
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 93, 060105(R) (2016)

Field-induced superdiffusion and dynamical heterogeneity

Giacomo Gradenigo,1,2 Eric Bertin,1,2 and Giulio Biroli3,4
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By analyzing two kinetically constrained models of supercooled liquids we show that the anomalous transport
of a driven tracer observed in supercooled liquids is another facet of the phenomenon of dynamical heterogeneity.
We focus on the Fredrickson-Andersen and the Bertin-Bouchaud-Lequeux models. By numerical simulations
and analytical arguments we demonstrate that the violation of the Stokes-Einstein relation and the field-induced
superdiffusion observed during a long preasymptotic regime have the same physical origin: while a fraction
of probes do not move, others jump repeatedly because they are close to local mobile regions. The anomalous
fluctuations observed out of equilibrium in the presence of a pulling force ε, σ 2

x (t) = 〈x2
ε (t)〉 − 〈xε(t)〉2 ∼ t3/2,

which are accompanied by the asymptotic decay αε(t) ∼ t−1/2 of the non-Gaussian parameter from nontrivial
values to zero, are due to the splitting of the probes population in the two (mobile and immobile) groups and to
dynamical correlations, a mechanism expected to happen generically in supercooled liquids.
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Superdiffusion in the presence of an external driving is one
of the most intriguing results of microrheological numerical
experiments in supercooled liquid [1–3] and of experimental
studies on glassy granular media [4]. In supercooled liquids
the mean square displacement (MSD) of a tagged particle
displays a characteristic intermediate plateau of increasing
length when the temperature is lowered, due to caging, while
asymptotically the diffusion is always Fickian, 〈x2(t)〉 ∼ t .
The surprising finding of [1,2] is that, notwithstanding the
slowing down of the dynamics, at low enough temperatures
the action of an external force on a probe particle produces
a superdiffusive spreading of the probability distribution of
displacements: σ 2

x (t) = 〈x2
ε (t)〉 − 〈xε(t)〉2 ∼ tγ , where γ > 1

and ε is the force acting on the probe. This anomalous behavior
of the MSD around the drift is really a landmark of non-Fickian
diffusion: in the case of Fickian diffusion even the MSD
around the drift grows linearly in time, σ 2

x (t) ∼ t , as does
the unbiased one. What is the mechanism which triggers
a faster-than-Fickian diffusion within an environment with
large and broadly distributed relaxation times? At first sight
this looks indeed as a quite counterintuitive behavior. The
goal of this paper is to provide a clear-cut explanation of
the mechanism triggering anomalous diffusion, which in the
models studied will appear as a preasymptotic effect, and to
show that this transient anomaly in the dynamics is intimately
related to dynamical heterogeneities and to the breaking of the
Stokes-Einstein relation.

The Stokes-Einstein (S-E) relation connects the diffusion
coefficient D(β) of a probe to the relaxation time τeq(β) of
the sample as D(β)τeq(β) = const [5]. The physical reason for
such a relation is that simple liquids are characterized by a
single relevant time scale τD: this time scale characterizes
the behavior of the system at all scales, from the single
molecule diffusion, D(β) ∼ τ−1

D (β), to the relaxation of the
sample τeq(β) ∼ τD(β), which explains the Stokes-Einstein
relation. Close to the glass-transition temperature Tg several

time scales appear in the dynamics of the system. In this regime
the characteristic diffusion time τD(β) ∼ D−1(β) decouples
from the relaxational time, τeq(β) � τD(β), so that one also
finds D(β)τeq(β) �= const [6]: this is the Stokes-Einstein
violation. A particularly instructive and useful rationaliza-
tion of this phenomenon was obtained studying kinetically
constrained models (KCM) [7–15]. These are lattice models
where a mobility field with local update rules subjected to
kinetic constraints reproduces the sluggish and heterogeneous
dynamics of glasses. The heterogeneous nature of space-time
correlations is explained in KCMs in terms of defects dynam-
ics. The activity field of KCMs is characterized by rare mobility
defects which, wandering around in the system, trigger the
relaxation of the whole sample. We show here that this
very same mechanism also leads to the anomalous transport
properties observed in [1,2]. Looking at the motion of a driven
intruder, the heterogeneous nature of the medium becomes
manifest only in the out-of-equilibrium fluctuations σ 2

x (t);
this is the case also for the diffusion on hierarchical lattices
discussed in [16], for some continuous time random walk
(CTRW) models [17], and for the field-induced superdiffusion
of a tracer in a crowded medium discussed in [18].

