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The Newtonian dynamics of strongly confined fluids exhibits a rich behavior. Its confined and unconfined
degrees of freedom decouple for confinement length L → 0. In that case and for a slit geometry the intermediate
scattering functions Sμν(q,t) simplify, resulting for (μ,ν) �= (0,0) in a Knudsen-gas-like behavior of the confined
degrees of freedom, and otherwise in S‖(q,t), describing the structural relaxation of the unconfined ones. Taking
the coupling into account we prove that the energy fluctuations relax exponentially. For smooth potentials the
relaxation times diverge as L−3 and L−4, respectively, for the confined and unconfined degrees of freedom.
The strength of the L−3 divergence can be calculated analytically. It depends on the pair potential and the
two-dimensional pair distribution function. Experimental setups are suggested to test these predictions.
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I. INTRODUCTION

Compared to calculating static properties of macroscopic
systems in thermodynamic equilibrium the calculation of
dynamical quantities like, e.g., the time evolution of correlation
functions in equilibrium or of quantities in nonequilibrium is
much harder. A prominent example is the intermediate scatter-
ing function S(q,t) of a simple classical fluid [1]. Whereas its
short-time behavior can be deduced from the computation of
static correlation functions, a reliable calculation of its decay
on intermediate and long-time scales is not possible, in general,
due to the interactions between the particles.

There are very few macroscopic classical systems with
Newtonian dynamics for which exact results exist. Without
attempting completeness we mention some examples. For
the ideal bulk gas of point particles the self intermediate
scattering function S(s)(q,t) is known analytically [1]. The
linear correction in density has also been determined [2].
The evolution of the nonequilibrium probability distribution
function in the N -particle phase space of the Knudsen gas (an
ideal gas confined between flat, parallel, and hard walls) was
determined [3,4] and of correlation functions for a harmonic
crystal [5]. These examples refer to systems without particle-
particle interactions or to systems that can be transformed
to noninteracting modes, as in Ref. [5]. Analytically exact
results for the dynamics of interacting particles are particularly
rare. An example is a fluid of hard rods in one dimension for
which, e.g., the long-time decay of the velocity autocorrelation
function was determined [6].

But, there exist limiting cases that allow predictions of the
dynamical properties. A famous example is the hydrodynamic
limit for a fluid leading to the Navier-Stokes equations.
For a general discussion see the recent review [7]. Another
well-known example is Brownian motion. Starting from the
microscopic dynamics of a particle with mass M immersed
in a solvent of particles having mass m the dynamics of the
Brownian particle is described by a Langevin equation in the
case of m/M � 1 [8]. There are more situations for which a
smallness parameter exists, like m/M for a Brownian particle,
and for which a kinetic equation can be derived from the
microscopic dynamics (see Ref. [9] and references therein).
Such a typical situation occurs for two subsystems interacting
weakly with a coupling constant λ. If H0 = H1 + H2 is the

(classical) Hamiltonian of the unperturbed system and λHint

its perturbation, the time evolution of a phase space function
A(x) is given by A(x(t)) = exp(iLt)A(x(0)). Here x(t) is the
trajectory in phase space and L = L0 + λLint, the Liouville
operator. L0 and Lint correspond to H0 and Hint, respectively.
The Taylor expansion of exp(iLt) up to, e.g., second order
in t allows us only to calculate the short-time dynamics of
the correlation function 〈A(x(t))A(x(0))〉, where 〈(·)〉 denotes
canonical averaging over the initial conditions x(0) in phase
space. The long-time behavior can only be obtained by
summing up an infinite number of higher-order terms. This
was done first for a quantum system for which a relaxation
time τ for the approach-to-equilibrium was found diverging
as λ−2 [10]. Taking the so-called van-Hove-limit t → ∞
and λ → 0 such that t̃ = λ2t = const one obtains a kinetic
equation describing the approach-to-equilibrium on a time
scale t̃ . Correction terms to that limit were also determined
[11]. Similar perturbational treatments for classical systems
were elaborated in Ref. [12].

Confined fluids interpolate between bulk and 2D (or 1D)
fluids. Their dynamics is influenced by the confinement
and its geometry. Therefore, the question arises as to how
the fluid dynamics will change if the confinement becomes
stronger and stronger. In that case the fluid becomes quasi-two-
(or quasi-one-) dimensional. Recently, it was shown that
thermodynamic and structural properties of fluids strongly
confined by two flat, parallel, and hard walls can be calculated
perturbatively, with n0L

2 as a smallness parameter [13,14]. L

is the accessible width in transversal direction and n0 = N/A

is the 2D number density for N identical particles and a
wall area A. This perturbational approach to calculate static
thermodynamic quantities is based on the observation that the
particle’s lateral and transversal degrees of freedom (d.o.f.)
become decoupled for L → 0. Following Ref. [10] one would
expect that the equilibration time τ of an initial state in which
the transversal and lateral d.o.f. are out-of-equilibrium should
diverge as (n0L

2)−2 ∼ L−4 for L → 0. Similar behavior
would be expected to occur for fluids in narrow cylindrical
tubes with diameter R and in narrow two-dimensional channels
with width W for R → 0 and W → 0, respectively.

It is the main object of the present work to elaborate on
the relaxational behavior of fluids in strong confinement. Not
much is known for this kind of problem. There have been
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investigations of moderately confined fluids. On the experi-
mental side the influence of the confinement on the molecular
relaxation was explored [15]. Using confocal microscopy for
hard-sphere suspensions the mean-square displacements and
the diffusion constants were determined as a function of the
wall separation [16–18]. The same was done by computer
simulations [19–21]. Many of these activities were motivated
by studying transport properties of dense liquids and the
structural glass transition.

