]]}, (A27)

where [[ ]] is used for time averaging.
The intermediate steps in [10] are not clear, but the end

result of [10] is that D is scaled as D = ε2D̃ and three new
Gaussian processes ξ0,ξ1,ξ2 are defined on a slow time scale
and the following are used:

[[ξ (t)]] = εξ0, [[cos 2ωtξ (t)]] = ε√
2
ξ1,

[[sin 2ωtξ (t)]] = ε√
2
ξ2. (A28)

Employing this in (A27), the following is arrived at:

− ω√
2D̃

∂T A = −Bξ0 + 1√
2
Bξ1 + 1√

2
Aξ2. (A29)

Similarly, [10] multiplies (A26) by cos ωt , averages over a
time period, and employs (A28) to arrive at

− ω√
2D̃

∂T B = Aξ0 + 1√
2
Aξ1 − 1√

2
Bξ2. (A30)

Equations (A29) and (A30) are, respectively, (16) and (17)
in [10].

Now we show that the above method is not consistent with
itself. From (A29) and (A30) we get

− ω√
2D̃

(∂T A sin ωt + ∂T B cos ωt)

= (−Bs + Ac)ξ0 + 1√
2

(Bs + Ac)ξ1 + 1√
2

(As − Bc)ξ2

(A31)

=: F(T ), (A32)

where s = sin ωt and c = cos ωt . Now E[F(T )F(T )] equals

(−Bs + Ac)2 + 1
2 (Bs + Ac)2 + 1

2 (As − Bc)2

= (Ac − Bs)2 + 1
2 (A2 + B2). (A33)

23This is Eq. (9) in [10]. The quantity μ defined under Eq. (7) of [10]
is zero for the special case that we consider.

However, from (A26),

− ω√
2D̃

(∂T A sin ωt + ∂T B cos ωt)

= ε(Ac − Bs)ξ (t) =: εF(T ). (A34)

Now E[F(T )F(T )] equals (Ac − Bs)2. So the system (A29)
and (A30) has an extra variance of 1

2 (A2 + B2) [see (A33)]
than what is required.

APPENDIX B: EXAMPLE ILLUSTRATING THE
APPROACH FOR CALCULATION OF bq,(i)

H IN THEOREM 2

Consider the system without delay given by ẍ + x = εẋy

and ẏ = −y + εẋ2. Here x is oscillatory and y is stable. The
quantity H = 1

2 (x2 + ẋ2) evolves slowly compared to x and
y. Writing in state-space form z1 = x and z2 = ẋ, we have⎛

⎜⎝
ż1

ż2

ẏ

⎞
⎟⎠ =

⎛
⎜⎝

z2

−z1

−y

⎞
⎟⎠ + ε

⎛
⎜⎝

0

z2y

z2
2

⎞
⎟⎠ (B1)

and Ḣ = εb(q)(z,y), where b(q)(z,y) = z2
2y.

The unperturbed system is obtained by setting ε = 0
in (B1). The differential of any function f along a trajectory of
the unperturbed system is given by L0f , where L0 = z2

∂
∂z1

−
z1

∂
∂z2

− y ∂
∂y

. The differential along the perturbations is given

by L1f , where L1 = z2y
∂

∂z2
+ z2

2
∂
∂y

. Note that ḟ (zt ,yt ) =
[(L0 + εL1)f ](zt ,yt ).

Now let

H (z,y) = H(z) − εc(z,y) + ε2g1(z,y) + ε2g2(z), (B2)

where c,g are yet to be determined. On differentiating we get
(until order ε2)

Ḣ (zt ,yt ) = ε[b(q)(zt ,yt ) − (L0c)(zt ,yt )] − ε2(L1c)(zt ,yt )

+ ε2(L0g1)(zt ,yt ) + ε2(L0g2)(zt ,yt ) + O(ε3).