We study the driven dynamics of a tracer particle in
two kinetically constrained models: the one-dimensional
Fredrickson-Andersen (FA) [7–9] and Bertin-Bouchaud-
Lequeux (BBL) models [10,13]. Both have been studied and
used as models of supercooled liquids. The local structure in
FA is described by a binary variable ni ∈ {0,1}: sites with
ni = 1 are active while those with ni = 0 are inactive. The
update of ni is possible only when at least one of its neighbors is
already active, namely, one needs ni+1 = 1 or ni−1 = 1. When
possible, the update 1 → 0 is always accepted, while 0 → 1
takes place with probability e−β , where β is a dimensionless
inverse temperature. The dynamics obeys detailed balance,
with an energy function E = ∑

i ni , so that the equilibrium
state has no correlations between sites. The FA model exhibits
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nontrivial correlated dynamics for β � 1. The concentration
of active sites is c = 〈ni〉 = [1 + eβ]−1. Lengths are in units
of the lattice spacing which we set to unity. The BBL model
is described by a continuous variable: the density of mass
ρi ∈ [0,∞). The elementary step of the BBL dynamics is the
simultaneous update of the density in a couple of neighboring
sites ρi and ρj : ρ ′

i = q(ρi + ρj ) and ρ ′
j = (1 − q)(ρi + ρj ),

with q ∈ [0,1]. The update is possible only when the densities
of the two sites fulfill the constraint (ρi + ρj )/2 < ρth = 1:
the BBL is a kinetically constrained mass transport model.
The random variable q, which introduces stochasticity in the
dynamics of the density field, is extracted from a distribution
ψμ(q) characterized by the parameter μ. In the present study
we consider the value μ = 0.3, which produces a diffusive
dynamics of the mobility defects, which are represented by the
active links where the kinetic constraint is fulfilled. Details on
the dynamics of the mobility defects for different values of μ

can be found in [10,13]. In the BBL model the definition of
active links is naturally encapsulated into the definition of the
model. In the FA model a link between two sites i and i + 1
is active when both are active, ni = ni+1 = 1.

Following [11,12] we model microrheological experiments
by assuming that the driven tracer can only move between
two adjacent sites when these form an active link. Since the
updates of ni in FA and of the mass field ρi in BBL do not
depend on the position of the probe, the latter behaves as a
ghost particle: it is influenced by the background but has no
influence on it. In order to induce a directed motion of the probe
we unbalance in both models the probability of its forward
and backward displacements: p→

ε = 1/2 + ε, p←
ε = 1/2 − ε,

with ε ∈ [−1/2,1/2]. The dynamics of a ghost probe in both
the FA and the BBL can be then fully understood in terms
of the mobility defects dynamics [8,11]. The dynamics of the
probe is ruled by two relevant time scales: the mean persistence
time, which is the time the probe has to wait on average before
being hit for the first time by a defect, and the average exchange
time, which is the time between two successive meetings with
a defect. The difference between these two time scales is
both the signature of heterogeneous dynamics and the key
ingredient of the anomalous transport of a probe. There is only
one difference for the defect dynamics of the two models:
while in the BBL the diffusion coefficient of defects does not
depend on their concentration c, in the FA model the diffusion
of mobile defects depends on the temperature and hence on
their concentration. Henceforth, in order to present a unified
discussion of the two models, time is measured in the units of
τ0, which is the time scale on which a mobile defect moves one
step (1/c and 1 for the FA and the BBL models, respectively).