In the present article we will show that the approach-
to-equilibrium of fluids in strong confinement slows down
with decreasing confinement length. The slowing-down is
much stronger for the lateral than for the transversal d.o.f.
This follows for smooth pair potentials from the existence
of two different time scales related to the energy relaxation
of the lateral and transversal (d.o.f.) diverging for vanishing
confinement length. The outline of our paper is as follows.
Section II presents the model, and the leading order dynamics
in L is discussed in Sec. III. The main result, i.e., the derivation
of an exact equation of motion for the energy correlator of the
transversal and lateral d.o.f. will be presented in Sec. IV. In
particular, this section derives the power-law divergencies of
the corresponding relaxation times. Finally, Sec. V contains
a summary and some conclusions. In order not to impede
the reading of the main text technical details are presented in
Appendices.

II. MODEL

We consider N identical point particles with mass m

confined in a three-dimensional domain D. Its classical
Hamiltonian reads

H ({ 
pi},{
xi}) =
N∑

i=1

[
1

2m

p2
i + U (
xi)

]
+ 1

2

∑
i �=j

υ(|
xi − 
xj |),

(1)

where 
pi and 
xi is the momentum and position, respectively,
of the ith particle. υ(xij = |
xi − 
xj |) is a smooth central
symmetric pair potential, and

U (
x) =
{

∞, 
x /∈ D
0, 
x ∈ D

(2)

is a hard-wall potential confining the particles to the domain
D. Smooth means that the pair potential’s derivatives exist
up to arbitrary order for all xij , except for xij = 0. This
condition on the potential v(xij ) is fulfilled for, e.g., a Coulomb
and a Lennard-Jones potential. It mainly excludes hard-core
interactions with a finite hard-core size. Note that the walls
are neutral and reflect particles elastically. The extension of
our results to walls with additional particle-wall interactions
is straightforward. We call the confinement of a fluid strong
if the particles form only a single monolayer and a single
chain-like particle arrangement for a slit and a tube (or
a 2D channel) geometry, respectively. This situation can
occur because a realistic pair potential, e.g., a Lennard-Jones
potential, becomes more and more repulsive with decreasing
distance xij . For charged particles it is even repulsive for all
xij . Accordingly, the statistical weight of configurations with

lateral distance rij = 0 for a given pair (i,j ) of particles is of the
order exp [−(l/L)m]. The microscopic length l and the positive
parameter m characterize the divergence of v(xij )/kBT at
xij = 0. For a Coulomb and a Lennard-Jones potential it is
m = 1 and m = 12, respectively. Since our perturbational
approach leads to an expansion in powers of L2 these
exponentially small contributions can be neglected for L

small enough. This condition allows us to expand the pair
potential into a Taylor series of the confined coordinates called
transversal d.o.f. in the following. The unconfined coordinates
comprise the lateral d.o.f. Let us restrict to a slit geometry with
a width L and a wall area A. The perturbational procedure for
a tube or a 2D channel can be done analogously. Decomposing

xi = (
ri,zi) into lateral and transversal coordinates 
ri = (xi,yi)
and zi , respectively, and following Refs. [13,14] one obtains
for the pair interaction energy

V ({
xi}) = 1

2

∑
i �=j

υ(
xi − 
xj )

= V ({
ri}) + V‖,⊥({
ri},{zi}), (3)

where

V‖,⊥({
ri},{zi}) =
∞∑

ν=1

1

2

∑
i �=j

υν(rij )(zi − zj )2ν (4)

is the interaction energy of the lateral with the transversal d.o.f.
The νth order coefficients are related to the derivatives υ ′(rij ),
υ

′′
(rij ), etc. of the pair potential

υ1(rij ) = υ ′(rij )/2rij ,
(5)

υ2(rij ) = [υ ′′(rij )rij − υ ′(rij )]/8r3
ij ,

etc. Since zi = O(L), Eq. (4) corresponds to an expansion with
respect to L. Note that this expansion requires the smoothness
of the pair potential. Making use of Eqs. (1)–(4) and of 
pi =
( 
Pi,P

z
i ) we get the corresponding Liouvillean,

L = L0 + L1, L0 = L‖
0 + L⊥

0 , (6)

with the unperturbed parts,

L‖
0 = −i

N∑
j=1

[
1

m

Pj · ∂

∂
rj

− ∂V

∂
rj

· ∂

∂ 
Pj

]
,

(7)

L⊥
0 = −i

N∑
j=1

1

m
P z

j

∂

∂zj

=
N∑

j=1

L⊥
0,j ,

and the perturbation L1 = L‖
1 + L⊥

1 , where

L‖
1 = i

∞∑
ν=1

∑
i �=j

(zi − zj )2ν υ ′
ν(rij )

rij


rij · ∂

∂ 
Pi

,

(8)

L⊥
1 = i

∞∑
ν=1

2ν
∑
i �=j

(zi − zj )2ν−1υν(rij )
∂

∂P z
i

.

