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Evolution of a superfluid vortex filament tangle driven by the Gross-Pitaevskii equation
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The development and decay of a turbulent vortex tangle driven by the Gross-Pitaevskii equation is studied.
Using a recently developed accurate and robust tracking algorithm, all quantized vortices are extracted from the
fields. The Vinen’s decay law for the total vortex length with a coefficient that is in quantitative agreement with
the values measured in helium II is observed. The topology of the tangle is then investigated showing that linked
rings may appear during the evolution. The tracking also allows for determining the statistics of small-scale
quantities of vortex lines, exhibiting large fluctuations of curvature and torsion. Finally, the temporal evolution of
the Kelvin wave spectrum is obtained providing evidence of the development of a weak-wave turbulence cascade.
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The full understanding of turbulence in a fluid is one of the
oldest yet still unsolved problems in physics. A fluid is said to
be turbulent when it manifests excitations occurring at several
length scales. Due to the large number of degrees of freedom
and the nonlinearity of the governing equations of motion,
the problem is usually tackled statistically by introducing
assumptions and closures in terms of correlators. This is the
case in the seminal work of Kolmogorov in 1941 based on the
idea of Richardson’s energy cascade, where energy in classical
fluids is transferred from large to small scales [1].

Superfluids form a particular class among fluids character-
ized essentially by two main ingredients: the lack of dissipation
and the evidence that vortex circulation takes only discrete
values that are multiples of the quantum of circulation [2].
Superfluid examples are superfluid liquid helium (He II) and
Bose-Einstein condensates (BECs) made of dilute alkali-metal
gases. Here the superfluid phase is usually modeled via a
complex field describing the order parameter of the system
and vortices appear as topological defects where the superfluid
density vanishes.

In three spatial dimensions those defects organize them-
selves into closed lines (or even open lines at the boundaries
if confining sides are considered) of different configurations.
Any vortex line point induces a velocity field which affects
the motion of any object in the system including the vortex
line itself. In general, even for a single closed vortex line,
the dynamics are chaotic and the problem does not have
analytical solutions. Superfluid turbulence regards the study
of the evolution of many vortex lines, a tangle, which induce
velocity field gradients in the fluid at several length scales.

Different mathematical models have been devised to mimic
the dynamics of a superfluid. An example is the vortex filament
(VF) model based on the Biot-Savart law that relates vorticity
and velocity [3]. This model is able to mimic the dynamics
of dense vortex tangles due to a relatively fast numerical
integration technique [4]. The VF model implicitly assumes
that the superfluid density is constant everywhere and the
vortex structure is a line with vanishing core. This assump-
tion is generally satisfied in He II where the characteristic
experimental setup sizes, and consequently the largest scales

of the motion, are order of 10−1 m and the vortex core is
of the order of 1 Å = 10−10 m. Moreover, since He II is in
its liquid phase, the compressibility effects can be usually
neglected. However, the VF model fails to describe vortex
reconnections. These are rapid changes in the topology of the
vortex configuration which occur naturally in a superfluid [5]
and are one of the main mechanisms responsible for the energy
transfer. Reconnections are thus introduced by some ad hoc
mechanism.

Another superfluid model that admits quantized vortices
and inherently possesses vortex reconnections is the Gross-
Pitaevskii (GP) equation that describes the evolution of the
superfluid order parameter ψ . In contrast to the VF model, the
GP equation allows density fluctuations in terms of phonons
and density depletion at the vortex cores. Although it has been
formally derived as a mean-field theory for a dilute boson
gas in the limit of zero temperature [6], it also qualitatively
reproduces He II dynamics. The vortex core size here is of the
order of the healing length ξ , the only intrinsic characteristic
length scale of the model; nowadays experimental techniques
are able to create BEC setups that are 101–102 healing
lengths where superfluid turbulence can develop [7]. In
turbulent superfluids, vortices constantly rearrange themselves
following reconnections into complex tangles with nontrivial
geometrical, algebraic, and topological properties [8]. At small
scales, helical excitations of vortex lines known as Kelvin
waves (KWs) are believed to be the ultimate mechanism of
energy dissipation via phonon emission [9]. To study such
dynamics, the GP equation has the advantage that no extra
modeling is needed (unlike the VF model). However, GP does
not provide direct information on vortices.

