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Models of noninteracting fermions coupled to auxiliary classical fields are relevant to the understanding
of a wide variety of problems in many-body physics, e.g., the description of manganites, diluted magnetic
semiconductors, or strongly interacting electrons on lattices. We present a flat-histogram Monte Carlo algorithm
that simulates a statistical ensemble that allows one to directly acquire the partition function at all temperatures
for such systems. The defining feature of the algorithm is that it utilizes the complete thermodynamic
information from the full energy spectrum of noninteracting fermions available during sampling of the
configuration space of the classical fields. We benchmark the method for the classical Ising and Potts models
in two dimensions, as well as the Falicov-Kimball model describing itinerant electrons interacting with heavy
ions.
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Introduction. Bilinear Hamiltonians of lattice fermions cou-
pled to classical degrees of freedom (continuous or discrete)
are ubiquitous in contemporary many-body physics. These
often arise as suitable approximations in the description of
systems where many different degrees of freedom contrive
to yield complex and interesting physics. In these cases,
some subsystem is treated classically. e.g., localized spins in
double-exchange models [1–3], models of Mn-doped (III and
IV) semiconductors [4], the Ising t-J model [5], adiabatic
phonons in polaron models [6–9], or one species of fermions
in the Falicov-Kimball model [9–11]. Exactly solvable models
can also take this form, such as the seminal honeycomb
lattice Kitaev model [12], where interacting spins are mapped
onto Majorana fermions coupled to static gauge fields. More
generally, auxiliary field methods, e.g., based on the Hubbard-
Stratonovich transformation, allow one to decouple fermion-
fermion or fermion-boson interactions; the fields are then
treated classically in conjunction with the application of the
Suzuki-Trotter decomposition [13,14] (see [15] for a recent
approximate scheme with static fields).

The simplicity of the form of such models belies their
complexity. Although obtaining eigenstates for fixed config-
urations of classical fields is computationally easy, summing
over the exponential number of such configurations to ob-
tain thermodynamic properties is notoriously expensive. An
obvious approach towards this problem is via Monte Carlo
(MC) sampling [16]. Summing over the fermion states for a
fixed classical field configuration yields the conditional (grand)
partition function. This quantity, at fixed temperature, serves
as the Metropolis weight [17] for performing a random walk
in the space of classical field configurations [18]. The serious
bottleneck in these simulations is the repeated performance
of the fermionic trace, and so exact diagonalization (ED)
of the free fermion system, for executing the walk. Hence
various improvements have been proposed to optimize the
reevaluation of the weight: moment expansion of the fermion
density of states by Chebyshev polynomials [19,20], low-rank
matrix updates [21], or Green’s functions [22] Chebyshev

expansion. On the other hand, it seems naturally essential
to optimize the extraction of information at each MC step.
Indeed, while the expensive ED yields the conditional partition
function at all temperatures, these are completely discarded by
using only single-temperature data in the above approaches.
Here we introduce an algorithm that fully exploits the
thermodynamic information available at each diagonalization
step in MC simulations of free fermions coupled to classical
fields (FCCFs).

The paradigmatic Metropolis algorithm [17] suffers from
critical slowing down at continuous phase transitions and
prolonged trapping in metastable states at discontinuous
transitions. These can be overcome to a large extent using
cluster update schemes [23–28] or sampling extended ensem-
bles [29–32] such as Wang-Landau sampling of the density of
states [33,34]. While these approaches have been used in the
study of classical and quantum systems, FCCFs hold their own
system-specific challenges rendering such applications diffi-
cult. In particular, the effective Hamiltonian (corresponding to
the energies in the Metropolis weight) of the classical fields in
general contains temperature-dependent long-range multipar-
ticle interactions. Often, molecular dynamics or hybrid Monte
Carlo methods using Langevin’s equation [35–38] are better
suited than standard MC simulations of such Hamiltonians,
although the acceptance rate in these simulations crucially
depends on the quality of the approximate action. Instead,
we sample an extended ensemble, bringing the advantages of
Wang-Landau-like sampling to FCCFs.

