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Barrier-induced chaos in a kicked rotor: Classical subdiffusion and quantum localization

Sanku Paul,!-* Harinder Pal,>" and M. S. Santhanam!-*
Yndian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411 008, India
2 Instituto de Ciencias Fisicas, Universidad Nacional Auténoma de México, Codigo Postal 62210, Cuernavaca, Mexico
(Received 30 March 2016; published 30 June 2016)

The relation between classically chaotic dynamics and quantum localization is studied in a system that violates
the assumptions of the Kolmogorov-Arnold-Moser (KAM) theorem, namely, the kicked rotor in a discontinuous
potential barrier. We show that the discontinuous barrier induces chaos and more than two distinct subdiffusive
energy growth regimes, the latter being an unusual feature for Hamiltonian chaos. We show that the dynamical
localization in the quantized version of this system carries the imprint of non-KAM classical dynamics through
the dependence of quantum break time on subdiffusion exponents. We briefly comment on the experimental

feasibility of this system.
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The interplay between disorder, in the form of chaotic
classical dynamics, and quantum localization continues to
attract attention due to a rich variety of its manifestations.
The kicked rotor (KR), in which a particle is periodically
kicked by an external field, is a paradigmatic example for
both chaos and localization [1]. From a dynamics point of
view, the classical KR, for large kick strengths, displays chaos
and energy diffusion [2]. The suppression of diffusion in the
quantum regime results from destructive quantum interference
and is termed dynamical localization (DL) due to its analogy
with Anderson localization [2,3]. Dynamical localization was
experimentally observed in an atom-optics-based realization
of the KR [4]. The emergence of quantum localization
in the variants of a KR has led to novel scenarios for
quantum ratchets [5], classical-quantum correspondence [6],
coherent quantum control [7], metal-insulator transition [8],
nonlinearity effects [9], and decoherence [10]. Recently, an
unusual classical “dynamical localization” was reported as
well [11].

A kicked rotor is a system that obeys the Kolmogorov-
Arnold-Moser (KAM) theorem [2] implying that the transition
from regular to predominantly chaotic dynamics happens
gradually by breakup of invariant tori upon variation of a
control parameter. We have obtained a good understanding of
diffusion and localization effects in the KR as a representative
KAM system [2]. Comparatively, much less is known about
chaotic systems that violates the assumptions of the KAM
theorem, the so-called non-KAM systems. Theoretical studies
of non-KAM systems such as the kicked oscillator [12], kicked
particle in potential well configurations [13,14] have revealed
an abrupt transition from integrability to chaos leading to
global transport due to the absence of invariant tori that
fragments phase space. In fact, experiments on non-KAM
systems have exploited this property to enhance or, in general,
control electronic transport in semiconductor superlattices [15]
and in coupled billiards in the form of two-dimensional
electron gas in an external magnetic field [16].
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In spite of global classical transport, quantum localization
can suppress transport. In chaotic systems, localization takes
various forms. In time-dependent systems such as KR, DL
is a purely quantum effect that disregards classical dynamics
beyond certain time scales called break time. In autonomous
chaotic systems like the atoms in strong magnetic fields and
coupled oscillators [17] semiclassical scarring localization
arises due to the influence of isolated unstable periodic or-
bits [18]. Partial barriers in classical phase space, cantori [19],
can also lead to localization as in the case of ionic motion in
a Paul trap [20] and in a special case of Bunimovich billiards
modeled as a discontinuous quantum map [21]. The classical
analog of the latter system violates the KAM theorem.

Generally, quantum-classical correspondence in non-KAM
systems has not been studied in detail and promises new
insights in view of the rich classical dynamical features.
Motivated by this, we report on a non-KAM classical feature,
subdiffusive transport induced by discontinuous potential
barriers rather than by cantori, and its relation to quantum
localization. We note that in Hamiltonian systems anomalous
transport arising due to the presence of sticky islands in chaotic
sea is generally superdiffusive in nature and subdiffusive
behavior is not seen [22].

