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We use the concept of entropy power to derive a one-parameter class of information-theoretic uncertainty
relations for pairs of conjugate observables in an infinite-dimensional Hilbert space. This class constitutes an
infinite tower of higher-order statistics uncertainty relations, which allows one in principle to determine the shape
of the underlying information-distribution function by measuring the relevant entropy powers. We illustrate
the capability of this class by discussing two examples: superpositions of vacuum and squeezed states and the
Cauchy-type heavy-tailed wave function.
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Introduction. In 1948, Shannon laid down the foundations
of modern information theory [1]. He was instrumental in
pointing out that, in contrast with discrete signals or messages
where information is quantified by (Shannon’s) entropy,
the case with continuous variables is less satisfactory. The
continuous version of Shannon’s entropy (SE)—the so-called
differential entropy—may take negative values [1,2] and so
does not have the same status as its discrete-variable counter-
part. To solve a range of communication-theoretic problems
related to continuous cases Shannon shifted the emphasis from
the differential entropy to another object—entropy power (EP).
The EP represents the variance of a would-be Gaussian random
variable with the same differential entropy as the random
variable under investigation. EP was used by Shannon [1] to
bound the capacity of non-Gaussian additive noise channels.
Subsequent developments in information theory confirmed the
central role of the EP [3–5]. On the mathematical side the EP
proved to be critical in proving a strong version of the central
limit theorem with convergence in relative entropy [6,7].

Information theory now extends far beyond the realm of
communications and the same principles and concepts can
be employed in applications that include statistical physics,
biological science, and quantum mechanics [8]. In this Rapid
Communication we focus on the application of the EP to
quantum-mechanical uncertainty relations (URs). In essence,
quantum-mechanical URs place fundamental limits on the
accuracy with which one is able to know the values of different
physical quantities. In the 1920s, Kennard, and independently,
Robertson and Schrödinger reformulated the original Heisen-
berg’s UR in terms of variances of the observables [9–11]. In
1959, Stam [12] conjectured that the EP could be used to obtain
Heisenberg’s UR. This conjecture was bolstered in [13] by
showing that the usual Schrödinger-Robertson variance-based
URs (VURs) [10,11] can be derived from entropic URs. VURs
are useful and widely applied but have two major restrictions:
First, the product of the conjugate variances is a single number
and so can only ever give partial information about the
underlying states; secondly, variances are only useful concepts
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for well-behaved bell-like distributions. For heavy-tailed or
multipeaked distributions, the variances can be large or even
infinite, making VURs ill suited or even useless.

Here we show that Stam’s UR (and VUR) is just a member
of a one-parameter class of EP-based inequalities, all of
which stem from yet another important information measure,
namely, the Rényi entropy (RE) [14,15] and its continuous
counterparts, differential RE and Rényi entropy power (REP).
We prove that this class constitutes an infinite tower of
higher-order cumulant URs, which allows one in principle to
reconstruct the underlying information-distribution function in
a process akin to quantum state tomography [16] using EPs in
place of the usual measurements. In this respect, the strategy
is not to optimize parameters in the class of URs (e.g., to find
a best bound), but instead to identify and measure as many
EPs (associated with a given quantum state) as possible. We
illustrate this point with two examples of interest.

Entropy power. Let X be a random vector in RD with the
probability density function (PDF),F . The differential entropy
H(X ) of X is defined as [1]

H(X ) = −
∫
RD

F(x) log2 F(x)dx. (1)

The discrete version of (1) is nothing but the SE [1]. Strictly
the form shown in (1) is not a proper entropy but rather an
information gain [2,14]. The entropy power N (X ) of X is the
unique number such that [1,17]

H(X ) = H(
√

N (X )ZG), (2)

with ZG representing a Gaussian random vector with zero
mean and unit covariance matrix. In the case when the Shannon
differential entropy is measured in nats (natural units) the
entropy power takes the form [1]

N (X ) = 1

2πe
exp

(
2

D
H(X )

)
. (3)

Correspondingly, the differential Rényi entropy Ip(X ) of
X is defined as [2,14]

Ip(X ) = 1

(1 − p)
log2

(∫
M

dx Fp(x)

)
, (4)
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where the index p ∈ R+. With the help of L’Hôpital’s rule one
can check that for p → 1 one has Ip(X ) → H(X ). Similarly
to H, Ip is also additive for independent events [2]. In analogy
with the case of Shannon entropy discussed above, the pth
Rényi entropy power Np(X ) is defined as the solution of the
equation

Ip(X ) = Ip(
√

Np(X )ZG), (5)

whereZG represents a Gaussian random vector with zero mean
and unit covariance matrix.

