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Determining the interparticle force laws in amorphous solids from a visual image

Oleg Gendelman,1,2 Yoav G. Pollack,1 and Itamar Procaccia1

1Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
2Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel

(Received 19 March 2016; published 10 June 2016)

We consider the problem of how to determine the force laws in an amorphous system of interacting particles.
Given the positions of the centers of mass of the constituent particles we propose an algorithm to determine the
interparticle force laws. Having n different types of constituents we determine the coefficients in the Laurent
polynomials for the n(n + 1)/2 possibly different force laws. A visual providing the particle positions in addition
to a measurement of the pressure is all that is required. The algorithm proposed includes a part that can correct
for experimental errors in the positions of the particles. Such a correction of unavoidable measurement errors is
expected to benefit many experiments in the field.
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The impressive technological progress that allows an
accurate determination of the positions of particles in two-
and three-dimensional amorphous systems [1–5] opens up new
possibilities for improving the understanding of these versatile
and fascinating materials. For example in colloidal systems,
microscopic information at the single-particle level is obtained
with a laser scanning confocal microscope [6]. In this Rapid
Communication we propose a method to determine the force
laws governing interparticle forces, based on accurate visual-
izations of amorphous systems in which the provided informa-
tion is the positions of the centers of mass of all the involved
particles and the global pressure of the system. We will show
that this information is sufficient for an accurate determination
of the interparticle force laws even when the system contains
particles of different types [7–9]. The method does not require
an explicit knowledge of external forces; these are determined
as well by the proposed algorithm. The present method is
applicable, in fact, to any type of amorphous material as long
as the forces are central and frictional forces are absent. For
systems with frictional forces one needs a different approach
(cf. [10]).

At zero temperature the position of every particle in
a mechanically stable system is fixed. Not so in thermal
systems where particles suffer temperature fluctuations. For
the purposes of the present discussion we assume that one
can determine the average position of each particle by taking
sufficiently long time averages, but shorter than typical
diffusion times during which particles can escape out of
their local cages. We will denote the average positions of N

particles in a volume V as {r i}Ni=1. For a frictionless system in
mechanical equilibrium we assert that the interparticle forces
are central, directed along the interparticle vector distance
r ij ≡ rj − r i . The interparticle forces are assumed to depend
in an a priori unknown way on the scalar distance rij , i.e.,
f ij = f ij (rij ). We allow different types of particles interacting
via different force laws f AB

ij where the notation A,B runs over
the different species. No knowledge of the external forces is
required. We assume that the global pressure is known. Finally,
we assume that the interparticle forces vanish sufficiently
rapidly when rij exceed a few particle distances. At this point
we exclude three-body and higher order interactions.

In typical physical systems particles cannot be brought
infinitely close to each other, meaning that the forces between

them become repulsive and very large at some interparticle
distance rij � 0. We therefore acknowledge below the possible
existence of a singularity in the force laws, but insist that (i)
the singularity does not have to be at rij = 0, and (ii) the
position of the singularity may differ for each interacting pair
of species. It is quite remarkable, as we show below, that
it is not necessary to know the position of the singularity
a priori.

To exemplify the algorithm we consider a two-dimensional
system of N particles with c binary contacts enclosed in
a rectangular box. In two dimensions the starting point of
the algorithm is furnished by the mechanical equilibrium
constraints:

M|F 〉 = 0, (1)

where |F 〉 is a vector of the magnitudes of the interparticle
forces, followed by the x and y components of the external
forces.

|F 〉 =

⎛
⎜⎝

fij

f
x,ext
i

f
y,ext
i

⎞
⎟⎠. (2)

The external forces are assigned to particles that are close to
the boundaries; particles that are near the west or east walls
contribute an x component entry, whereas a y component entry
is contributed by particles near the north and south walls (cf.
Fig. 1). Only particles that are stuck in corners can have both
x and y entries. All the other possible external forces are
assumed to vanish and are not included in this vector; gravity
can be added with impunity but at present we disregard it. It
is important to stress that the algorithm proposed below does
not require a measurement of the external forces; they are a
part of the result of the calculation. Since there are c contact
forces and e external force entries, the length of the vector |F 〉
is (c + e).