Problem and method. We first generalize our considera-
tions: a system is biseparable if it may be separated into two
subsystems A and B such that for a given state of A all states
of the system B can be efficiently summed over to obtain the
conditional (grand) partition function Z(β|A) or equivalently
the conditional free energy (grand potential) F (β|A). This
definition covers both FCCFs (where subsystem A is classical)
and many classical models (e.g., the Ising model on a bipartite
lattice where A and B are the spins on the two sublattices,
respectively). For biseparable systems, the partition function
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is decomposed as

Z(β) = Tr exp(−βH ) =
∑
A

( ∑
B

exp(−βHB|A)

)

=
∑
A

Z(β|A) =
∑
A

exp[−βF (β|A)], (1)

i.e., the partition function Z(β) is obtained by averaging
the conditional partition functions over all configurations
attainable in the system A. Notice that once the conditional
energy spectrum is obtained, complete thermodynamic in-
formation associated with the exponentially large number
of configurations of B encoded in exp[−βF (β|A)] for all
inverse temperatures β becomes potentially available at each
simulation step.

Our problem can be stated as follows. Standard MC
sampling for FCCF systems consists of walking, at fixed
temperature, between different configurations of A with with
Metropolis weights exp[−βF (β|A)]. Here we aim to obtain
the entire partition function (1) by acquiring, at a given
simulation step, the conditional partition function Z(β|A)
for all arguments β from the information (full spectrum)
abundantly available for each fixed configuration on A. In
principle, this may also be achieved by the parallel tem-
pering algorithm [32] (to efficiently sample configurational
space of A) and a reweighting procedure, which, however,
requires a well chosen set of temperature intervals. Instead,
in our method, we perform a random walk directly in the
configurational space of A without referring to any specific
temperature. The basic challenge is to obtain an appropriate
importance sampling scheme over the exponential number of
configurations of A.

The key to any thermodynamic MC simulation lies in
efficiently sweeping energy space. A simple observation is
that, for most systems, only a few configurations of A lead to
the spectrum of system energies containing the ground-state
energy. Such configurations must obviously be effectively
found by the importance sampling scheme. Moreover, the
conditional densities of states (DOSs) ρA(E) of energy spectra
of typical configurations of A are expected to differ most also
in their lower range. So a key discriminant for configurations
of A is the minimal energy attainable by the system at a given
configuration, which we denote by εmin(A). We consider two
configurations of A to be in the same class if they have equal
εmin values.

The principle that we identify and implement to acquire the
partition function is that all minimal energy classes be visited
by the algorithm. For this, notice that the minimal attainable
energies εmin can be associated with a density of states ρ̃(εmin),
which enumerates the number of configurations of subsystem
A attaining a given minimal energy. We emphasize that this
auxiliary DOS is distinct from the true DOS of the system and
does not determine the latter.

Our algorithm then consists of two separate sampling
stages associated with first generating the weight distribution
for importance sampling and then using it for acquiring
thermodynamic information about the system. (i) The auxiliary
DOS ρ̃(εmin) is readily obtained via a Wang-Landau (WL)
simulation [33] in the space of minimal energies, where εmin

plays the role of energy of a given configuration of A. (ii) Next,

one performs a random walk in the space of configurations of
A with weights

w(A) = 1/ρ̃[εmin(A)] (2)

to sample Z(β) for all β via the estimator Z(β|A)/w(A). This
weight function not only allows visits to all classes of config-
urations, but allows each class to be visited approximately the
same number of times, yielding a flat histogram.

The above principle can be viewed as a minimal necessary
requirement for sampling energy space. It yields a coarse-
grained view of energy space disregarding any differentiation
between configurations belonging to a given class. Below we
show that the application of this principle leads to remarkably
accurate results.

Testing the algorithm. The convergence properties of the
WL algorithm that constitutes the first stage of our algorithm
have been widely studied. We note that the random walk in
the second stage of our algorithm (with fixed auxiliary DOS)
fulfills, by fiat, detailed balance. We test the convergence of
our algorithm on the (a) Ising and (b) Potts models. Finally, we
present continuous temperature results for the Falicov-Kimball
model as a prominent example of FCCF.