The νth order term of L‖
1 and L⊥

1 is of order L2ν and
L2ν−1, respectively. Accordingly, the dynamics of the strongly
confined fluid in leading order is reduced to the dynamics
of the decoupled lateral and transversal d.o.f., which will be
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discussed in the following section. Taking into account their
coupling will lead to a “kinetic” equation derived in Sec. IV

III. LEADING ORDER DYNAMICS

The intermediate scattering function of a fluid is of theoret-
ical and experimental interest. For a fluid in slit geometry it is
an infinite-dimensional matrix with matrix elements,

Sμν(q,t) = 1

N

N∑
m,n=1

〈e−i 
q·[
rm(t)−
rn(0)]e−i[Qμzm(t)−Qνzn(0)]〉, (9)

with the 2D wave vector 
q = (qx,qy), Qμ = 2πμ/L, and μ

an integer. For more details see Refs. [22,23]. The angular
brackets denote canonical averaging over the initial conditions
({
rn(0),zn(0)}, { 
Pn(0), P z

n (0)}). In leading order in L this
canonical average factorizes into the product 〈〉‖〈〉⊥, involving
the canonical averages over the lateral ({
rn(0)}, ({ 
Pn(0)}) and
over the transversal ({zn(0)}, {P z

n (0)}) d.o.f. [13]. Furthermore,
in leading order in L the time evolution operator exp (iLt)
factorizes into exp (iL‖

0t) exp (iL⊥
0 t). Then Eq. (9) implies

that 〈exp(−i 
q · [
rm(t) − 
rn(0)])〉‖ and 〈exp(−i[Qμzm(t) −
Qνzn(0)])〉⊥ have to be calculated, where the time evolution
is generated by L‖

0 and L⊥
0 , respectively. Therefore, for

(μ,ν) = (0,0) one obtains S00(q,t) � S‖(q,t), the intermediate
scattering function of the 2D fluid of the unperturbed lateral
d.o.f. In leading order in L there is no interaction between the
transversal d.o.f. Consequently, they form an ideal gas where
zi(t) is confined between −L/2 and L/2, which represents a
one-dimensional Knudsen gas. Then the transversal correlators
above for (μ,ν) �= (0,0) are nonzero for m = n, only. Taking
this into account we get from Eq. (9) in leading order for
(μ,ν) �= (0,0)

Sμν(q,t) � S
(s)
‖ (q,t)S(K)

μν (t), (10)

with the self part of the 2D intermediate scattering function

S
(s)
‖ (q,t) = 1

N

N∑
n=1

〈e−i 
q·[
rn(t)−
rn(0)]〉‖ and the “Knudsen” corre-

lators

S(K)
μν (t) = 〈exp(−i[Qμzn(t) − Qνzn(0)])〉⊥, (11)

which do not depend on the particle index n.
Using the result of Ref. [4] S(K)

μν (t) can be calculated exactly.
One obtains for (μ,ν) �= (0,0) (see Appendix A)

S(K)
μν (t) = (−1)μ+ν

{
exp[−8π2μ2(t/tK (L))2](δμ,−ν + δμν)

+
∞∑

k=0

ck
μν exp[−2π2(2k + 1)2(t/tK (L))2]

}
, (12)

with the “Knudsen” time scale,

tK (L) = 2L/υth, υth = (kBT /m)1/2, (13)

the time for bouncing back and forth of a particle with thermal
velocity υth. The coefficients ck

μν are given in Appendix A.
The long-time decay is S(K)

μν (t) � c0
μν exp[−2π2(t/tK (L))2],

i.e., a Gaussian decay on a time scale tK (L) ∼ L. For argon
(40
80)Ar at room temperature and L = 1 nm one obtains

tK (1 nm) ∼= 8.10 × 10−12 s. tK (L) is much smaller than the
corresponding relaxation time τ‖ of S

(s)
‖ (q,t). Therefore, it

follows with Eq. (10) and S
(s)
‖ (q,0) = 1,

Sμν(q,t) �
{

S‖(q,t), (μ,ν) = (0,0)

S(K)
μν (t), (μ,ν) �= (0,0),

(14)

i.e., the intermediate scattering functions in leading order in
L separate into the intermediate scattering function of the
unperturbed 2D fluid and the corresponding correlators of a
Knudsen gas.

IV. ENERGY RELAXATION

In a final step we investigate the influence of the coupling
between the lateral and transversal d.o.f. on the relaxational
behavior. For this we observe that the total energy of the
lateral and of each of the transversal d.o.f. are conserved
in leading order in L [13]. Accordingly, these quantities
are slow variables for finite but small L. Let h⊥(P z

i ) =
(P z

i )2/2m be the kinetic energy of the ith particle’s transver-
sal d.o.f. and δh⊥(P z

i ) = h⊥(P z
i ) − 〈h⊥(P z

i )〉 its fluctuation.
Similarly, δH‖({ 
pi},{
ri}) = H‖({ 
pi},{
ri}) − 〈H‖〉 denotes the
fluctuation of the total energy H‖({ 
Pi},{
ri}) = ∑

i


P 2
i /2m +

V ({
ri}) of the lateral d.o.f. In the following we derive an
equation of motion for the transversal self-correlator C

(s)
⊥ (t) =

1
N

∑
i

〈δh⊥(P z
i (t))δh⊥(P z

i (0))〉 and for the lateral correlator

C‖(t) = 〈δH‖({ 
Pi(t)}, {
ri(t)}) δH‖({ 
Pi(0)},{
ri(0)})〉. In princi-
ple, one could perform a perturbational calculation by expand-
ing the evolution operator exp[i(L0 + L1)t] with respect toL1,
similar to the procedure in Refs. [10,12]. This would require
summing up an infinite number of terms (diagrams). Here
we demonstrate that the Zwanzig-Mori projection formalism
[1,8] is the most suitable method to derive an exact equation
of motion for C

(s)
⊥ (t) and C‖(t) in the limit L → 0.