Currently, quantum localization in disordered media with
correlated disorder is vigorously investigated, both in theory
and experiments [23]. Thus, our results are also relevant in
the broader context of the continuing interest in anomalous
diffusion [24] and localization properties of wave phenomena
in different areas [25].

The dimensionless Hamiltonian for a kicked rotor in
potential barriers is

2 o0
H= % +V(g) +ecos(q) Y 8(t—n), (D

n=—00
where Hy = % + V(gq) is the unperturbed system with

V(g) = Vol0(g — R —¢) —0(q — Rt —b—¢)] (2)

being the stationary potential depicted in Fig. 1(a), 6(-) is
the unit step function, V) and b are the height and width of
the potential barrier, respectively, ¢ is the kick strength, ¢
is the phase of the kicking field, and R = w/A is the ratio
of width of the well to the wavelength of the kicking field.
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FIG. 1. (a) Schematic of the stationary potential V (¢g) with¢ = 0
and A = 2. Periodic boundary conditions imposed at positions A
and B. The regions below and above V; are denoted by I and II.
(b)-(e) display the stroboscopic sections. The barrier regions are
marked as (red) rectangular boxes and the well region is hatched
(blue). The parameters are Vy = 0.5, ¢ = 0.0, and ¢ = 0.25. The
width of the well region w is (b) 27, (¢) 1.6m, (d) m, and (e)
0.4r.

Physically, Eq. (1) represents a kicked particle in a potential
V(g) with periodic boundary conditions applied at positions
q = £(w + b)/2. Throughout this Rapid Communication, we
choose ¢ =0, w+ b =27, A =27 and consequently, 0 <
R < 1. For convenience, we denote the regions below and
above the barrier height Vj) as I and II. In general, the dynamics
of the system is determined by Vj, €, and either R or b. The
classical dynamics can be explicitly reduced to a map on a
suitably chosen stroboscopic section [26].

If Vo =0, then Eq. (1) reduces to a kicked rotor on an
infinite cylinder. For ¢ = 0, itis a classically integrable system.
If Vy > 0, the potential V(g) is nonanalytic and violates the
assumptions of the KAM theorem. Thus, when external kicks
are introduced with ¢ > 0, KAM tori that partition the phase
space are destroyed, even if ¢ is arbitrarily small, leading
to chaotic dynamics. Figures 1(b)-1(e) show stroboscopic
sections obtained by evolving the classical map for kick
strength ¢ = 0.25 with several values of w. The nature of
dynamics can be understood in terms of that of the kicked
rotor [Vp = 0 in Eq. (1)]. We recall that for identical value
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of kick strength, and indeed for any value of ¢ <« 1, the
phase space of the kicked rotor is covered with invariant tori
Ixr(w) characterized by winding number w. In the presence
of barriers, a particle initially on a kicked rotor tori Igr(w)
would continue to evolve on it until interrupted by the barrier
discontinuities at ¢ = —w/2 or w/2. This results in reflection
(g = q,p — —p) or refraction (¢ — q,p — £/ p? —2Vy)
of the particle and it hops onto another tori I’kg(w’), with
® # «'. Bvery barrier encounter leads to tori hopping. As
n > 1, multiple barrier encounters and the resulting tori hop-
ping ensure that the autocorrelations decay quickly, resulting in
chaotic dynamics [Figs. 1(c)-1(e)] and diffusion of the energy
absorbed from periodic kicks. This is one manifestation of
non-KAM type dynamics in which barriers play a crucial role
in the genesis of chaos and energy diffusion.