(B3)

Now choose c such that L0c = b(q). Choose g1 such that
(L0g1)(z,y) = (L1c)(z,y) − (L1c)(z,0). Such a choice of g1

is possible because, according to the unperturbed dynamics,
y decays to zero exponentially fast. Note that (L1c)(z,0) is
a function of z alone and the unperturbed z dynamics is an
oscillation with constant amplitude

√
2H. Now let the average

of (L1c)(z,0) along an orbit of constant H be denoted by
{L1c}. This {L1c} would be a function only of 1

2 (z2
1 + z2

2)
or, equivalently, H. Choose g2(z) such that (L0g2)(z,0) =
(L1c)(z,0) − {L1c}| 1

2 (z2
1+z2

2). Plugging the above choices of
functions in (B3) we get

Ḣ (zt ,yt ) = −ε2{L1c}|H + O(ε3). (B4)

Hence, for times of O(1/ε2) we have H (zt ,yt ) = H (z0,y0) +
ε2

∫ t

0 {L1c}|Hs
ds + O(ε). Since H differs fromH only by O(ε)

[see (B2)] we can write Ht = H0 + ε2
∫ t

0 {L1c}|Hs
ds + O(ε).

So, for times of order O(1/ε2), if we use

Ḣ = −ε2{L1c}|H, (B5)

062104-18



PERTURBATIONS OF LINEAR DELAY DIFFERENTIAL . . . PHYSICAL REVIEW E 93, 062104 (2016)

then the error resulting in H would be only of O(ε). Such a
method is shown in [13]; we have adapted it to stochastic delay
equations in [24].

To see why the above method is useful, note that c in
L0c = b(q) can be immediately solved using the method of

characteristics. Since the solution to the unperturbed sys-
tem is z1(t) = z1(0) cos t + z2(0) sin t , z2(t) = −z1(0) sin t +
z2(0) cos t , y(t) = y(0)e−t , and b(q)(z,y) = z2

2y, we get
c(z,y)=− ∫ ∞

0 (−z1 sin t + z2 cos t)2ye−t dt . Now (L1c)(z,0)=
− ∫ ∞

0 z2
2(−z1 sin t + z2 cos t)2e−t dt . Hence {L1c}|H is

1

2π

∫ 2π

0

(
−

∫ ∞

0
z2

2(−z1 sin t + z2 cos t)2e−t dt

)∣∣∣∣
(z1,z2)=√

2H(sin s, cos s)

ds = −H2
∫ ∞

0

1

2
(2 + cos 2t)e−t dt = −11

10
H2.

So we have Ḣ = ε2 11
10H2 + O(ε3). The reader can check

using conventional center-manifold calculations that the same
answer would be obtained. However, the method presented
here would easily adapt to multidimensional delay equations
as shown in Sec. V.

APPENDIX C: EXPLICIT EVALUATION OF bq,(k)
H

USING (51)–(54)

In this section we show how the explicit formulas (55)
and (56) can be derived from (51)–(54). First we give a few
preliminaries.

Recall that, for ϕ ∈ C, T̂ (t)ϕ denotes the solution at time t of
the unperturbed linear system (5) with initial condition �0x =
ϕ. Recall that C = P ⊕ Q, where P is the space corresponding
to the critical eigenvalues ±iωc. Recalling the evolution on P

defined by (17), we have that for u ∈ C2 with u2 = ū1,

T̂ (t)�u = �eBtu. (C1)

Using (50) and (C1) we have for the n × 1 vector v,

T̂ (t)π1{0}v = �eBt �̂v. (C2)

For η�

t defined in (25), we have T̂ (s)η�

t = η�

t+s . The z

coordinates 〈�,T̂ (s)η�

t 〉 are given by 1
2

√
2�[ eiωc (t+s)

e−iωc (t+s)] and hence

for ρ defined in (51), we can take ρ(η�

t ) = 2π
ωc

− t .

Using the product rule for differentiation on bq,(1) [defined
in (47)] and linearity of the function E, we have, for ξ,η ∈ C,

(ξ · ∇)bq,(1)(η) = E(ξ )Gq(πη) + E(η)(πξ · ∇)Gq(πη).