Let us just focus on C
(s)
⊥ (t). With the projector P⊥ =

|δh⊥(P z
s )〉〈δh⊥(P z

s )|/〈(δh⊥(P z
s ))2〉 for a “tagged” particle s

one obtains the Mori equation [1,8],

Ċ
(s)
⊥ (t) +

∫ t

0
dt ′K (s)

⊥ (t − t ′)C(s)
⊥ (t ′) = 0, (15)

with the memory kernel,

K
(s)
⊥ (t) = 〈

δh⊥
(
P z

s

)
LQ⊥ exp[−iQ⊥LQ⊥t]Q⊥Lδh

(
P z

s

)〉
× 〈(

δh⊥
(
P z

s

))2〉−1
, (16)

and the projectorQ⊥ = 1 − P⊥. The righthand side of Eq. (16)
simplifies because Q⊥Lδh⊥(P z

s ) ≡ Lh⊥(P z
s ) = L⊥

1 δh⊥(P z
s ),

since Lδh⊥(P z
s ) is orthogonal to δh⊥(P z

s ). Furthermore,
L0δh⊥(P z

s ) = 0 and L‖
1δh⊥(P z

s ) = 0 has been used. The
former holds since δh⊥(P z

s ) is conserved under the time
evolution generated by the unperturbed Liouvillean L0 and
the latter follows immediately with use of Eq. (8). Because
L⊥

1 δh⊥(P z
s ) is of order L [cf. Eq. (8)], one can replace

Q⊥LQ⊥ in the exponent of Eq. (16) by the zero-order term
Q(0)

⊥ L0Q(0)
⊥ and 〈(·)〉 by 〈(·)〉(0), where the latter denotes the

canonical average with respect to the unperturbed Hamiltonian
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H0 (see also Ref. [24]). Here it is Q(0)
⊥ = 1 − P (0)

⊥ and P (0)
⊥ =

|δh⊥(P z
s )〉(0)(0)〈δh⊥(P z

s )|/〈(δh⊥(P z
s )2〉(0). Then the leading-

order result for the kernel becomes (see Appendix B)

K
(s)
⊥ � −k1C

⊥
1 (t)C̈⊥

1 (t) − k2C̈
⊥
2 (t), (17)

where k1 and k2 involve static correlators of the unperturbed
lateral system only. ḟ (t) denotes the derivative of f (t) with
respect to t . The transversal correlators appearing in Eq. (17)
are given by C⊥

m (t) = 〈(zs(t))m(zs(0))m〉⊥, m = 1, 2. It is
important to note that the result Eq. (17) for K

(s)
⊥ (t) is not

valid for a hard-core pair potential because k1 and k2 involve
static correlation functions of υ1(r), which is proportional to
the derivative υ ′(r) of the pair potential [cf. Eq. (5)]. Using
scaled variables z̃s = zs/L and t̃ = t/tK (L) with tK (L) from
Eq. (13), one obtains

C⊥
m (t) = L2mC̃⊥

m (t̃). (18)

The correlators C̃⊥
m (t̃) are independent on L and can be

calculated analytically (see Appendix A). Making use of the
scaling relation, Eq. (18), we obtain from Eq. (17)

K
(s)
⊥ (t) ∼= [L4/tK (L)2]K̃ (s)

⊥ (t̃), (19)

where the L-independent relaxation kernel K̃
(s)
⊥ (t̃) follows

from Eq. (17) by replacing C⊥
m (t) by C̃⊥

m (t̃). The scaling
relation Eq. (19) implies that the Markov approximation
K

(s)
⊥ (t) ∼= γ

(s)
⊥ (L)δ(t) with

γ
(s)
⊥ (L) = [L4/tK (L)]

∫ ∞

0
dt̃K̃

(s)
⊥ (t̃) (20)

becomes exact for L → 0. Consequently, we find an exponen-
tially relaxing solution of Eq. (15),

C
(s)
⊥ (t) = C

(s)
⊥ (0) exp[−t/τ

(s)
⊥ (L)], C

(s)
⊥ (0) = (kBT )2/2,

(21)

with a relaxation time τ
(s)
⊥ (L) = 1/γ s

⊥(L) diverging as L−3.
Calculating the integral in Eq. (20) one arrives at (see
Appendix B)

τ
(s)
⊥ (L) � 1

8c

(
ζ

L

)2(
Laυ

L

)2

tK (L) ∼ L−3, (22)

with c ∼= 0.019206 and Laυ = n
−1/2
0 the average lateral

distance between the particles. The length ζ characterizes
the decay of the pair potential and is defined by ζ−2 =
(π/2)

∫ ∞
0 drr−1(υ ′(r)/(kBT ))2g‖(r), with g‖(r) the pair dis-

tribution function of the 2D fluid of the unperturbed lateral
d.o.f.

The Mori equation for the correlation function C‖(t)
describing the relaxation of the energy of the lateral d.o.f.
has the same form as Eq. (15) but with a kermel K‖(t). As
shown in Appendix C K‖(t) is of O(L4) and decays on a time
scale τ (2D), the structural relaxation time of the unperturbed
lateral d.o.f. The Markov approximation again becomes exact,
for L → 0. Consequently, it follows

C‖(t) = C‖(0) exp[−t/τ‖(L)], C‖(0) = 〈(δH‖)2〉(0), (23)

with a relaxation time τ‖(L) diverging as L−4. In contrast
to K

(s)
⊥ (t) the corresponding integral

∫ ∞
0 dtK‖(t) cannot

be computed analytically. Hence, the prefactor of the L−4

divergence cannot be calculated exactly.