This type of expression was studied in [18,19] where it was
shown that the only class of solution of (5) is

Np(X ) = 1

2π
p−p′/p exp

(
2

D
Ip(X )

)
, (6)

with 1/p + 1/p′ = 1 and p ∈ R+. In addition, when p → 1+
one has Np(X ) → N (X ). For simplicity we have taken nats as
units of information. In passing, we may observe that from (6)
it follows that Np(σZG) = σ 2, i.e., for Gaussian processes
the EP is simply the variance σ 2. In the case where ZK

G

represents a random Gaussian vector of zero mean and co-
variance matrix Kij , then Np(ZK

G ) = [det(Kij )]1/D ≡ |K|1/D .
Importantly, since the REs are in principle measurable [20,21],
the associated REPs are experimentally accessible. For some
recent applications of the REs in quantum theory see,
e.g., [22–24].

Entropy power uncertainty relations. We start with the
theorem of Beckner and Babenko [25,26].

Beckner-Babenko Theorem. Let

f (2)(x) =
∫
RD

e2πix· yf (1)( y)d y,

then for p ∈ [1,2],

|(p′)D/2|1/p′ ||f (2)||p′ � |pD/2|1/p||f (1)||p, (7)

where p and p′ are the Hölder conjugates and

||F ||p ≡
(∫

RD

|F ( y)|p d y
)1/p

, (8)

for any F ∈ Lp(RD). Of course, the role of f (1) and f (2) may
be interchanged in the inequality (7). An elementary proof
can be found, e.g., in [18]. Inequality (7) is saturated only for
Gaussian functions [26,27].

Anticipating quantum-mechanical applications we define√
F( y) ≡ |f ( y)|. After some simple algebra we recast (7) in

the form [18](∫
RD

[F (2)( y)](1+t) d y
)1/t(∫

RD

[F (1)( y)](1+r) d y
)1/r

� [2(1 + t)]D|t/r|D/2r . (9)

Here, r = p/2 − 1 and t = p′/2 − 1. Because 1/p + 1/p′ =
1 we have the constraint t = −r/(2r + 1). Since p ∈ [1,2] one
has r ∈ [−1/2,0] and t ∈ [0,∞). Taking the negative binary
logarithm of both sides of (9), we obtain

I1+t (F (2)) + I1+r (F (1))

� 1

r
log2[2(1 + r)]D/2 + 1

t
log2[2(1 + t)]D/2. (10)

In the limit t → 0+ and r → 0− this reduces to

H(F (2)) + H(F (1)) � log2

(
e

2

)D

, (11)

which is just the classical Hirschman conjecture for Shannon’s
differential entropies [13,28]. However, the semidefiniteness
of Ip(· · · ) makes the URs (10) impractical. In terms of REPs
we can rewrite (10) as

N1+t (F (2))N1+r (F (1)) ≡ Np/2(X )Nq/2(Y) � 1

16π2
, (12)

where q ≡ p′ and the REs involved are measured in bits. This
is a one-parameter family of inequalities since p and q are
the Hölder conjugates. In contrast to (10) the right-hand side
of (12) represents a universal lower bound independent of t

and r . Note that when X is a random Gaussian vector, then Y
is also Gaussian and (12) reduces to

|KX |1/D|KY |1/D = 1

16π2
. (13)

The equality follows from the saturation of the inequality (7)
by Gaussian functions.

By assuming that a PDF has a finite covariance matrix
(KX )ij then important inequalities hold, namely,

N (X ) � |KX |1/D � σ 2
X , (14)

with equality in the first inequality if and only ifX is a Gaussian
vector, and in the second if and only if X has a covariance
matrix that is proportional to the identity matrix. The proof
of (14) is based on the non-negativity of the Kullback-Leibler
divergence and can be found, e.g., in [29,30]. Inequality (14)
immediately gives

σ 2
Xσ 2

Y � |KX |1/D|KY |1/D � N (X )N (Y) � 1

16π2
, (15)

which saturates only for Gaussian (respective white) random
vectors X and Y . Note, that when (KX )ij and (KY )ij exist
then (15) automatically implies the conventional Robertson-
Schrödinger VUR. Since the VUR is implied by the Shannon
EPUR alone, a natural question arises; in what sense is the
general set of inequalities (12) more informative than the
special case r = t = 0?

Reconstruction theorem. To aid our intuition and, further-
more, to show the conceptual underpinning for Rényi-entropy-
power-based uncertainty relations (REPURs) (12) we first note
that the differential RE can be written as (E[· · · ] denotes the
mean value)

Ip(X ) = 1

(1 − p)
log2 E[2(1−p)iX ]. (16)

Here iX (x) ≡ − log2 F(x) is the information in x [with respect
to the PDF F(x)]. From (16), the differential RE can be
viewed as a reparametrized version of the cumulant generating
function of the information random variable iX (X ). The
ensuing cumulant expansion is

pI1−p(X ) = log2 e

∞∑
n=1

κn(X )

n!