However, if the condition =R + ¢ = nl,l € Z issatisfied
in region I, then Ixr(w) are preserved even with the barrier
encounters [14]. This leads to KAM-like tori in region I as
shown for b = 0.0 in Fig. 1(b). It can be shown that the
dynamics is completely hyperbolic if R < 0.5 and ¢ = 0 [13].
A physically interesting scenario for energy transport arises
if [ ¢ Z leading to non-KAM chaos in region I, and region
II displays invariant tori but punctured by the discontinuities
in the potential. In the rest of the Rapid Communication, we
choose parameters (listed in Fig. 2) satisfying these conditions.
This choice ensures an absence of complete dynamical
barriers and cantori are not effective as barriers to trans-
port. Under these conditions, as kicks impart energy, global
subdiffusive transport becomes possible since the chaotic
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FIG. 2. The growth of mean energy (E) vs n for parameters Vy =
0.5, w = m, and ¢ = 0.25. The two solid lines (green and red) fit the
linear regimes in the log-log plot. The insets display the stroboscopic
sections at the 25th kick (A) and at the 1500th kick (B). (b), (c) The
dependence of 1, and p, on w.
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particles in region I penetrate through the punctured tori into
region II.

The classical mean energy growth is subdiffusive and
displays two distinct power-law regimes within experimentally
accessible time scales. Figure 2(a) illustrates classical mean
energy (E) as a function of time (in units of kick period)
for the same set of parameters as in Fig. 1(d). The initial
condition is an ensemble of points with —w/2 < g < w/2
and p = 0. The first subdiffusive regime in Fig. 2(a) and
the accompanying stroboscopic section (inset A) show that
most of the particles are physically confined to the well in
region I. Note that the mean energy growth can be described
by (E), ~ Din*', where D is the diffusion coefficient and
0 < w1 < 1isthe exponent. This subdiffusive behavior can be
attributed to correlations. In general, the phase space in region
I can be mixed [intricate chain of islands in a chaotic sea as
in Fig. 1(c)] for R > 0.5 or completely chaotic for R < 0.5
if Vo > 1. When R > 0.5, the energy growth is suppressed
significantly due to the correlations induced by a combination
of factors: (i) dynamics on [ , (@) between successive tori hops,
(ii) stickiness in the vicinity of the chain of islands, and (iii)
slow diffusion through the punctured tori in region II. When
R < 0.5, even though the phase space appears chaotic due to
tori hops, correlations of type (g,q,+n) o N~V exist because
the evolution between two successive barrier encounters is
confined to a kicked rotor tori [, (w). By tuning the number
of barrier encounters in one kick period we can enhance
or suppress correlations. As w — 0, the barrier encounters
and tori hops in one kick period increase and hence p; — 1
[see Figs. 2(b) and 3(a)], the quasilinear diffusion limit [1,2]
expected under conditions of predominant chaos.

We formally define 7; = (D,/ D)/ 2=11) a5 the time at
which the first subdiffusive regime characterized by {D1, 11}
crosses over to the second characterized by {D;,u»}. The
second regime begins after the particles enter region II for
n > 11, as seen in inset B in Fig. 2. The energy growth is
subdiffusive with (E), ~ Dyn*?, 0 < uy < 1. In region II,
we expect the phase space to display kicked rotor tori I, (@)
punctured by the discontinuities in V(g). Note that one
complete crossing of a barrier of width b > 0 involves two
refractions, at say, ¢ = w/2 and ¢ = (w/2)+ b. When a
particle with energy E, enters the above-barrier region and
assuming that it does not suffer any kick while transiting this
region, the net change in position between the last and the
next kick is denoted by Ag. If Ag, represents a similar
quantity for the kicked rotor (Vy = 0), we can show that
8q = |Aq — Mgy | = b(B — 1), where f = (1 — Vo/Eo)~"/2.
Clearly, if Eg = Vo, then 8g > 0 and if Ey > V we have
8g — 0. This difference leads to torus hopping. Further, as
8q # 0, it translates into momentum difference ép = |Ap —
Ap,..| = €lsin[gr — (p/|p])dq] — sin gi| at the position of the
next kick gx. Thus, if Ey 2 Vp, the invariant tori do not survive
due to large tori hopping induced by the discontinuities. This
appears as chaotic dynamics in region II in inset B of Fig. 2.
On the other hand, if Ey > V), then invariant tori are largely
preserved with minor dispersion and hence the tori hopping is
a negligible effect. A similar result can be obtained even if the
particle suffers kicks while transiting the barrier region. For
n > 11, ignoring a short transient, multiple barrier-induced
refractions interspersed with dynamics on [, (w) leads to
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FIG. 3. Subdiffusion exponents w; (a) and u, (b) plotted as a
function of w and e. Subdiffusion occurs over a wide range of
parameter values.