V. SUMMARY AND CONCLUSIONS

We have shown that strongly confined fluids with Newto-
nian dynamics in a slit geometry possess interesting features.
This is just the situation where a fluid becomes quasi-two-
dimensional. The confined (i.e., transversal) and unconfined
(i.e., lateral) d.o.f. decouple for vanishing slit-width L and
become a Knudsen gas and a 2D fluid, respectively. The
structural relaxation of the former exhibit a Gaussian long-time
decay with a relaxation time tK (L) = 2L/vth. tK (L) is the time
for a bounce of a particle with thermal velocity vth.

For small but finite L, the coupling between these d.o.f.
leads to an exponential decay of energy fluctuations of the
confined and unconfined d.o.f. with diverging relaxation time
scales τ

(s)
⊥ (L) ∼ L−3 and τ‖(L) ∼ L−4, respectively. Due to

the different power-law divergences, the unconfined d.o.f. will
equilibrate much slower than the confined ones, provided L

is small enough. These results are only valid for smooth pair
potentials v(r). If the pair potential becomes more and more
hard-core-like, e.g., the relaxation kernel K

(s)
⊥ (t) will gain

an increasing contribution at t = 0 because it involves the
derivative of v(r) (see Appendix B for details). This leads
to an additional contribution to the damping constant γ

(s)
⊥ (L)

which may modify its L dependence. The same may happen
for γ‖(L). In this context it is also interesting that studying
the mode coupling equations [25] for a confined fluid [22,23]
a divergent time scale has been predicted indirectly from the
noncommutativity of the limits L → 0 and t → ∞ [26].

Usually, diverging time scales are believed to result from a
diverging length scale (see, e.g., Ref. [27]). For instance, this is
true for the critical fluctuations close to a second-order phase
transition. The situation for strongly confined fluids is just
opposite. A vanishing confinement length implies diverging
time scales. Or stated otherwise, the planar limit of a fluid
is connected with an unlimited increase of the equilibration
time. This fact is related to the weak coupling limit between
two subsystems, which has been studied over decades [9].
But there are differences to the earlier investigations. For
the strongly confined fluid there are two coupling constants
λ⊥ ∼ L and λ‖ ∼ L2 related to the Liouvillean L⊥

1 and L‖
1,

respectively. Applying the result from Ref. [10] one would
predict time scales diverging like ∼L−2 and ∼L−4. The
discrepancy between the former and the exact result Eq. (22)
demonstrates that it is not only the coupling constant itself that
determines the relaxation time scale but also the relaxational
dynamics within the subsystems. It would be interesting to
search for similar physical situations for which the tuning of
a control parameter leads to weakly coupled subsystems and
consequently to diverging time scales.

Our predictions can be checked both experimentally and
by MD simulations. At least two possible setups could be
used. The first one is a direct approach. Because C

(s)
⊥ (t) and

C‖(t) is the autocorrelation function of the energy fluctuation
of the confined and unconfined d.o.f., respectively, one could
use differential calorimetry. This was worked out analytically
[28] and applied in order to determine a frequency-dependent
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specific heat by a MD simulation [29]. Second, as already
mentioned in the Introduction, generating a nonequilibrium
state by applying an external perturbation, the unconfined and
the confined d.o.f. will converge to a local quasiequilibrium,
which in turn will relax to the global equilibrium state on much
larger time scales τ‖(L) and τ

(s)
⊥ (L). Measuring for instance

for different L the quasistatic structure factor S‖(q0,0; tw) of
the unconfined d.o.f. at the first peak position q0 as function of
the waiting time tw would allow us to determine indirectly τ‖
as a function of L. Similarly, measuring one of the transversal
correlators, e.g., S11(q,t) � S

(K)
11 (t), allows us to determine

the relaxation time tK (L; tw). From its dependence on tw

one could deduce the relaxation time τ
(s)
⊥ as a function of

L. Such studies would also allow us to check the range
of validity of the power-law divergences of τ

(s)
⊥ (L) and of

τ‖(L). In contrast to experiments, the realization of flat hard
walls for a MD simulation should be straightforward. For
an experimental approach it would be necessary to choose
large spherical particles such that the roughness of the walls
on an atomic length scale does not influence the dynamics.
Let us estimate, e.g., τ

(s)
⊥ (L) for a fluid of argon atoms

(40
80Ar) with Lennard-Jones potential at room temperature.

With εLJ/kB
∼= 125.7K [30], L = 0.1ζLJ and choosing the

2D number density such that L/Lav = 0.1 we get from
Eq. (22) that τ

(s)
⊥ (0.1ζLJ) ∼= 3.53 × 105tK (0.1ζLJ). Therefore,

the equilibration of the confined (transversal) d.o.f. requires
the particles to bounce back and forth about a million times.
If L would be decreased by a factor of ten the equilibration
would already need about ten billions of bounces.

Finally, we point out that these findings also hold qualita-
tively for a fluid in a narrow cylindrical tube with radius R and
in a narrow two-dimensional channel with width W , replacing
L by the radius R and the width W , respectively. Therefore,
it would be interesting performing similar investigations
for fluids in narrow tubes and in narrow two-dimensional
channels.
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APPENDIX A: CALCULATION OF CORRELATION
FUNCTIONS OF THE KNUDSEN GAS

The one-dimensional Knudsen gas consists of N nonin-
teracting point particles with mass m confined between two
neutral “walls” with positions at z± = ±L/2. Its equilibrium
phase is described by the canonical ensemble

ρK ({zi},{żi}) =
N∏

n=1

exp
( − mż2

n/2kBT
)

L
√

2πkBT /m
=

N∏
n=1

ρ0(zn,żn).