In this work we apply a numerical algorithm [10] to
accurately track the configuration of a turbulent vortex tangle
evolving according to the GP model. First, we show that after
the onset of turbulence, the vortex line density satisfies the
Vinen’s decay law [11] with a coefficient that is in agreement
with the values measured in He II. Different algebraic and topo-
logical quantities of the tangle are then measured. The tracking
allows for obtaining curvature and torsion distributions of the
vortex tangle. Finally, we perform a direct measurement of
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KWs during the dynamics and compute a KW spectrum that
appears to be consistent with L’vov-Nazarenko’s weak-wave
turbulence theoretical prediction [12].

The GP model for the condensate wave function ψ is

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + g|ψ |2ψ, (1)

where m is the mass of the bosons and g = 4πa�
2/m, with

a the s-wave scattering length. Madelung’s transformation
ψ(x,t) = √

ρ(x,t)/m exp [i m
�
φ(x,t)] relates the wave function

ψ to a superfluid of density ρ(x,t) and velocity v = ∇φ.
The quantum of circulation about the ψ = 0 vortex lines is
� = h/m. When Eq. (1) is linearized about a constant value

ψ = ψ̂0, the sound velocity is given by c = (g|ψ̂0|2/m)
1/2

,
with dispersive effects taking place at length scales smaller

than the healing length ξ = (�2/2m|ψ̂0|2g)
1/2

.
In the simulations presented here, the mean density is fixed

to the unity and the physical constants in Eq. (1) are determined
by the values of ξ and c = 1. The quantum of circulation
results in � = 4πc ξ/

√
2. Numerical integration of Eq. (1) is

performed using a standard pseudospectral code. We integrate
an initial condition characterized by the so-called Taylor-
Green flow [13], a well-studied flow in superfluid turbulence.
Symmetries are not enforced during the evolution and we use
resolutions of 2563 and 5123 uniformly distributed collocation
points with ξ = 2π/256 and ξ = 2π/512, respectively. Mirror
symmetries are broken during the evolution although traces of
such symmetries will be present even at very large times. With
units used in this work, the large eddy turnover time is of the
order of the unity.

The Taylor-Green flow initially contains a configuration of
unstable large-scale rings that develop to create a turbulent
tangle. Vortices can be spotted by plotting the low-value
isosurfaces of the density field as displayed in Fig. 1. Low-
density regions corresponding to vortex lines are plotted in red,
while density fluctuations (sound) are rendered in light blue.
The initial condition is visualized in Fig. 1(a), the complex
turbulent tangle at t = 12 in Fig. 1(c), and the final state
at t = 105, where few vortices are present with a lot of
sound in the background, in Fig. 1(e). We track the vortex
lines with a recently developed algorithm [10] that allows
for identifying separately each single line forming the tangle.
Vortex lines are followed using the pseudo-vorticity field
as in [14] and the exact vortex positions are obtained by
applying a Newton-Raphson method. The algorithm is robust
and accurate as it takes full advantage of the spectral resolution.
The intermesh values of the field ψ and its derivatives needed
for the Newton-Raphson method are directly evaluated by
Fourier transforms; the locations of vortices are thus found
with precision given the machine-ε (double in the present
simulations). See [10] for all technical details and a complete
validation of the algorithm. Figures 1(b), 1(d), and 1(f) show
the corresponding tracked vortices displayed in different colors
(see Supplemental Material [15]).

We focus first on the later evolution times. During the decay,
vortices radiate phonons at small scales creating a thermal bath
that exchanges energy and momentum with the vortices. This
process mimics mutual friction and leads eventually to the
total annihilation of vortex rings [16]. In superfluids such a

(b)(a)

(d)(c)

(f)(e)

FIG. 1. Left: Isosurfaces of density field at different times.
Low-density regions that correspond to vortex lines are plotted in
red, while density fluctuations (sound) are rendered in light blue.
Right: Corresponding tracked vortices. Different colors correspond
to different vortices. Snapshots taken at t = 0 [(a) and (b)], t = 12
[(c) and (d)], and t = 105 [(e) and (f)]. Resolution 2563.