Using the product rule for differentiation on bq,(2) [defined
in (48)] we have, for ξ,η ∈ C,

(ξ · ∇)bq,(2)(η) = ((ξ ·∇)E(η))(Gq(η) −Gq(πη))

+E(η)(ξ ·∇)Gq(η) − E(η)(πξ ·∇)Gq(πη).

Since η�

t [used in (54)] belongs to P , i.e., η�

t = πη�

t , the first
term vanishes. Using linearity of differentials we have that

(ξ · ∇)bq,(2)
(
η�

t

) = E
(
η�

t

)
((I − π )ξ · ∇)Gq

(
η�

t

) ∀ξ ∈ C.

(C3)

Now we show how (56) can be derived. Using (53)
in (54) we encounter the task of evaluating the differ-
ential (ξ · ∇)bq,(2)(T̂ (s)η�

t ) with ξ = T̂ (s)1{0}Gq(η�

t ). Using
T̂ (s)η�

t = η�

t+s and (C3) we get the differential as E(η�

t+s)((I −
π )T̂ (s)1{0}Gq(η�

t ) · ∇)Gq(η�

t+s). It is a property of the un-
perturbed system that T̂ commutes with (I − π ). Defining
Et = e−iωct �̂1 + eiωct �̂2, we can write E(η�

t ) = √
2�Et . So we

can rewrite the differential as
√

2�(T̂ (s)(I − π )1{0}Gq(η�

t ) ·
∇)(Et+sGq(η�

t+s)). Writing Gq(η�

t ) = ∑n
j=1 (Gq(η�

t ))j ej and
using linearity of differentials, we get the desired form in (56).
Equation (55) can be similarly derived.

APPENDIX D: SKETCH OF PROOF OF THEOREM 3

One way to characterize the probability distribution of a
stochastic process Y is by an operator called the infinitesimal
generator L defined as follows: For any nice real-valued
function f of the process Y ,

(Lf )(y)
def= lim

t→0

1

t
{E[f (Yt )|Y0 = y] − f (y)}. (D1)

Here the E term means the average of f (Yt ) given that the
initial condition Y0 equals y. For example, the process whose
infinitesimal generator is defined by Lf = 1

2f ′′ has the same
probability distribution as the standard Brownian motion.
The process whose infinitesimal generator is defined by
(Lf )(y) = b(y)f ′(y) + 1

2σ 2(y)f ′′(y) has the same probabil-
ity distribution as the process governed by the SDE dY =
b(Y )dt + σ (Y )dW with W a Wiener process. The process
whose infinitesimal generator is (Lf )(y) = b(y)f ′(y) is the
ordinary differential equation Ẏ = b(Y ). The infinitesimal
generator characterizes the probability distribution of a
process.

We consider the system (64) and (65) and try to find the
infinitesimal generator LH of the process limε→0 Hε. For this
purpose consider the triplet process (�εX,ξε,Hε). It has the
infinitesimal generator Lε = 1

ε2 L0 + 1
ε
L1, where for function

f of (η,ξ,h),

(L0f )(η,ξ,h) = (Gf )(η,ξ,h) + d

dt

∣∣∣∣
t=0

f (T̂ (t)η,ξ,h), (D2)

(L1f )(η,ξ,h) = σ (ξ )(1{0}F (η) · ∇)f (η,ξ,h)

+ σ (ξ )b(η)
∂f

∂h
(η,ξ,h). (D3)

Here G is the infinitesimal generator of the noise process ξ .
Recall that T̂ (t)η is the solution at time t of the unperturbed
system (5) with initial condition η and 1{0} is the matrix-valued
function defined in (49).