(A1)

Let Aμ(zs) be functions depending on a single coordinate
zs and zs(t ; zs,żs) the Newtonian trajectory of particle s with

inital conditions (zs,żs). Then the time-dependent correlation
functions of the observables Aμ(zs) is given by averaging over
the transversal degrees of freedom

〈Aμ(t)∗Aν(0)〉⊥ =
∫ L/2

−L/2
dzs

∫ +∞

−∞
dżs

×Aμ(zs(t ; zs,żs))
∗Aν(zs)ρ0(zs,żs), (A2)

where A∗
μ is the complex conjugate of Aμ. This can be rewritten

by use of the one-particle distribution function f (z,ż,t |z0,ż0)
with initial condition f (z,ż,0|z0,ż0)=δ(z−z0)δ(ż−ż0),

〈Aμ(t)∗Aν(0)〉⊥ =
∫ L/2

−L/2
dz

∫ L/2

−L/2
dz0

∫ ∞

−∞
dż

∫ ∞

−∞
dż0

×Aμ(z)∗Aν(z0)f (z,ż,t |z0,ż0)ρ0(z0,ż0).

(A3)

f (z,ż,t |z0,ż0) was calculated analytically [4]. Taking into
account that compared to our geometry the “walls” in Ref. [4]
where shifted by L/2, it is

f (z − L/2,ż,t |z0 − L/2,ż0)

= 1

L

{
1 + 2

∞∑
n=1

cos

(
1

2
Qnz0

)

× cos

[
1

2
Qn(z − ż0t)

]}
δ(ż − ż0), (A4)

with the discrete wave numbers Qn = 2πn/L.
In a first step we will use Eqs. (A1), (A3), and (A4) to

calculate the intermediate scattering functions of the Knudsen
gas defined by S(K)

μν (t) = 〈e−i[Qμzs (t)−Qνzs (0)]〉⊥. After shifting
the integration varibles z and z0 one obtains with Aμ(z) =
exp (iQμz) from Eq. (A3)

S(K)
μν (t) = (−1)μ+ν

∫ L

0
dz

∫ L

0
dz0

∫ ∞

−∞
dż

∫ ∞

−∞
dż0

× e−i[Qμz−Qνz0]f (z − L/2,ż,t |z0 − L/2,ż0)

× ρ0(z0 − L/2,ż0), (A5)

where the factor (−1)μ+ν results from the shift of coordinates.
Substitution of f (z − L/2,ż,t |z0 − L/2,ż0) from Eq. (A4) and
of ρ0(z0,ż0) from Eq. (A1) involves two types of integrals,∫ ∞

−∞
dż0 cos(Qnż0t/2) exp

(−mż2
0/2kBT

)
=

√
2πkBT /m exp[−2π2n2(t/tK (L))2], (A6)

with tK (L) from Eq. (13). The corresponding integral with
cos(Qnż0t/2) replaced by sin(Qnż0t/2) vanishes, because the
integrand is an odd function of ż0. The 2nd integral is as
follows:∫ L

0
dzeiQνz cos

(
1

2
Qnz

)
= L

{
1
2 (δn,−2ν + δn,2ν), n even
2i
π

2ν
(2ν)2−n2 , n odd.

(A7)
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Taking these results into account, one finally obtains

S(K)
μν (t) = (−1)μ+ν

{
δμ0δμν

+ e−8π2μ2(t/tK (L))2
(1 − δμ0)(δμ,−ν + δμν)

+
∞∑

k=0

ck
μνe−2π2(2k+1)2(t/tK (L))2

}
, (A8)

with the coefficients

ck
μν = 8

π2

(2μ)(2ν)

[(2μ)2 − (2k + 1)2][(2ν)2 − (2k + 1)2]
. (A9)

Next we calculate the correlators C⊥
m (t) = 〈(zs(t))m(zs)m〉⊥

introduced in Sec. IV. With Aμ(zs) = (zs)m we obtain from
Eq. (A3) after shift of the integration variables

C⊥
m (t) =

∫ L

0
dz

∫ L

0
dz0

∫ ∞

−∞
dż

∫ ∞

−∞
dż0

×(z − L/2)m(z0 − L/2)mρ0(z0 − L/2,ż0)

×f (z − L/2,ż,t |z0 − L/2,ż0). (A10)

Besides the integral Eq. (A6) it involves elementary integrals∫ L

0 dzzk cos(Qnz/2). Using the expressions for those integrals
one gets finally

C⊥
1 (t) =L2 8

π4

∞∑
k=0

1

(2k + 1)4
e−2π2(2k+1)2(t/tK (L))2

= L2C̃⊥
1 (t̃) (A11)

and

C⊥
2 (t) = L4

[
1

144
+ 8

π4

∞∑
k=1

1

(2k)4
e−2π2(2k)2(t/tK (L))2

]

= L4C̃⊥
2 (t̃), (A12)

where t̃ = t/tK (L) is a dimensionless time. One can prove
that the result Eqs. (A11) and (A12) fulfill the correct initial
conditions C⊥

m (0) = 〈z2m
s 〉⊥ = 1

2m+1 (L/2)2m.