decay is modeled by the Vinen equation [11] for vortex line
density L:

dL
dt

= −χ2
�

2π
L2, (2)

where χ2 is a constant of the order of unity. Its solutions
manifest a L ∼ t−1 behavior at long times: this power-law
decay has been named quantum turbulent decay and measured
in He II experiments [17] and VF numerical simulations [18].
In Fig. 2(a) we show the temporal evolution of L. It is worth
noticing that it grows at the initial stages: this is caused
by the instability of the initial Taylor-Green configuration
and the subsequent vortex stretching due to numerous vortex
reconnections. The data is compared with an estimation of
L obtained by computing the ratio between the volume of
points such that ρ(x) < 0.2 and the corresponding surface of a
perfect two-dimensional vortex profile. This latter method has
become a standard technique within GP numerical simulations
to compute the vortex line density [19]. Even if this technique
is able to capture the qualitative behavior of L, it fails to
grasp at long times the power law predicted by Vinen’s
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FIG. 2. (a) Temporal evolution of the vortex line density: tracked
data are plotted using blue circles, and volume estimation in a solid
red line. (b) Long time decay of �L (see text), together with Vinen’s
prediction �LVinen = [χ2

�

2π
(t − t0)]−1, setting χ = 0.65 (solid black

line). Resolution 2563.

equation. This is shown in Fig. 2(b) where the measured
�L(t) = [L(t)−1 − L(t0)−1]−1, setting t0 = 17, is compared
to Vinen’s prediction. We can explain this discrepancy by
reasoning that the vortex core size (proportional to the uniform
condensate state) varies in time because more and more sound
excitations are created by the superfluid decay, altering the
estimation of L by fixing the (non-time-dependant) density
threshold. The tracked data also allow for determining the
numerical constant χ2 = 0.65. This value is in remarkable
agreement with experimental values measured in He II in
the low temperature limit [11]. Between the time of maximal
vortex length (t ≈ 8.5) and t0 there is a faster decay that could
be explained by the quasiclassical turbulent decay law [20],
although the data (not shown here) do not allow for a precise
corroboration and further studies are needed.

From Fig. 1 and the movie provided in the Supplemental
Material, it is clear that the complexity of tangle first increases
and then decreases. The complexity of tangle can be measured
by computing the changes in some of its algebraic and
topological quantities [8]. We compute the total average
crossing C̄ = ∑

i �=j Ci,j , the total linking Lk = ∑
i �=j Lkij ,

and the writhe Wr = ∑
i Wri , by directly performing the line

integrals over the vortex ring(s) [8] as

C̄i,j = 1

4π

∮
Ci

∮
Cj

∣∣∣∣ (Ri − Rj ) · dRi × dRj

|Ri − Rj )|3
∣∣∣∣, (3)

Lkij = 1

4π

∮
Ci

∮
Cj

(Ri − Rj ) · dRi × dRj

|Ri − Rj )|3 , (4)

Wri = 1

4π

∮
Ci

∮
Ci

(Ri − R′
i) · dRi × dR′

i

|Ri − Rj )|3 . (5)

t
0 20 40 60 80 100

0

4

8

Nrings(t)/Nrings(0)
C̄(t)/C̄(0)

(a)

t
0 20 40 60 80 100

-10

-5

0

5

10 Lk
Wr
Hc/Γ2

(b)

(c) (d)

FIG. 3. (a) Temporal evolution of the (normalized) total number
of rings and crossing number. At t = 0, Nrings(0) = 128 and C̄(0) =
758. (b) Temporal evolution of the total linking Lk, writhe Wr and
center-line helicity Hc/�2. (c) Visualization of two linked rings at
t = 21. (d) Visualization of a ring with high Wr at t = 24.5.
Resolution 2563.