Assuming that defects are independent random walkers the
dynamics of the probe can be described as a CTRW [11].
In this approximation the histogram of probe displacements,
which corresponds to the self part of the van Hove function
Gs(r,t) = 〈δ(r − [x(t) − x(0)])〉 (the angular brackets indi-
cate the average over different trajectories), can be exactly
written with the following formula [11]:

Gs(x,t) = P(t)δ(x) +
∫ t

0
p(t − s)P1st(x,s)ds. (1)

In Eq. (1) the probability of persistence times is denoted by
p(t − s), P1st(x,s) is the propagator for trajectories which start
with a jump event (the subscript 1st indicates that at least one
displacement took place) and P(t) is the persistence function,
i.e., the probability that a probe is not hit by a mobility
defect for a duration of t when the observation starts at an
arbitrary time. From Eq. (1) is clear that the population (or the
probability) is split into two groups: probes which at time t

have already started to move and probes which at t are still
at rest (we refer to a population of probes since we can think
of having many probes evolving in parallel and starting from
random positions). Since in both FA and BBL models defects
behave as independent random walkers, persistence equals the
survival probability P(t) = e−c

√
t , with c the concentration

of walkers [19]. The distribution of persistence times p(t)
which enters Eq. (1), is obtained as p(t) = −dP(t)/dt ∝
ce−c

√
t /

√
t . The distribution of exchange times, which is in

turn proportional to −dp(t)/dt [12], reads to leading order
in c as ψ(τ ) ∝ ce−c

√
τ /τ 3/2. The representation of the probe

dynamics as a CTRW is very insightful and will be our
main tool to understand the relationship between dynamic
heterogeneity and anomalous diffusion of a driven tracer. For
both the FA and the BBL models the relaxation time scale τeq is
defined by the stretched-exponential cutoff of the persistence
and exchange time distributions: τeq/τ0 = c−2.

We now present our numerical results about anomalous
diffusion in the FA and BBL models, which are shown in Figs.
1 and 2. By looking at Fig. 1 we notice that a driven probe
(ε = 1/2) has a linear drift in both FA and BBL, but at the
same time the non-Gaussian parameter αε(t) for noncentered
distributions signals important deviations from Gaussianity up
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FIG. 1. Data collapse for the non-Gaussian parameter αε(t)
obtained plotting 1 + αε(t) vs t/τeq for the different concentrations
of mobility defects (different symbols) in (a) FA and (b) BBL. The
continuous straight line emphasizes the behavior αε(t) ∼ t−1/2 in
the preasymptotic regime. The different concentrations of mobility
defects are c = 10−2, 6.7 × 10−3, 5.2 × 10−3, 3.8 × 10−3, 2.8 ×
10−3, and 1.9 × 10−3 for the FA model; c = 2 × 10−1, 1.1 × 10−1,
5.1 × 10−2, 1.6 × 10−2, 2.7 × 10−3, and 2.8 × 10−4 for the BBL
model. Also shown is the drift of the probe in (c) FA and (d) BBL;
data are at the same concentrations of mobility defects of (a) and (b).
Collapse is obtained plotting 〈xε(t)〉/〈xε(τeq)〉 vs t/τeq.
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FIG. 2. Mean square displacement around the drift σ 2
x (t) for a

driven probe (ε = 1/2) in (a) FA and (b) BBL. Different symbols
represent different concentrations c of the mobility defects, which
are, respectively for the two models, the same as in Fig. 1. Collapse
of the curves is obtained by plotting σ 2

x (t)/σ 2
x (τeq) vs t/τeq. Full line

is the t3/2 scaling; the dashed line in (a) is the Fickian behavior
σ 2

x (t) ∼ t .

to t ∼ τeq. For a Gaussian distribution with mean 〈xε(t)〉 and
variance σx(t) the fourth noncentered moment reads 〈x4

ε (t)〉 =
〈xε(t)〉4 + 6〈xε(t)〉2σ 2

x (t) + 3σ 4
x (t), which allows us to define

αε(t) as

αε(t) = 〈xε(t)4〉
〈xε(t)〉4 + 6〈xε(t)〉2σ 2

x (t) + 3σ 4
x (t)

− 1, (2)

where σ 2
x (t) = 〈x2

ε (t)〉 − 〈xε(t)〉2. It can be easily seen that
with zero drift the standard definition of the non-Gaussian
parameter is recovered. For aesthetic reasons in Fig. 1 we
plotted 1 + αε(t). Equation (1) tells us that the overall drift
comes from the convolution of the drift of the moving probes
with the distribution of persistence times:

〈xε(t)〉 =
∫ t

0
ds p(t − s)〈xε(s)〉1st. (3)