APPENDIX B: CALCULATION OF K (s)
⊥ (t) AND OF γ

(s)
⊥

FOR L → 0

In the following it is h⊥(P z
s ) = (P z

s )2/2m and
δh⊥(P z

s ) = h⊥(P z
s ) − 〈h⊥(P z

s )〉 its fluctuation. The pertur-
bational approach for L → 0 to calculate the mem-
ory kernel K

(s)
⊥ (t) [cf. Eq. (16)] is straightforward

and can be done systematically (see, e.g., Ref. [24]).
Taking into account that Q⊥Lδh⊥(P z

s ) = Lδh⊥(P z
s ) =

L0δh⊥(P z
s ) + L1δh⊥(P z

s ) = L1δh⊥ and L1δh⊥ = L‖
1δh⊥ +

L⊥
1 δh⊥ = L⊥

1 δh⊥ where Eqs. (6)–(8) were applied one obtains
from Eq. (16) in leading order in L

K
(s)
⊥ (t) � 〈δh⊥L⊥

1 e−iQ(0)
⊥ L0Q(0)

⊥ tL⊥
1 δh⊥〉(0)/〈(δh⊥)2〉(0), (B1)

where Q(0)
⊥ = 1 − P (0)

⊥ with

P (0)
⊥ = (|δh⊥〉(0)(0)〈δh⊥|)/〈(δh⊥)2〉(0) (B2)

and 〈(· · · )〉(0) denotes the canonical average of (· · · ) with
respect to the unperturbed Hamiltonian H0 obtained from H

[Eqs. (1), (3), and (4)], by neglecting the coupling term V‖,⊥.
Note that 〈(δh⊥)2〉(0) = 〈(δh⊥)2〉 = (kBT )2/2. Equation (B1)
for the kernel simplifies even more taking into account that
L0 = L‖

0 + L⊥
0 and

[Q(0)
⊥ ,L‖

0] = 0, [Q(0)
⊥ ,L⊥

0 ] = 0. (B3)

This can be proved by operating with these commutators on
phase space functions f‖({
ri},{ 
Pi})g⊥({zi},{P z

i }) and using
L‖

0δh⊥(P z
s ) ≡ 0 and L⊥

0 δh⊥(P z
s ) ≡ 0. Equation (B3), together

with (Q(0)
⊥ )2 = Q(0)

⊥ and [L‖
0,L⊥

0 ] = 0, leads to

e−iQ(0)
⊥ L0Q(0)

⊥ t = e−iL‖
0te−iL⊥

0 tQ(0)
⊥ . (B4)

Because Q(0)
⊥ L⊥

1 δh⊥(P z
s ) = L⊥

1 δh⊥(P z
s )−P (0)

⊥ L⊥
1 δh⊥(P z

s )
and P (0)

⊥ L⊥
1 δh⊥(P z

s ) ∝ 〈δh⊥L⊥
1 δh⊥〉(0) = 0 (since

L⊥
1 δh⊥(P z

s ) is an odd function of P z
s whereas δh⊥(P z

s )
is even), we arrive at

K
(s)
⊥ (t) � 〈δh⊥L⊥

1 e−iL‖
0te−iL⊥

0 tL⊥
1 δh⊥〉(0)2/(kBT )2. (B5)

With L⊥
1 from Eq. (8) we get in leading order in L

L⊥
1 δh⊥(P z

s ) � −(2i/m)
∑
n(�=s)

v1(rns)(zn − zs)P
z
s . (B6)

Substitution of this expression into Eq. (B5) yields

K
(s)
⊥ (t) � (4/m2)

∑
m,n

(�= s)

〈v1(rms)e
−iL‖

0t v1(rns)〉‖

× 〈
(zm − zs)P

z
s e−iL⊥

0 t (zn − zs)P
z
s

〉⊥
× 2/(kBT )2, (B7)

where we used that 〈 〉(0) = 〈 〉‖〈 〉⊥. 〈 〉‖ is the average with

respect to the unperturbed Hamiltonian H
‖
0 = ∑

i

Pi

2
/2m +

V ({
ri}) and 〈 〉⊥ is the average with respect to the unper-
turbed Hamiltonian H⊥

0 = ∑
i[(P

z
i )2 + U(zi)] withU(z) = ∞

for |z| > L/2 and zero otherwise. Since L⊥
0 describes the

dynamics of a one-dimensional ideal gas confined to −L/2 �
zi � L/2 (Knudsen gas) the transversal correlator in Eq. (B7)
can be expressed by transversal correlators of the sth particle.
Since the particles are identical, and m �= s and n �= s, one
obtains〈

(zm − zs)P
z
s e−iL⊥

0 t (zn − zs)P
z
s

〉⊥
=

{〈
zs(t)P z

s (t)zsP
z
s

〉⊥
, m �= n

〈zs(t)zs〉⊥
〈
P z

s (t)P z
s

〉⊥ + 〈
zs(t)P z

s (t)zsP
z
s

〉⊥
, m = n,

(B8)

where we used that 〈z〉⊥ = 0, due to the symmetric (neutral)
wall potential U(z). Introducing the correlators C⊥

m (t) =
〈(zs(t))m(zs)m〉⊥ (cf. Appendix A) and taking into account the
time-reversal symmetry we obtain from Eq. (B8)〈

(zm − zs)P
z
s e−iL⊥

0 t (zn − zs)P
z
s

〉⊥
= −(m2/4)

{
C̈⊥

2 (t), m �= n

4C⊥
1 (t)C̈⊥

1 (t) + C̈⊥
2 (t), m = n,

(B9)
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where the dots denote the derivatives with respect to time.
Since the correlators C⊥

m (t) decay on a time scale tK (L) ∼ L,
which is much faster than the decay of the lateral correlators
in Eq. (B7), the latter can be replaced by their initial values
at t = 0. Taking this and Eq. (B9) into account we get from
Eq. (B7) the final result in leading order in L,

K
(s)
⊥ (t) � −k1C

⊥
1 (t)C̈⊥

1 (t) − k2C̈
⊥
2 (t), (B10)

which is identical to Eq. (17). The coefficients are given by
k1 = 8B/(kBT )2 and k2 = 2(A + B)/(kBT )2, with

A =
∑
m,n

(�= s)