classical energy growth that is slower than normal diffusive
growth. This regime lasts until a time scale of 7, ~ 10%r;
(in units of kick period) by which time the particles evolve
to the vicinity of resonance structure at |p| = 27. This can
be thought of as long-lasting since 7, is much longer than
the experimentally relevant time scale with atom optics as
the test bed. This subdiffusion mechanism has a weak though
systematic dependence on w. As Figs. 2(c) and 3(b) reveal,
1o ~ 0.2 to a first approximation.

To the best of our knowledge, long-lasting subdiffusion in
chaotic Hamiltonian systems has not been reported before,
though it was observed in the quantum dynamics of nonlin-
ear disordered systems [27] and phase randomized, double
kicked rotor [28]. Generally, anomalous diffusion in chaotic
Hamiltonians is of the superdiffusive type due to stickiness or
the presence of accelerator modes in phase space [19,22,29].
Further, for bounded and ergodic systems, superdiffusion
follows as a consequence of Kac’s theorem [19,30] which
guarantees that the mean recurrence time exists. However, the
phase space of the system in Eq. (1) being an infinite cylinder,
is not bounded and Kac’s theorem does not strictly apply.
The subdiffusion induced by the potential barriers combined
with unbounded phase space is associated with diverging mean
recurrence times (not shown here).

Next, we focus on the quantum regime of the Hamiltonian
in Eq. (1). The period-1 Floquet operator for this kicked system
can be obtained as

~ ie i[p? -
U =exp —h—cosq exp 7 7+V , (3

2 . N 2
where i, = % is the scaled Planck’s constant and E, = ’;—;}2

(T is the kicking period). In this, ¥(g,n) = U”l/f(q,O) for any
arbitrary initial wave packet ¥(g,0). The classical limit will
correspond to taking i, — 0 keeping & constant. First, we
solve the Schrodinger equation for the unperturbed system,
Hou,, = AUy, using momentum eigenstates as the basis,
ie., un(q) = (\/4271) ZP am,pe~P9, p =0,£1,£2, ..., where
am,, are the expansion coefficients. The Floquet operator
written in the basis of u,, is

i A p—p/ €
Upn = €™y " ar an (=) 1'J|p-p/|<h> )

p.p s
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FIG. 4. (a) The classical (black) and quantum (red) mean energy
growth with parameters V) = 0.5, ¢ = 0.0, w = m, ¢ =0.25, and
hy = 0.0067. (b) The nearest neighbor spacing distribution of
Floquet phases (histogram) and Poisson distribution (solid line).
(c) Two Floquet states in the unperturbed basis (in semilogarithmic
scale).

in which J;(-) is the Bessel functioE of order /. By numerically
solving the eigenvalue equation U&; = €'%&;, we obtain the
Floquet phases ¢; and Floquet states &; fori = 1,2,3,...,N,
where N is the number of basis states (eigenstates
of H())

We evolve an initial wave packet ¥(¢,0), chosen to be
the ground state of Hy, under the action of U and its quantum
mean energy (E) is displayed in Fig. 4(a). Clearly, the quantum
(E) does not follow the subdiffusive behavior of the classical
dynamics beyond a certain time scale and instead saturates
indicating a localization effect in energy basis. From the
point of view of random matrix theory, this system falls in
the class of circular orthogonal ensemble (COE). Although
we expect Wigner distribution for the spacings of Floquet
phases, quantum localization of the Floquet states leads to
uncorrelated spacings and Poisson distribution. This is shown
in Fig. 4(b) and is similar to that of the kicked rotor with
connections to Anderson localization [3]. The Floquet states in
the unperturbed basis, shown in Fig. 4(c), display exponential
localization. As iy — 0, all the Floquet states are localized
although the localization lengths diverge as Ry @) w being
one of the subdiffusion exponents, and the spectral statistics
transits from Poisson to COE distribution.