From the inspection of Eq. (3) it is possible to single out
the different physical mechanisms [20] which determine the
linear behavior of the drift, 〈xε(t)〉 ∼ t , in the two regimes
1 
 t 
 τeq and τeq 
 t . In the latter, due to the exponential
cutoff of ψ(τ ), for t � τeq = c−2 the drift 〈xε(s)〉1st is linear.
In this regime one can approximate

∫ t

0 ds p(t − s)〈xε(s)〉1st ∼
(1 − P(t))〈xε(t)〉1st ∼ 〈xε(t)〉1st, which shows that the total
drift is also linear. On the contrary, in the former regime
(which we will call “preasymptotic” henceforth), persistence
and exchange distributions can be approximated by power-law
distributions: ψ(τ ) ∼ τ−3/2 and p(t) ∼ t−1/2. This leads to
a subdiffusion of the moving probe as 〈xε(t)〉1st ∼ √

t . The
physical reason is that moving probes are repeatedly hit by
a mobile defect t1/2 times. On the other hand the fraction
of moving probes increases too, as c

√
t , due to the heavy

tail of p(t). How these two effects combine can be read
in the explicit expression of Eq. (3) in the regime t 
 τeq,
i.e., 〈xε(s)〉 ∼ c

∫ t

0 ds(t − s)−1/2√s; the change of variable
s → s/t in the last integral yields immediately 〈xε(s)〉 ∼ ct .

It is due to this nontrivial mechanism that, even in the
preasymptotic regime, we can observe a linear drift.

Figure 2 shows then that the non-Gaussianity of Gε(x,t) is
manifest in the transport properties of the intruder when one
looks at the MSD around the drift σ 2

x (t) = 〈x2
ε (t)〉 − 〈xε(t)〉2:

it grows superdiffusively as σ 2
x (t) ∼ tγ with γ ≈ 3/2 for 1 


t 
 τeq. The exponent 3/2 is the same which characterizes
the field-induced superdiffusion of a tracer in a crowded
medium [18], while the faster-than-linear spreading of the van
Hove function that we point out is clearly related to force-
induced giant diffusivity discussed in [14]. The population
splitting scenario, already well established in the context of
supercooled liquid models [11,14,21] and recently discussed
also in the context of CTRW with aging dynamics [22,23],
allows one to perfectly understand both qualitatively and
quantitatively not only the observed superdiffusion (Fig. 2),
but also the preasymptotic behavior of the non-Gaussian factor
(Fig. 1).

From the definition of Gs(x,t) in Eq. (1) we have that the
MSD around the drift reads

σ 2
x (t) = −〈xε(t)〉2 +

∫ t

0
ds p(t − s)〈x2

ε (s)〉1st. (4)

We already know that in the preasymptotic regime 〈xε(t)〉 ∼
ct , so that we only need to know 〈x2

ε (s)〉1st. The latter is
obtained from the asymptotic behavior of moments for a biased
CTRW [24–27]. In a CTRW with waiting time distribution
ψ(τ ) ∼ τ−(1+β) and 0 < β < 1 it holds 〈x2

ε (t)〉 ∼ t2β ; since
in our case β = 1/2, we have 〈x2

ε (s)〉1st ∼ s. By plugging this
last result into Eq. (4) and retaining the leading contribution
to p(t − s) when t 
 τeq, one finds

σ 2
x (t) ∼ c

∫ t

0
ds

s√
t − s

∼ ct3/2, (5)

where the asymptotic behavior of the integral has been
evaluated by simply changing the variable s → s/t . The term
〈xε(t)〉2 = O(c2) appearing in Eq. (4) has been dropped in
Eq. (5) because it is subleading in the regime c 
 1, t 
 τeq.
We obtained analytically the superdiffusive behavior tracing
it back to the subsequent hits with the mobile defects, which
are in turn encoded in the heavy tails of ψ(τ ). To estimate the
preasymptotic behavior of the non-Gaussian parameter αε(t)
we need to know the fourth-order noncentered moment, which
from Eq. (1) reads

〈x4
ε (t)〉 =

∫ t

0
ds

c√
t − s

〈x4
ε (s)〉1st ∼ ct5/2. (6)

The scaling in Eq. (6) comes again from the asymptotic
behavior of moments in a CTRW characterized by the
distribution of waiting times ψ(τ ) ∼ τ−(1+β) and 0 < β < 1:
〈x4