Here Ri corresponds to the points identifying the ith ring Ci ;
for the writhe number, Ri and R′

i correspond to two different
points of the same ring. In Fig. 3(a) we plot the total number
of rings Nrings and C̄ normalized by their initial values versus
time. It is worth noticing that the average crossing number
reaches qualitatively a maximum at the same stage of the
vortex line L maximum, while the ring number maximum
is slightly shifted forward in time. The former observation
follows the idea that vortex lines simultaneously stretch, bend,
and coil during reconnection events. The latter is due to the
fact that longer vortex rings continue to break into pieces
during the evolution until the tangle density becomes low
enough and the main vortex length dissipation mechanism
is given by sound interaction. We then focus on the center-line
helicity Hc/�2 = Lk + Wr [21] related to the helicity in
classical fluid dynamics, an important inviscid invariant. The
linking number Lk takes integer values and gives information
about the number of linked rings present in the system,
whereas the writhe takes real values and its contribution
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comes from self-linked (knots), an integer contribution, and
KWs [22]. Figure 3(b) shows the temporal evolution of
these three quantities. Initially, Lk = Wr = 0, as expected for
the Taylor-Green flow. Surprisingly, during the evolution Lk
becomes nonzero, indicating the presence of linked rings, such
as the ones displayed in Fig. 3(c) [23]. This is remarkable
as in the GP model sufficiently simple vortex configurations
usually decay by reducing their complexity [24]. Once the
decay is established, no linked rings are present and only
writhe contributes to Hc. Note that the writhe number is not
enough to determine whether a ring is self-linked (knotted)
or not. The center-line helicity, however, fluctuates about a
zero mean, an indication of the presence of KWs. KWs are
indeed apparent in Fig. 3(d) where an unknotted ring with high
Wr is displayed. KWs have already been indirectly observed
in the Taylor-Green flow during the turbulent stage [25], in
agreement with the large values of writhe observed around
t ∼ 10.

We now study statistical properties of some geometrical
quantities of the vortex filaments by exploring the time
behavior of the probability density functions (PDFs) of the
curvature κ and torsion τ of the entire set of vortices in
the system. In Fig. 4(a) we present the PDF of curvature,
normalized by its mean value, at different stages. The temporal
evolution of the mean curvature 〈κ〉 and its rms value κrms are
also displayed in the inset. We can observe that 〈κ〉 increases
rapidly at early stages and then almost saturates, an indication
that the average vortex size (inversely proportional to the
curvature) slowly decreases at later times. The rms value of
the curvature presents the same tendency with the exception
of peaks. These are evidence of reconnection events where
high values of curvature are found in localized regions. It is
worth noticing that the PDFs, rescaled by their mean curvature,
exhibit a relatively good collapse to a self-similar form. This

κ/ κ
10-1 100 101

P
D

F

10-4

10-3

10-2

10-1

100

t
20 40 60 80 100

0
0.5

1
1.5

2

κξ
κrmsξ

(a)

τξ
-60 -40 -20 0 20 40 60

P
D

F

10-4

10-3

10-2

10-1

100

101

t = 2.5
t = 5
t = 10
t = 105

τξ
10-1 100 101 102

P
D

F

10-3
10-1
101(b)

τ−3

FIG. 4. (a) PDFs of curvature κ normalized by their respective
mean values 〈κ〉 at different times [same legend as (b)]. The inset
displays the temporal evolution of the mean and rms values of κ .
(b) PDFs of torsion τ at different times. The inset emphasizes their
τ−3 power-law tail. Resolution 2563.

latter observation indicates a power-law behavior ∼κ1 at
small curvature values, while an exponentially decaying tail
is present at large curvature values. A similar behavior has
also been observed within the VF model [26]. In Fig. 4(b) we
plot the torsion PDFs at the same stages. The mean torsion is
always about zero and there is no evidence of any skewness in
the PDFs. The distributions’ tails show a universal power-law
behavior of τ−3 at all times, meaning that the second and
higher moments of the torsion diverge during the decay. The
same scaling appears in vortex tangles of random wave fields
that are solutions of the Helmholtz equation [27]. This may be
an indication that for one-time small-scale quantities, quantum
turbulent tangles can be interpreted simply as random vortices.