We discuss how the non-KAM nature of the Hamiltonian in
Eq. (1) manifests in the quantum domain. As shown before, the
classical subdiffusion of energy arises due to hopping between
KR tori I, (w) or punctured tori, a feature facilitated by the
discontinuous potential barriers. The time scale over which the
quantum dynamics follows classical is related to the inverse of
mean spacing of the Floquet spectrum. Assuming that the
mean level density p(E) of the unperturbed system near the

ground state is proportional to E~!/2, we obtain an estimate
for quantum break time n* to be
1/2—pwi)
D:
n* ~ Ja| —— , 5

where i = 1 or 2 corresponding to any one of the two classical
subdiffusive regimes and « is a constant. Significantly, the
non-KAM nature of the system leaves its imprint in the
quantum domain through the dependence of n* on diffusion
exponents w or u,. For relatively large values of i, n* < 1
and the scaling exponentis —2/(2 — ) depending on the first
classical subdiffusive regime with exponent ;. As h; — 0,
we have n* > 11 and the scaling exponent is —2/(2 — u»),
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FIG. 5. Scaling of quantum break time with the scaled Planck’s
constant A for two well widths w. The parameters are Vy = 0.5, ¢ =
0.0, and ¢ = 0.25. The solid lines and dashed lines have slope
—2/(2 — ) [see Eq. (5)], with u = p; and p = u,, respectively
(see text for details).

corresponding to the second classical subdiffusive regime
with exponent . As shown in Fig. 5, a log-log plot of
n* against h; shows linear behavior and agrees well with
the theoretically expected slope —2/(2 — ), u = 1 or ws.
This is shown for two sets of parameters. Thus, by varying
either w or A, the classical diffusion rate can be controlled
leading to a tunable quantum break time n*. As hy — 0,
the quantum energy diffusion rate and the length of diffusive
time scale n* can both be controlled by manipulating system
parameters.

In the limit of & > 1, the system displays predominantly
chaotic dynamics. The potential barriers play only a marginal
role in the genesis of chaos and we obtain a single normal diffu-
sion regime similar to the case of the kicked rotor. As would be
expected, the quantum dynamics displays dynamical localiza-
tion. The central results discussed here, barrier-induced chaos
and subdiffusive dynamics and its quantum manifestations,
would be valid for a larger class of kicked particles placed in
barrier-type potentials of various configurations. We comment
on the experimental feasibility of this system. The kicked rotor
was realized using cold atoms in optical lattices created by two
counterpropagating pulsed laser beams [4]. To experimentally
realize a kicked particle in potential barriers, an additional set
of laser beams, that are always on, can be used to create a
confining potential with large barrier height. A periodically
kicked particle in a single confining potential barrier was
experimentally realized nearly a decade back [31]. While this
setup could be extended, it is also possible to achieve this using
semiconductor heterostructures [15].

In summary, we study the classical and quantum dynamics
of a kicked particle interacting with a discontinuous potential.
In this non-KAM system, chaos and subdiffusion are induced
by the encounters of the particle with the discontinuous
barriers. The classical mean energy displays more than two
distinct regimes of subdiffusive growth. In the quantum
domain, the Floquet states are localized in the energy basis.
Significantly, the non-KAM nature of the system manifests
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in the quantum regime through the dependence of quantum
break time on subdiffusion exponents, leading to a tunable
break time. These results can be generalized for various
discontinuous potential configurations.
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