The Ising model with nearest-neighbor interactions on
a square lattice is an ideal benchmark for testing new
algorithms. This model is biseparable, which allows direct
application of our algorithm. For a given configuration
of spins on one sublattice (subsystem A) the conditional
partition function corresponding to all spin configurations
on the second sublattice (subsystem B) is simply Z(β|A) =
2N/2[cosh(2βJ )]N2 [cosh(4βJ )]N4 , where J is the coupling
between spins, N/2 is the number of sites on sublattice B,
and N2 and N4 are the number of spins on sublattice B subject
to the nearest-neighbor fields with absolute values 2J and 4J ,
respectively, for a given configuration on sublattice B. Figure 1
shows the continuous temperature dependence of the specific
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FIG. 1. Specific heat CV per site for the 2D Ising model using our
algorithm (black) and the WL (red dashed) algorithm. The lattice size
is 60 × 60 with PBCs. The upper inset shows the difference between
these lines. The lower inset shows the averaged error in our sampling
(black line) for an 8 × 8 system with PBCs. The red dashed line
depicts the error generated by temperature shifting exact data (see the
text).
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heat, obtained with our algorithm and the WL algorithm
for a 60 × 60 site lattice [with periodic boundary conditions
(PBCs)]. The two curves show good agreement, indicating the
sufficiency of our prescribed importance sampling principle.

We note that, in principle, errors (top inset, Fig. 1) may
be generated during both simulation stages in our algorithm.
The properties of the WL algorithm have been been well
studied in the literature (see Refs. [39–42]). To quantify
errors arising during our importance sampling and to separate
these from errors due to the first (i.e., WL) stage of our
algorithm we study a 8 × 8 system for which the exact
auxiliary DOS can be directly obtained by summing the 232

sublattice A configurations. For the analysis, we performed
1600 independent runs of importance sampling (second stage)
with this DOS, each consisting of 106 MC steps per spin. The
evaluated CV were compared with exact results for the system
obtained using Beale’s procedure [43]. The resulting average
error is presented in the lower inset of Fig. 1 (black curve).
We note first that the envelope of the error is analogous to that
obtained for the 60 × 60 site system (top inset in Fig. 1). The
persistence of the error for the large number of runs reveals a
very small systematic error arising in the sampling scheme. We
identify this to stem primarily from a simple overestimation
of the finite-size critical temperature T ∗

C . To see this, we
determine the temperatures corresponding to the maxima of
CV curves for all runs and find them to follow a Gaussian
distribution around an average value of T ∗

C = 2.362 08, while
the exact value is T ∗

C,exact = 2.361 98. Shifting the exact data
by the obtained difference �T ∗

C = 0.000 11 produces an error
depicted by the red dashed curve in the lower inset of Fig. 1,
in striking agreement with that obtained from the Monte Carlo
runs. Interestingly, a recent error analysis of the standard WL
algorithm [44] showed the same type of small systematic
shift for the discussed 8 × 8 Ising system, with the averaged
temperature shift of CV peak locations being of the same order
(�T ∗

C = 0.000 43). We emphasize here that the systematic
errors in both the WL scheme and our method are very small
(of the same order 10−4 for the 8 × 8 system) for practical
purposes. While ways to remedy the errors have been proposed
for the WL algorithm in Ref. [44], we leave this issue for our
algorithm open for future study.

We now highlight some important distinctions between the
WL and our algorithm. A single step in the second stage of our
algorithm entails accumulation of full thermodynamic infor-
mation from all configurations of subsystem B (a remarkable
21800 configurations in the 60 × 60 site simulation) during
each update move on subsystem A. In contrast, the standard
WL algorithm updates information from one configuration per
move. However, this exponential update comes at the initial
cost of first obtaining the auxiliary DOS via a WL procedure.
Interestingly, the auxiliary DOS has to be determined with
essentially a higher histogram flatness requirement than the
system DOS in the direct WL simulation of the Ising model.
This has two sources. First, the subsystem Hamiltonian with
energies εmin contains multispin and long-range interactions
unlike the original Ising interaction Hamiltonian. Second
is sensitivity to the precision of the auxiliary DOS. We
have found that adding small fluctuations to ρ̃(εmin) rapidly
deteriorates results. Hence, our algorithm should not be viewed
as an alternative to the standard WL algorithm for classical
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FIG. 2. Specific heat CV per site for the 30 × 30 site 2D ten-state
Potts model using our algorithm (black) and the WL (red dashed)
algorithm. The lower inset shows the difference between these lines.
The upper inset is a close-up of the transition region.

models. Finally, while the WL algorithm directly outputs the
system DOS, our algorithm yields the partition function.