The large curvature fluctuations and the torsion fluctuation
about a zero mean are evidence of KWs at all scales
propagating on quasiplanar vortex rings. By exploiting the
accuracy of the tracking algorithm we are able to directly
detect KWs on those rings. Competing theories have been put
forward to statistically predict a power-law KW spectrum in
the form of nk ∼ k−α (here k is the Kelvin wave number)
and explain the energy transfer through KW scales. Vinen
et al. considered strong nonlinear interactions and derived by a
scaling argument the exponent αV = 3 [28]. On the other hand,
assuming weak nonlinearity (small amplitude KWs compared
to their respective wavelengths), Kozik and Svistunov [29] and
L’vov and Nazarenko [12] obtained the exponents αKS = 17/5
and αLN = 11/3, respectively, considering two different orders
of interaction. We can compute the KW spectrum of a ring R by
applying a Gaussian kernel of width αL in order to establish
the configuration of the unperturbed ring Rump. This can be
used to define the KWs on it as RKW(s) = R(s) − Rump(s),
where s ∈ [0,L] is the arc-length parametrization of the ring.
Being RKW a periodic set of three signals (one for each
spatial dimension), the KW spectrum is then defined as
nk = |R̂KW(k)|2 + |R̂KW(−k)|2, where R̂KW(k) is the Fourier
transform of RKW(s). In [10] we checked that this procedure
is able to capture well the KWs superimposed on a ring. Here
we compute the KW spectrum averaging over the spectra of
the 50 largest rings such that it has small fluctuations and it
always spans over two Kelvin wavelength decades. For the
Gaussian filter, we use the value α = 0.1; varying this fraction
weakly modifies the large-scale values of the spectrum, but
the data in the inertial range remain unchanged. The KW
spectra are shown for different times in Fig. 5(a). It is evident
that all accessible KW modes get populated at early times
due to reconnection events that trigger the cascade [30]. We
observe KW spectra exhibiting power laws with an exponent
independent of time where the best scaling is appreciated at
the time where the rings are the longest (4 � t � 7). To get
the best estimation of the power-law exponent, we repeated
the Taylor-Green decay in a simulation box twice larger; in
this new configuration the scaling range spans almost two
wave-number decades. In Fig. 5(b) we show the spectrum
at t ∼ 5: the observed power-law exponent is close to the
weak-wave turbulence predictions and seems to agree with
the L’vov and Nazarenko αLN = 11/3 one. This can be better
appreciated by looking at the compensated spectra with respect
to αLN and αKS shown in the inset. This finding supports the
result in favor of L’vov and Nazarenko’s prediction previously
obtained while studying the KW oscillations about a perfect
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FIG. 5. (a) Temporal evolution of KW spectra (averaged over
the 50 longest rings). Resolution 2563. (b) KW spectrum at t ∼ 5
(averaged over the 50 longest rings) for run at resolution 5123.
The dashed line displays the k−11/3 scaling. The inset displays the
respective k11/3 (solid blue) and k17/5 (dashed red) compensated
spectra.

straight line in the GP model [31]. We highlight that although
the weak-wave turbulence prediction for the KW spectrum is
formally derived for KWs on an isolated straight vortex line
using the VF model, it remarkably turns out to be valid in
a dense turbulent tangle also driven by the GP model. This

is certainly due to the fact that the predicted KW spectrum
was found for the longest rings. Small rings quickly lose their
energy by phonon radiation and exchange momentum with
sound waves. Both contributions are important to understand
dissipation of superfluids at very low temperature and further
studies are still needed to fully comprehend the relevance of
such mechanisms.

Tracking vortices in GP turbulence opens up a new way for
studying and understanding the topological configuration and
properties of quantum vortex tangles. Although unlikely, we
show that rings can link creating a local (in time and space)
fluctuation of the center-line helicity. It will be of great interest
to repeat a similar analysis setting where the mean helicity
of the flow is not zero, like the ABC flow introduced in [22]
where linking and self-linking processes could be substantially
enhanced. Overall, the results presented in this work confirm
that some predictions traditionally associated to superfluid
liquid helium become important in weakly interacting BECs at
low temperature described by the GP model. Nowadays BEC
experimentalists are able to create and track few vortices in
harmonic traps [32,33]. A controlled experimental setting with
a turbulent BEC, such as the one presented in this work, has
yet to be achieved but it should be realizable in the near future.
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