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Strong higher-order resonant contributions to x-ray line polarization in hot plasmas
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We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and
krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove
these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis.
The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude
that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of
higher-order processes that were neglected in earlier work.
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The observation of x-ray polarization in emissions from
the Crab Nebula [1,2], with synchrotron radiation as its
origin, fueled a strong interest in the astrophysics community
for launching an x-ray polarimetry (XRP) mission [3–7].
X-ray Imaging Polarimetry Explorer (XIPE) has recently been
selected as one of three candidates for the next medium-size
satellite mission by the European Space Agency ESA. Its aim
is studying the anisotropies of astrophysical plasmas which are
found in the most extreme yet poorly understood sites in the
Universe [8,9]. Up to now anisotropic plasmas were found in
active galactic nuclei [10–12], pulsars [13], gamma-ray bursts
[14–16], neutron stars [17,18], and solar flares [19–21]. They
appear prominently also in the laboratory: in experiments with
strong lasers [22,23], magnetic cusps [24], z pinches [25],
and fusion devices [25–27] such as tokamaks [28–30] and
stellarators. The directionality of the electron-ion collisions
leaves an imprint in the polarization of the plasma x rays
[31–36]. Polarization measurements may therefore reveal the
presence and orientation of particle beams, magnetic fields
and, hence, provide information on the plasma heating and
confinement mechanisms [25–27] in instances where spatial
resolution is insufficient. In astrophysics, indeed, XRP is often
the only technique for deriving information on the geometry
of angularly unresolved sources [8,37].

Ideally, the XRP data should be analyzed with detailed
knowledge of the atomic polarization mechanisms. Until now,
however, no or little experimental information is available
for most atomic processes. Only very few studies of x-ray
polarization and angular distributions have been performed
for astrophysically relevant ions using electron beam ion traps
(EBITs) [38–46]. Other studies with EBITs [47–50], electron
accelerators [32,51,52], and storage rings [34,53] have focused
on heavy ionic systems. Moreover, the photoelectric gas
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polarimeter [4,54] of the XIPE mission will not resolve
individual x-ray transitions. This limitation is rather general,
even if high resolution detectors were used, since Doppler
shifts will most likely blur the signal. Thus, the polarization
signal will contain contributions from many transitions and
continuum radiation due to bremsstrahlung and recombination
of plasma electrons. This raises the needs for atomic data even
higher by demanding a systematic knowledge of polarization
of all contributing channels. The directional anisotropies and
polarizations of the continuum radiation due to bremsstrahlung
and radiative recombination are reasonably well understood
[32,34,52,55]. In contrast, these properties were not suffi-
ciently studied for bound-bound and resonant free-bound
transitions producing strong x-ray lines.

In this Rapid Communication we present a complete
measurement of emission anisotropies of iron and krypton
Kα x-ray lines, and model their polarization. The polarization
of x-ray lines from ions plays a strong role in respectively
astrophysical and tokamak plasmas [56–62]. Using an EBIT
we induced x-ray transitions by electron impact, resolving
K-shell dielectronic (DR) [63,64], trielectronic (TR), and
quadruelectronic (QR) [65] recombination channels in ions
of interest. While DR was known to dominate the Kα

x-ray line formation, the latter two (higher-order) channels
were previously considered insignificant for plasma modeling.
Contrary to expectations, we found that they strongly affect
the polarization of Kα x rays emitted by plasmas. This result
calls for more systematic experimental investigations of XRP
properties of atomic transitions, which are now known almost
exclusively from theory, that is in part known to deviate from
measurements [44,45,66,67].