The matrix M in Eq. (1) specifies the directions of the force
vectors. Denote the unit vector in the direction of the vector
distance between the centers of mass of particles i and j by
n̂ij . Then the entries of M display the projections n̂x

ij and n̂
y

ij as
appropriate. In addition, since the external forces are already
given in terms of x and y components, their entries in M are
simply 1 or −1.
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FIG. 1. An example of a typical configuration of an amorphous
solid made of 1000 particles of two diameters. The external forces
are those between the walls and the particles adjacent to the walls,
marked in red short lines. The force chains, made from the 20%
strongest forces, are indicated by black lines between particles whose
width is proportional to the strength of the interparticle forces. The
particle “diameters” used in this figure correspond to the minima of
the AA and BB interactions. The AB interaction force vanishes at
shorter distances so that a lot of AB pairs appear more compressed
than they really are.

The analysis below requires a subdivision of M into two
parts, M1 and M2.

M = (M1, M2), (3)

where M1 is the 2N × c matrix that accounts for the
interparticle forces and M2 is a 2N × e matrix that accounts
for the external forces.

Our aim here is to employ the mechanical constraints to
determine the force laws. To this aim the interparticle force
magnitudes are presented as Laurent polynomials:

f AB
ij =

�2∑
k=�1

aAB
k

(
rij − rAB

0

)k
, (4)

where �1 and �2 are the most negative and most positive
powers in the expansion, respectively. Below we will denote
the number of terms in the expansion as � ≡ �2 − �1 + 1. AB

denotes the interaction type. For example, in the case of a
binary system these will be (AA,BB,AB), as determined by
the nature of the particles i,j . rAB

0 are the positions of the
possible singularities around which we expand the forces for
each type of interaction. The coefficients aAB

k can be grouped
into a vector |a〉 of size n(n + 1)�/2. For a binary system its
transpose reads

〈a| = (
aAA

�1
· · · aAA

�2
aBB

�1
· · · aBB

�2
aAB

�1
· · · aAB

�2

)
, (5)

and the force vector can now be written as

|F 〉 =

⎛
⎜⎝

S|a〉
f

x,ext
i

f
y,ext
i

⎞
⎟⎠, (6)

where S is the appropriate c × n(n + 1)�/2 matrix containing
the Laurent monomials. An example of some of the compo-
nents of the S matrix for a minimal (unrealistic) expansion
with �1 = −1 and �2 = 1 in a binary system will read

S =

⎛
⎜⎜⎜⎜⎜⎝

(
r1 − rAA

0

)−1
1

(
r1 − rAA

0

)
0 0 0 0 0 0

0 0 0 0 0 0
(
r2 − rAB

0

)−1
1

(
r2 − rAB

0

)
0 0 0

(
r3 − rBB

0

)−1
1

(
r3 − rBB

0

)
0 0 0

...

⎞
⎟⎟⎟⎟⎟⎠. (7)

A solution of the coefficients of the Laurent expansion is not
unique without fixing one scale parameter. A natural choice
for such a parameter is the pressure in the system.

P = 1

2
(σxx + σyy) = 1

4

(
1

Lx

∑
i

f
x,ext
i + 1

Ly

∑
i

f
y,ext
i

)
,

(8)

where the extra half factor comes from the fact that the
summation is on all the forces, instead of just one side of
the box. We can now add the equation of the pressure to the
force balance constraints to get

(
M1 M2

0 1
4Lx

1
4Lx

. . . 1
4Ly

)⎛
⎜⎝

fij

f
x,ext
i

f
y,ext
i

⎞
⎟⎠ =

⎛
⎜⎝

0
...
P

⎞
⎟⎠. (9)

This can be converted to a form that conveniently groups all
the unknowns into one vector |u〉:

(
M1 S M2

0 1
4Lx

1
4Lx

. . . 1
4Ly

)⎛
⎜⎝

|a〉
f

x,ext
i

f
y,ext
i

⎞
⎟⎠ ≡ Y |u〉 =

⎛
⎜⎜⎝

0
...