〈v1(rms)v1(rns)〉‖,

B =
∑
m(�=s)

〈(v1(rms))
2〉‖. (B11)

By use of the M-particle densities ρ
(M)
‖ (
y1, . . . ,
yM ) =

(n0)Mg
(M)
‖ (
y1 − 
yM, . . . ,
yM−1 − 
yM ) [1] with g

(M)
‖ the M-

particle distribution function of the two-dimensional fluid of
the unperturbed lateral degrees of freedom and n0 = N/A its
number density one gets

A = (n0)2
∫

d2r

∫
d2r ′g(3)

‖ (
r,
r ′)v1(r)v1(r ′),

B = n0

∫
d2rg

(2)
‖ (r)(v1(r))2. (B12)

The damping constant γ
(s)
⊥ = ∫ ∞

0 dtK
(s)
⊥ (t) follows by

substituting the scaling relations for C⊥
m (t) from Eqs. (A11)

and (A12) into Eq. (B10). Then it is straightforward
to prove that

∫ ∞
0 dt̃ ¨̃C⊥

2 (t̃) = 0 and
∫ ∞

0 dt̃C̃⊥
1 (t̃) ¨̃C⊥

1 (t̃) =
− ∫ ∞

0 dt̃( ˙̃C⊥
1 (t̃))2 = −c, where

c = (64
√

2/π13/2)
∞∑

k,k′=0

{
(2k + 1)2(2k′ + 1)2

× [(2k + 1)2 + (2k′ + 1)2]3/2
}−1

(B13)
∼= 0.019206. (B14)

This yields in leading order in L γ
(s)
⊥ (L) � 8cBL4/

[(kBT )2tK (L)], which leads to a relaxation time

τ
(s)
⊥ (L) � 1

8c

(
ζ

L

)2(
Lav

L

)2

tK (L), (B15)

with ζ a length characterizing the decay of the pair potential
v(r). It is defined by

ζ−2 = π

2

∫ ∞

0
drr−1[v′(r)/(kBT )]2g

(2)
‖ (r). (B16)

Lav = n
−1/2
0 is the average lateral distance of the particles.

Equation (B15) is identical to Eq. (22). Note, in Sec. IV we
skipped the superscript at the pair distribution function g

(2)
‖ (r).

APPENDIX C: CALCULATION OF K‖(t) and of γ‖
FOR L → 0

Similar to Eq. (16) the kernel K‖(t) describing the relax-
ation of the lateral correlator C‖(t) is given by

K‖(t) = 〈δH‖LQ‖e−iQ‖LQ‖tQ‖LδH‖〉/〈(δH‖)2〉, (C1)

where Q‖ = 1 − P‖ and P‖ is the projector onto δH‖, the
fluctuation of the total energy of the unperturbed lateral degrees
of freedom. Following the same steps as in Appendix B we
obtain in leading order in L,

K‖(t) � 〈δH‖L‖
1e−iL‖

0te−iL⊥
0 tL‖

1δH‖〉(0)/〈(δH‖)2〉(0). (C2)

Using L‖
1 from Eq. (8) we get in leading order in L,

L‖
1δH‖ � (i/m)

∑
k �=l

[v′
1(rkl)/rkl]
rkl · 
Pk(zk − zl)

2. (C3)

Substitution of this expression into Eq. (C2) and observing
that the t-dependent correlator in that equation factorizes, we
arrive at

K‖(t) � (1/m2)
∑
k �=l

∑
m�=n

〈[v′
1(rkl)/rkl]
rkl · 
Pke−iL‖

0t

× [v′
1(rmn)/rmn]
rmn · 
Pm〉‖

× 〈(zk − zl)
2e−iL⊥

0 t (zm − zn)2〉⊥/〈(δH‖)2〉‖, (C4)

which corresponds to Eq. (B7). However, the transversal corre-
lator 〈(zk − zl)2e−iL⊥

0 t (zm − zn)2〉⊥ differs from the transversal
correlator in Eq. (B7). The z coordinates appear in a quartic
form instead of a quadratic form in Eq. (B7). Therefore, it is
of O(L4). This transversal correlator again can be expressed
by C⊥

m (t), introduced in Appendix A. One obtains

〈(zk − zl)
2e−iL⊥

0 t (zm − zn)2〉⊥
= C⊥

2 (t)[δkm + δkn + δlm + δln] + (〈z2〉⊥)2

× [(1 − δkm) + (1 − δkn) + (1 − δlm) + (1 − δln)]

+ 4(C⊥
1 (t))2[δkmδln + δknδlm], (C5)

which decays to a nonzero value (L4/144)[δkm + δkn + δlm +
δln] + (〈z2〉⊥)2[(1−δkm)+(1−δkn)+(1−δlm)+(1−δln)]≡
L4/36 for t → ∞. Here we used 〈z2〉⊥ = L2/12 and
Eq. (A12). Consequently, in leading order in L it is the decay
of the lateral correlator in Eq. (C4) that is responsible for the
damping mechanism. This decay happens on the structural
relaxation time scale τ (2D) of the unperturbed lateral fluid.
Since the amplitude of the kernel K‖(t) is of O(L4), we have

K‖(t) = L4K̃‖(t̃ ′), t̃ ′ = t/τ (2D), (C6)

which makes again the Markov approximation exact for
L → 0. Therefore, C‖(t) decays exponentially with a relax-
ation time τ‖(L) = 1/γ‖(L), where

γ‖(L) = L4τ (2D)
∫ ∞

0
dt̃K̃‖(t̃) ∼ L4. (C7)

The integral in Eq. (C7) cannot be calculated analytically.
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