In the first step of the resonant recombination, a free
electron is captured under the excitation of one or more bound
electrons, producing an aligned intermediate excited state. In
the second step, radiative relaxation yields an ion in a charge
state lower by a unit. In KLL resonances, the bound electron is
excited from the K shell to the L shell by recombination of a
free electron into the L shell. Resonant recombination is strong
in astrophysical plasmas [68,69]—it cools them and strongly
affects their charge balance [67,70–72]. Recombination rates,
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FIG. 1. Experimental setup: Ions are produced and trapped within a monoenergetic electron beam. Its energy was tuned into the
recombination resonances, and the subsequently emitted x rays were observed by two germanium detectors at 0◦ and 90◦ with respect to
the beam axis. Upper two-dimensional (2D) plot: Intensity of x rays along beam axis as a function of electron and x-ray energy. Lower 2D plot:
Difference in intensity between the two 0◦ and 90◦ detectors. Solid line: Projection of this difference. Some individual resonances are marked
exemplarily for the different resonant channels: DR, TR, and QR.

required for plasma modeling, are extracted from laboratory
measurements of DR x-ray yields. Such experiments rely on
theory predicting the x-ray emission asymmetries [73–80].
DR is sensitive to the Breit interaction [48,69,81–84] in both
the angular distribution and the linear polarization of the
emitted x rays [81]. These properties were measured only
for a few resonances in heavy ions [48,50,85,86], and no
systematic studies of the alignment in DR, TR. or QR were
reported.

The experiments were performed at the FLASH-EBIT [87]
with trapped ions in the He-like through O-like isoelectronic
sequences produced by successive electron-impact ionization.
The negative space charge of the monoenergetic electron beam
traps positive ions radially, while the axial confinement results
from the electrostatic potentials applied to the drift tubes
surrounding the beam (see Fig. 1). The x rays emitted by
trapped ions were observed by two germanium detectors along
and perpendicular to the electron beam axis while the electron
energy was scanned over the range of the KLL resonances. The
upper data inset of Fig. 1 shows the intensity of Kα x rays ob-
served by the first detector as a function of the electron and the
x-ray energies. The intensity enhancements at given energies
correspond to the recombination resonances. Moreover, the
difference between the x-ray intensities observed by the two
detectors, shown in the lower data inset, indicates anisotropic
x-ray emission.

The intensity of the Kα transitions is shown in the lower
panels of Fig. 2 as a function of the electron collision
energy. The x-ray background arising from the radiative
recombination and the ambient radiation was subtracted.

Using the evaporative cooling technique [88] we achieved
the collision energy resolution of 6.5 eV full width at half
maximum (FWHM) for iron and 11.5 eV for krypton, higher
than in any previous EBIT experiment, hereby uncovering a
large number of DR, TR, and QR resonances. We identified
them using calculations performed with the Flexible Atomic
Code (FAC) [89]. We included extended sets of configurations
with the full configuration interaction and mixing between
the states [77,83]. The resonant electron capture is described
using the distorted-wave formalism [89], and the full rela-
tivistic form of the electron-electron interaction, including
the Breit interaction term, is taken into account. We fitted
the experimental data with Gaussian profiles treating the
line centroids and their intensities as free parameters and
the resonance width fixed to the collision energy resolution.
Reliable fits of blended resonances were possible due to very
high counting statistics. The spectrum was calibrated with
two strong and well isolated lines using their theoretical
energies.

We corrected the data for the solid angles of the de-
tectors; their ratio in the krypton measurement �0◦/�90◦ =
0.1068 ± 0.0007 was obtained using the isotropic decay of
the [1s2s22p2

1/22p4
3/2]

J=1/2
state. The isotropic iron lines had

low intensities, and we used instead the TR transition exciting
the [(1s2s22p1/2)02p3

3/2]
J=3/2

resonance. The radiative decay
of this state has a theoretical intensity ratio of I (0◦)/I (90◦) =
1.55 which is not dependent on the Breit interaction [90]. The
measured ratio �0◦/�90◦ = 0.082 ± 0.003 was different due
to small changes of the setup.
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FIG. 2. X-ray intensities measured as a function of collision energy for iron (lower left panel) and krypton ions (lower right panel). The
solid lines and the solid areas correspond respectively to the x rays observed side on and head on to the beam axis. DR, TR, and QR resonances
are indicated by the gray atomic symbols of the initial ion on the upper panels and by the configurations of the intermediate states. The extracted
emission asymmetries R (solid circles) for the individual resonances and the corresponding FAC predictions (open circles) are shown on the
upper panels. Solid vertical lines indicate the resonances used for the intensity normalization.