P

⎞
⎟⎟⎠ , (10)

where Y is a matrix of size (2N + 1)[� · n(n + 1)/2 + e]. We
now multiply by YT from the left:

YT Y |u〉 = YT

⎛
⎜⎜⎝

0
...

P

⎞
⎟⎟⎠ . (11)
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Since 2N + 1 � �n(n + 1)/2 + e this equation should be well
posed. We can therefore invert with impunity to get

|u〉 ≡

⎛
⎜⎝

|a〉
f

x,ext
i

f
y,ext
i

⎞
⎟⎠ = (YT Y )−1YT

⎛
⎜⎜⎝

0
...

P

⎞
⎟⎟⎠. (12)

In fact, since the Laurent expansion is finite, the solution that
we seek cannot be exact. Therefore the analytic inversion,
Eq. (12), should be understood as a least-squares solution for
the coefficients of Laurent polynomials and the external forces.
In practice this is achieved by using the mldivide function in
MATLAB. We note in passing that it is not guaranteed that
the matrix YT Y has only nonzero eigenvalues. Nevertheless,
even when it has zero eigenvalues, the right-hand side of
Eq. (11) is orthogonal to the eigenfunctions associated with
these eigenvalues, and the inversion is still possible. A word
of caution: if we try to overfit and increase the number of
expansion coefficients and/or the number of external forces
such that 2N + 1 < �n(n + 1)/2 + e one may eventually run
into trouble, since the zero modes of the matrix YT Y may
cease being orthogonal to the right-hand side of Eq. (11). This
discussion can be clarified by presenting the solution for |u〉
as an expansion in the eigenfunctions �i of Y T Y :

|u〉 =
∑

i

〈�i |Y T |t〉
λi

|�i〉, (13)

where λi are the eigenvalues and

|t〉 ≡

⎛
⎜⎝

0
...
P

⎞
⎟⎠. (14)

We see explicitly that eigenfunctions that are orthogonal to
the vector YT |t〉 do not contribute to the solution |u〉. As long
as the zero modes fulfill this orthogonality condition, they
pose no problem. Such zero modes can arise from voids, and
from “rattlers,” i.e., particles within the voids, which do not
contribute to the pressure of the system. At this point we
comment that an extension of the present approach to three
dimensions amounts to adding external force in the z direction
and making the unit vectors in the matrix M three dimensional
with an obvious size adjustment of the matrix.

In the rest of this Rapid Communication we exemplify
the efficacy of the method by considering a two-dimensional
typical glass former, i.e., a Kob-Andersen model [11]. The
model employs two types of particles, A and B, interacting
via Lennard-Jones forces. Thus n = 2 and we have three types
of interactions, AA, BB, and AB. The simulation is done with
N = 1000 particles in a square box as presented in Fig. 1. The
walls of the box exert Hookean restoring forces on the particles
that attempt to cross them. By pushing the walls inwardly
we can compress the system from an initial low density
configuration to any desired density. This compression is done
quasistatically at zero temperature by performing a conjugate
gradient energy minimization after every infinitesimal step of
compression. In the simulations described below we employed
a Hookean force constant of magnitude 100 in Lennard-Jones
units.

FIG. 2. Comparison between the predicted (scalar) forces of
interaction (green circles), and the ones used in the simulation (black
squares). Panels (a), (b), and (c) present the AA, BB, and AB

force laws, respectively. In the present comparison the exact particle
positions are provided.

The smoothed Lennard-Jones potentials were chosen to be

U (r ij ) =

⎧⎪⎪⎨
⎪⎪⎩

4εij

[( σij

rij

)12 − ( σij

rij

)6 + C0

+C2
( σij

rij

)−2 + C4
( σij

rij

)−4]
, for rij

σij
� xc

0, for rij

σij
> xc.