The following comments help in gaining insight into the
structure of Lε. Consider (64) and (65). If there were no noise
perturbations at all, then Hε would have remained a constant
and �εXε would have evolved according to the unperturbed
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system whose solution at time t with initial condition η is given
by T̂ (t)η. Applying the definition (D1) for this case, we get
the d

dt
|t=0 term in (D2). If there were noise alone we would

get the G term in (D2). The rate of change of Hε in (65) is σb,
which explains the σb

∂f

∂h
term in (D3). The other term in (D3)

is due to the perturbation coefficient σF in (64).
The problem of finding the infinitesimal generatorLH of the

process limε→0 Hε can be simplified as follows (for details see
the technique of the martingale problem in Chap. 5 of [35]):
Find an operator LH such that given any nice function fH

of h alone, there exists a function f ε of (η,ξ,h) such that
|fH (h) − f ε(η,ξ,h)| and |(LHfH )(h) − (Lεf ε)(η,ξ,h)| are of
order ε.

Now we show how to find LH . Formally, consider

f ε(η,ξ,h)
def= fH (h) + εf1(η,ξ,h) + ε2f2(η,ξ,h) with f1 and

f2 yet to be determined. Computing Lεf ε we find

Lεf ε = 1

ε2
L0fH + 1

ε
(L0f1 + L1f0)

+ (L0f2 + L1f1) + O(ε). (D4)

Note that L0fH = 0 because L0 involves differentials with
respect to (η,ξ ), whereas fH is a constant as a function of
(η,ξ ) (it is function only of h). Now f1 can be chosen so that
L0f1 + L1f0 = 0. It can be verified that f1 is

f1(η,ξ,h) =
∫ ∞

0
ds

( ∫
M

[ν(s,ξ,dζ ) − ν̄(dζ )]σ (ζ )

)

× b(T̂ (s)η)
∂fH (h)

∂h
.

We would not be able to select f2 such that L0f2 + L1f1 = 0.
However, L0f2 + (L1f1 − {L1f1}) = 0 can be solved, where
{L1f1} is certain kind of average. With this choice of f2,
now (D4) gives |Lεf ε − {L1f1}| ∼ O(ε). Inspecting {L1f1}

gives LH . Note that L1f1 equals∫ ∞

0
ds

(
σ (ξ )

∫
M

(ν(s,ξ,dζ ) − ν̄(dζ ))σ (ζ )

)

×
(

(1{0}F (η) · ∇)b(s)(η)
∂fH (h)

∂h
+ b(η)b(s)(η)

∂2fH (h)

∂h2

)
,

where b(s)(η)
def= b(T̂ (s)η). In the above expression (i) aver-

aging the noise ξ with respect to its invariant measure ν̄ and
recalling the definition of autocorrelation in (63), (ii) realizing
that (1{0}F (η) · ∇)b(s)(η) = (T̂ (s)1{0}F (η) · ∇)b(T̂ (s)η), and
(iii) averaging the η on trajectories of constant h, we get {L1f1}
as bH (h) ∂fH (h)

∂h
+ 1

2σ 2
H (h) ∂2fH (h)

∂h2 , where bH and σH are as stated
in Theorem 3.

APPENDIX E: NUMERICAL SCHEME FOR SIMULATIONS

All simulations in this paper are done with the Euler-
Maruyama scheme. For example, (59) with γc = 0 is simulated
as follows. Select a time step �. Let N = r/�, where r is the
delay in the system. Specify initial conditions at the time points
of the form j� for j = −N,−N + 1, . . . ,−2,−1,0. Then, for
j � 0,

x|(j+1)� = x|j� + �

(
−π

2
x + εγqx

2

)∣∣∣∣
(j−N)�

+ εσ
√

�Nj ,

where Nj is a standard normal random variable.
For (70) we first simulate the two-state Markov chain and

then use

x|(j+1)� = x|j� + �

(
−π

2
+ εσ (ξ |j�)

)
x

∣∣∣∣
(j−N)�

.

The following values of � are used: For Sec. VI B, � = 5 ×
10−5; for Sec. V D, � = 2 × 10−5; for Sec. IV B, � = 10−5;
and for the stationary density in Fig. 3, � = 5 × 10−6. Further
evidence for the usefulness of averaging results of Sec. IV C
is provided in the Supplemental Material [29].
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