From Fig. 2 it is apparent that most of the observed
resonant transitions are anisotropic. We quantify the emission
asymmetries by the ratios

R ≡ I (90◦) − I (0◦)

I (90◦)
. (1)

The effects of finite detector solid angles and ion trap extension
as well as cyclotron motion of the electrons [43,91] were
estimated to reduce the measured asymmetries only within
the present statistical error bars.

Emission asymmetries result from nonstatistical popula-
tions of magnetic sublevels in the intermediate excited states.
Since both electrons and ions are unpolarized, the population
distribution can be described by a finite set of alignment
parameters Ak (where k is even) that define the angular
distribution and polarization of the emitted x rays [35,92].
In the electric dipole (E1) approximation these two x-ray
properties are not affected by the alignment parameters with
k > 2. Since all the observed radiative transitions are mainly
of E1 type (other multipoles are smaller by five orders of
magnitude), we restrict the further analysis to effects related
to the alignment parameter A2 [38,93].

The angular distribution of the E1 transition from the
intermediate to the final state is [93,94]

I (θ ) ∝ 1 + A2α2
(
1 − 3

2 sin2 θ
)
, (2)

where α2 is an intrinsic anisotropy parameter determined by
the total angular momenta of the intermediate and the final
state, and θ is the emission angle with respect to the collision
axis [38,93]. According to (2), in this experiment we have

determined the product

A2α2 = − 2R

3 − R
. (3)

Within the leading E1 approximation the same product defines
the degree of linear polarization of x rays, emitted at the angle
θ with respect to the collision axis, as [92]

P (θ ) ≡ I‖ − I⊥
I‖ + I⊥

= R sin2 θ

1 + R cos2 θ
. (4)

The linear polarization is described by the intensities of the x
rays I‖ and I⊥ polarized along and perpendicular to the plane
containing the collision and x-ray emission axes. This equation
indicates that the linear polarization of characteristic radiation
emitted perpendicular to the collision axis coincides with the
emission asymmetry: P (90◦) = R.

We compare in the upper panels of Fig. 2 the experimental
emission asymmetries R with FAC and RATIP [95] predictions,
in which account was taken of resonance strengths and
unresolved radiative transitions into different final states. Both
calculations produced identical results. With few exceptions,
the agreement with the experiment is excellent, even for the
higher-order KLL resonances, known only since a few years
ago [65,69,83]. Moreover, due to this systematic agreement,
we also conclude that the theoretical prediction for the
emission asymmetry of TR resonance used for the solid angle
normalization is also experimentally confirmed.

The photoelectric [4] and Compton polarimeters [96], to
be used in plasma polarization diagnostics, cannot resolve
individual resonances. Thus, we calculate the cumulative
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FIG. 3. Charge state distribution in an optically thin iron plasma
(upper panel) and polarization of iron Kα x-ray line P (T ) (middle
panel) calculated with FAC as functions of temperature. The contri-
butions of hitherto neglected higher-order transitions and the Breit
interaction to the total polarization are shown in the middle and lower
panels.

effect of all KLL transitions on the polarization of x rays
as a function of temperature T . An optically thin plasma
is assumed, which is a good approximation for solar flares
and tokamaks. The temperature dependence arises due to
abundances of ions Ci(T ) with the charge state i, as shown
in the upper panel of Fig. 3. They are calculated with the
inclusion of KLL higher-order channels using FAC, following
the method presented by Gu [97,98]. We observed that not only
low-energy TR [72,99], but also KLL TR and QR significantly
enhance the total recombination rates, thereby modifying the
charge balance of the plasmas. The Ci(T ) with the resonance
strength Si

n of individual transitions and Ri
n, where n being the

resonance number, define the maximum polarization P (T ) as

P (T ) =

∑

i,n

Ci(T )Si
nR

i
n/

(
3 − Ri

n

)