(15)

Here rij ≡ |r ij |. The coefficients C0,C2,C4 are chosen in such
a way that the potential and its first and second derivatives
vanish at the cutoff xc = 2.5.

In the present variant of the model, 65% of the particles are
of type A and 35% of type B, with particle “diameters” and
interaction energy scales defined by σAA = 1, σAB = 0.8, and
σBB = 0.88 and εAA = 1, εAB = 1.5, and εBB = 0.5, respec-
tively. Lengths and energies are henceforth given in terms of
σAA and εAA, while time units are given by

√
mσ 2

AA/εAA . Both
the Boltzmann constant kB and the mass of the particles are
taken to be unity.

Obviously, these forces become singular at rAB
0 = 0.

Nevertheless it turns out that the Laurent expansion that we
use allows substantial freedom. First, the powers used in
the Laurent polynomial could be changed in a wide range
without major changes in the results with −19 � �1 � −3
and 3 � �2 � 13. Second, we find that as long as we set
rAA

0 � 0.88, rBB
0 � 0.74, and rAB

0 � 0.7 the final actual results
were almost invariant.

A typical comparison between the exact Lennard-Jones
forces and their Laurent approximants as obtained from this
algorithm are shown in Fig. 2.

Of course, the excellent agreement seen in Fig. 2 stems in
part from the fact that the particle positions were provided
with machine precision. In reality, an experimental visual of
a real system will contain errors in the particle positions. It is
useful therefore to assess the efficacy of the present algorithm
in situations where there exists a realistic error in the particle
positions, and if possible to offer a way to correct for such
errors.

To begin with, consider in Fig. 3(a), the predicted AB

force law for the very same system shown in Fig. 2(c) but
with the positions of the particles perturbed by a random jitter
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FIG. 3. An example of the effect of errors in particle positions
and the correction. Panel (a): the AB force as predicted from the
erroneous data. Panel (b): the same force as predicted after the initial
errors in the particle positions are corrected with the help of the
pseudo gradient-descent algorithm.

from a normal distribution with standard deviation of 10−4 in
Lennard-Jones units. The comparison now appears poor, with
considerable deviations between the input Lennard-Jones force
and its prediction. Similar errors appear in the other forces.
We must therefore come up with a method to correct for these
discrepancies. The procedure to correct the errors in particle
position is an iterative process composed of three steps: In the
first step we compute the force laws as shown in Fig. 3(a) from
the erroneous position data. Secondly we use these force laws
to compute the net force on each particle. Due to the errors in
force laws, the net forces are not annulled, and therefore we
can execute the third step, which is a pseudo gradient-descent
step where each particle is displaced in the direction of the

net force predicted for it. The amount of displacement of each
particle is chosen as the magnitude of the calculated net force
times the learning rate α. The learning rate is chosen somewhat
arbitrarily as always in gradient descent. It should be chosen
to have the largest value that still leads to convergence of
the procedure. The last step is a recalculation of the Laurent
expansion as detailed above.

The procedure converges, with the force laws obtained as
shown in Fig. 3(b) for the AB interaction. In fact, we could
increase the initial error in positions by an order of magnitude
and still the procedure converged. Needless to say, in actual
applications of the present algorithm to experimental data
one can encounter additional difficulties. One is the radii of
particles when they are not point particles—these are hard
to assess. Second is the possible polydispersity of particles,
giving rise to more “types” of interparticle forces. These issues
will have to be dealt with in the future.

In summary, we have presented a simple and practical
method to determine the force laws in amorphous systems
of particles whose center-of-mass positions (or its average
over time) are known. When the data is precise, the force
laws are determined to high accuracy. When the data is noisy,
we indicated how one can correct for the errors in particle
positions by implementing an iterative procedure in which the
“wrong” forces are used to correct for the positions of the
particles. This results in more accurate force laws but also
with an improved knowledge of the correct particle positions.
This is a very simple scheme, and it can be improved. For
example, one can use more than one realization for the same
system to improve even further the predicted force laws. This
and further improvements of the method will be discussed in
a follow-up publication.
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