ε (s)〉 ∼ s4β [25,26]. Since in our case β = 1/2 we have
〈x4

ε (s)〉 ∼ s2. For small values of c the denominator of the
non-Gaussian parameter reads at leading order

〈xε(t)〉4 + 6〈xε(t)〉2σ 2
x (t) + 3σ 4

x (t) ∼ 3c2t3, (7)

so that, combining Eq. (6) with Eq. (7) we find

αε(t) ∼ c−1t−1/2, (8)

which is perfectly consistent with the numerical behavior of
αε(t) shown in Fig. 1.
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Strong anomalous diffusion takes place when the scaling
assumption Gs(x,t) = F[x/�(t)]/�(t) for the van Hove func-
tion and the scaling of moments 〈xn(t)〉 ∼ �n(t) cannot be
written in terms of a single length �(t) [24]. In the present case
(FA and BBL) this phenomenon takes place due to population
splitting. Looking at the distribution of moving probes we
have found the numerical evidence (not shown) that P1st(xε,t)
is a half-Gaussian: at different times a perfect collapse of data
is obtained with �(t) = t1/2. Taking otherwise into account
the whole population of probes, i.e., also the contribution
P(t)δ(x), in Eq. (1), of probes which never jumped up to
time t , we have σ 2

x (t) ∼ t3/2 �= �2(t) = t : diffusion is strongly
anomalous [24]. Let us stress that this strong anomalous
diffusion is not due, as usual, to a multiscaling property of
the probability distribution of displacements [24]: it comes
from the splitting of probes population into slow persistent
ones, not moving roughly until t ∼ τeq, and those which
at t 
 τeq have already been repeatedly hit by mobility
defects. Precisely the same mechanism is at the origin of
the S-E violation Dτeq = e−β : a probe diffuses much more
than one step on the relaxation time scale due to repeated
interactions with the same mobile defect. Such a mechanism
is also responsible for dynamic heterogeneity: all regions that
relax because they are hit by the same mobile defect within
the time scale τeq become dynamically correlated. We have
therefore shown that dynamic correlations, violation of S-E,
and strong anomalous superdiffusion are directly connected in
KCMs [11] (see also [16]). While on the one hand we expect
field-induced superdiffusion to be general in systems where
a population-splitting phenomenon of the kind discussed here
is taking place, on the other hand the precise value of the
superdiffusive exponents in a generic model may depend on
the force ε pulling the probe (see [2]). Our choice to study
both in the FA and the BBL models the dynamics of a “ghost”
probe, i.e., a probe which does not have any influence on
the background mobility field, was done precisely to get
rid of this—in general to be expected—dependence of the

superdiffusive exponent on ε. In the presence of a ghost probe
neither the persistence time distribution p(t) nor the exchange
time distribution ψ(τ ) depend on ε; because of that, even the
exponents of the anomalous dynamics are not carrying any
dependence on ε.

In conclusion we have related the superdiffusive behavior
of driven probes to the splitting of their population in
frozen ones and moving ones repeatedly hit by the same
mobility defect. Our analysis provides an explanation of
the results found in atomistic models [1,2] and link them to
the phenomena of dynamic heterogeneity and Stokes-Einstein
violation. Furthermore, it offers a theoretical derivation of the
superdiffusion exponent 3/2. This value, compatible with our
numerical results for both the FA and BBL models, is also
surprisingly close to the value 1.45 found in the supercooled
Yukawa mixture of [2]. Also remarkable is the qualitative
agreement between the behavior of the non-Gaussian factor
αε(t) characterizing the driven preasymptotic dynamics of
a probe in one-dimensional FA and BBL models and the
one found for the unbiased dynamics of a probe in a three-
dimensional supercooled Lennard-Jones mixture (see Fig. 3
of [1]). All these similarities point toward the presence of
universal features, still to be investigated, which are intrinsi-
cally related to dynamical heterogeneity and emerge at low
temperatures independently of the dimensionality and specific
interactions of the models. We expect indeed our findings
to hold generically beyond the simple models we focused
on. In fact, the key ingredients are the population-splitting
scenario and the anomalous diffusion of mobile probes induced
by dynamic correlations, which are phenomena known to be
present generically in supercooled liquids.
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