∑

i,n

Ci(T )Si
n/

(
3 − Ri

n

) . (5)

The maximum polarization corresponds to maximally
anisotropic plasma electrons, i.e., all electrons propagating
perpendicularly to the observation direction. As shown for iron
in the two lower panels of Fig. 3, the contributions of hitherto
neglected higher-order channels reduce the polarization of Kα

line in the temperature range 500–1500 eV, which typically
appear in solar flares [100–102]. At these temperatures B-like
through Ne-like iron ions dominate. Therefore, TR transitions
in B- and C-like ions, populating the states [1s2s22p3

3/2]
J=2

and [(1s2s22p1/2)02p3
3/2]

J=3/2
, are among the strongest, and

they are responsible for this effect. We also point out the
importance of the Breit interaction for accurate plasma
polarization diagnostics. Verifying that these observations are
not only iron specific, we obtained a similar reduction due to
higher order in krypton at temperatures of over 2000 eV, which
commonly occurs in tokamaks. In this temperature range, we
note that the resonant capture process cross sections are a few
orders of magnitude higher than other atomic processes, also
leading to the polarized emission of the Kα x-ray line, namely,
electron-impact excitation in highly charged ions.

Our straightforward, but sensitive, experimental technique
reduces greatly the time required for such comprehensive
measurements compared to direct polarization measurements
which require a dedicated x-ray polarimeter [84,96]. The
present method is simple to implement and can be applicable
to all elements of astrophysical and fusion research interest.
Alignment resulting from many collisional processes, such as
radiative recombination, as well as electron-impact excitation
and ionization, can be studied with it. Ubiquitous but hitherto
unrecognized higher-order channels [65], that can be as strong
as the dielectronic process, should play an important role in the
charge balance determination [67]. Our results pinpoint that,
a too simplified approach, neglecting higher-order resonances
and relativistic effects in the calculations, can significantly
overestimate the plasma polarization. A systematic under-
standing atomic polarization requires both theoretical and
experimental knowledge of previously neglected higher-order
effects, as shown in this work for common types of astrophys-
ical and laboratory plasmas.
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C. Beilmann, P. Amaro, Z. Hu, S. Weber, S. Fritzsche
et al., Polarization measurement of dielectronic recombination
transitions in highly charged krypton ions, Phys. Rev. A 92,
042702 (2015).

[85] X. Ma, P. H. Mokler, F. Bosch, A. Gumberidze, C. Kozhuharov,
D. Liesen, D. Sierpowski, Z. Stachura, Th. Stöhlker, and A.
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S. Tashenov, Linear polarization of x-ray transitions due to
dielectronic recombination in highly charged ions, Phys. Rev.
A 91, 042705 (2015).
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Radiative electron capture into high-Z few-electron ions:
Alignment of the excited ionic states, Phys. Rev. A 73, 032716
(2006).

[95] S. Fritzsche, The RATIP program for relativistic calculations
of atomic transition, ionization and recombination properties,
Comput. Phys. Commun. 183, 1525 (2012).

[96] S. Weber, C. Beilmann, C. Shah, and S. Tashenov, Compton
polarimeter for 10–30 keV x rays, Rev. Sci. Instrum. 86, 093110
(2015).

[97] M. F. Gu, Radiative recombination rate coefficients for bare
through F-like isosequences of Mg, Si, S, Ar, Ca, Fe, and Ni,
Astrophys. J. 589, 1085 (2003).

[98] M. F. Gu, Dielectronic Recombination rate coefficients for
H-like through Ne-like isosequences of Mg, Si, S, Ar, Ca, Fe,
and Ni, Astrophys. J. 590, 1131 (2003).

[99] M. Schnell, G. Gwinner, N. R. Badnell, M. E. Bannister,
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