To illustrate that our algorithm successfully simulates
discontinuous phase transitions, we consider the ten-state Potts
model on the square lattice with a nearest-neighbor interaction.
Biseparability here may be shown in a similar fashion as in the
Ising model. However, the form of the conditional partition
function is more complicated than for the Ising model due to
the multitude of values of local fields set by configurations
of nearest-neighbor Potts spins. A comparison in Fig. 2 of the
specific heat, obtained by the WL algorithm and our algorithm,
for a 30 × 30 site lattice with PBCs reveals the effectiveness
of our sampling scheme in this case as well. There is a small
shift in T ∗

C between the WL algorithm and our method given
by �T ∗

C = 0.000 04, which in combination with the steepness
of the peak at the transition contributes mainly to the errors
shown in the upper inset in Fig. 2.

Now consider the Falicov-Kimball model (FKM)

HFK = −t
∑
〈i,j〉

c
†
i cj + U

∑
i

nc
i n

d
i − μ

∑
i

nc
i (3)

of FCCFs, where c
†
i (d†

i ) is the creation operator of mo-
bile (immobile) fermions, nc

i = c
†
i ci , nd

i = d
†
i di , t is the

nearest-neighbor hopping integral, U is the Hubbard on-site
interaction, and μ is the chemical potential for c fermions
(the number Nd of immobile fermions is fixed). For a
given configuration of immobile fermions {nd

i }, the set of
single-particle eigenenergies {εl} of mobile fermions is readily
obtained, rendering the model biseparable.

Unlike for classical models above, an efficient standard WL
algorithm is not directly applicable. We consider the FKM on a
N = L2 square lattice under PBCs with L = 16, at half filling
(μ = U/2 and Nd = N/2), for different values of U . Under
these conditions the FKM undergoes, at low temperatures,
a transition to the charge-density wave ordered state, with a
Q = (π,π ) ordering wave vector. The transition is continuous
for large U , with some evidence of discontinuous transitions
for small U [45,46]. Our algorithm yields all-temperature
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FIG. 3. Specific heat CV per site for the 2D Falicov-Kimball model at half filling obtained with our algorithm (black line) and the Metropolis
(red circles) algorithm. The electron-ion on-site repulsion U/t is equal to (from the left panel to the right) 0.25 (weak coupling), 1 (moderate
coupling), and 8 (strong coupling). The lattice size is 16 × 16 with PBCs. The insets show a comparison of internal energies.

results unlike standard Metropolis sampling over the immobile
fermions. Moreover, since the Metropolis algorithm suffers
from slow kinetics at discontinuous phase transitions, our
method should be particulary useful in further studies of the
small-U regime. Here we restrict ourselves to proving that our
sampling principle works. In Fig. 3 we compare the specific
heat and internal energy obtained by Metropolis sampling and
our algorithm. The results are within the accuracy of results of
the local update Metropolis algorithm. We mention that, solely
for generating the auxiliary DOS, we discretized minimal
energies of the total system into energy bins of width 0.005t

or 0.001t and checked for convergence.
Conclusion. We have presented a Monte Carlo algorithm for

fermions coupled to classical fields based on Wang-Landau-
like sampling in contradistinction to common Metropolis
sampling. This allows, in principle, one to overcome draw-
backs of Metropolis schemes. Importantly, it fully exploits
all available thermodynamic information per diagonalization
step, information that is mostly wasted in other MC schemes.
Our scheme is based on the notion of minimal energy attainable
for a given classical field configuration. We devised a minimal
rule for importance sampling: that all such minimal energies be
visited by the algorithm. We mention that while our sampling
principle yields satisfactory results in the presented examples,

more generally supplementary conditions may be required in
other cases. However, our results show that, in principle, accu-
mulation of conditional partition functions at all temperatures
at once using simple temperature-independent importance
sampling is possible. An intriguing possible application of our
method is to quenched disorder problems, where free energies
need to be efficiently averaged over disorder realizations.

Standard MC schemes update information from single or
effectively at most M configurations (for an M-site system)
per move (in the N -fold way algorithm [47]). Significantly, our
algorithm updates information from an exponential number of
configurations per move [∼ exp(αM) for constant α]. Clearly,
in terms of complexity, no algorithms may update more
information. Importantly, the cost of this is standard for MC
simulations: 106 (Ising) to 108 (Potts and FKM) steps per spin
for importance sampling and a similar number for the weight
function generation.
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