(
p

log2 e

)n

, (17)

where κn(X ) ≡ κn(iX ) denotes the nth cumulant of iX (X )
(in units of bitsn). From (17) it follows that REPs can be
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written in terms of κn’s. In fact, Np’s of order p > 0 uniquely
determine the underlying information PDF (for the proof see
Supplemental Material [31]). So, the REPURs of different
orders provide additional structural constraints between F (1)

and F (2) which cannot be seen with the VUR or Shannon
entropy UR alone. In this connection we list some further
salient results [31]:

(a) Only Gaussian PDFs saturate all REPURs. REPURs
with r = −1/2 can be saturated with a wider class of PDFs.
(b) WhenF(x) is close to (or equimeasurable with) a Gaussian
PDF then only Np’s with p’s in a neighborhood of 1 are
needed. The closer the shape is to the Gaussian PDF, the
smaller neighborhood of 1 needed. (c) The nonlinear nature
of the RE emphasizes the more probable parts of the PDF
(typically the middle parts) for Rényi’s index p > 1, while for
p < 1 the less probable parts of the PDF (typically the tails)
are accentuated. So, when the accentuated parts in |ψ |2 and
|ψ̂ |2 are close to Gaussian PDF sectors, the associated REPUR
will approach its lower bound. In the asymptotic regime when
r = −1/2, the saturation of the REPUR means that the peak
of F (1) and tails of F (2) are Gaussian, though both F (1) and
F (2) might be non-Gaussian.

REPUR in quantum mechanics. Let us consider state
vectors that are Fourier transform duals—the most prominent
example being the configuration and momentum space wave
functions. In such a case there is a reciprocal relation between
ψ(x) and ψ̂(p), namely,

ψ(x) =
∫
RD

ei p·x/� ψ̂( p)
d p

(2π�)D/2
. (18)

The Riesz-Fischer equality [32] guarantees mutual normaliza-
tion ||ψ ||2 = ||ψ̂ ||2 = 1. Let us define

f (2)(x) = (2π�)D/4ψ(
√

2π�x),

f (1)( p) = (2π�)D/4ψ̂(
√

2π� p). (19)

The factor (2π�)D/4 ensures that the new functions are
normalized (in sense of || · · · ||2) to unity. With these we have
the same structure of the Fourier transform as in the Beckner-
Babenko theorem. Consequently we can write the associated
RE-based URs (10) in the form

I1+t (|ψ |2) + I1+r (|ψ̂ |2)

� 1

r
log2

(
1 + r

π�

)D/2

+ 1

t
log2

(
1 + t

π�

)D/2

, (20)

where we have made use of the identity

Ip(|f (1)|2) = Ip(|ψ̂ |2) − D

2
log2(2π�) (21)

(and similarly for f (2)). In terms of the REP we can recast (20)
into the form [cf. Eq. (12)]

N1+t (|ψ |2)N1+r (|ψ̂ |2) � �
2

4
. (22)

This looks similar to the Robertson-Schrödinger VUR, but is
now a family of relations parametrized by t (or equivalently r)

each having the same universal lower bound �
2/4. It should be

noted that the familiar VUR follows directly from Shannon’s
entropy power UR alone since [cf. Eq. (15)]

σ 2
x σ 2

p � N1(|ψ |2)N1(|ψ̂ |2) � �
2

4
. (23)

In the special case of Gaussian PDFs, the whole family reduces
to the single familiar coherent-state VUR

σ 2
x σ 2

p = N1+t (|ψG|2)N1+r (|ψ̂G|2) = �
2

4
. (24)

Applications in quantum mechanics. As a first example
we consider an optical state that is pertinent to quantum
metrology [33]. It consists of a superposition of a vacuum
|0〉 and a squeezed vacuum |zζ 〉 which has the form |ψζ 〉 =
N (|0〉 + |zζ 〉), with N = 1/

√
2 + 2(cosh ζ )−1/2, and

|zζ 〉 =
∞∑

m=0

(−1)m
√

(2m)!

2mm!

[
(tanh ζ )m√

cosh ζ

]
|2m〉, (25)

where |2m〉 are even-number energy eigenstates and ζ ∈ R
is the squeezing parameter. If we rewrite |ψζ 〉 in the basis
of the eigenstates of the position and momentum quadrature
operators

X̂ =
√

�

2ω
(â + â†), P̂ = −i

√
�ω

2
(â − â†) (26)

(ω is the optical frequency and â and â† are, respectively, the
photon annihilation and creation operators), we get for the
PDFs (apart from normalization N 2)

|ψζ |2 =
√

ω

π�

∣∣∣∣exp

(
−ωx2

2�

)
+ eζ/2 exp

(
−ωe2ζ x2

2�

)∣∣∣∣
2

,

|ψ̂ζ |2 = 1√
π�ω

∣∣∣∣exp

(
− p2

2�ω

)
+ e−ζ/2 exp

(
−e−2ζ p2

2�ω

)∣∣∣∣
2

.

(27)

These can be used to calculate the product N1+t (x)N1+r (p) for
different values of r . The result is depicted in Fig. 1 for three
different values of the squeezing parameter. What we find is
that the lower bound �

2/4 is saturated for both N∞(x)N1/2(p)
and N1/2(x)N∞(p) regardless of the squeezing (in Fig. 1 these
correspond to r = −1/2 and r → ∞, respectively). From
our foregoing analysis of REPURs this is easy to understand
because the infinite and half indices of the EPs focus on the
peak and tails of the PDF, respectively, and from (27) we see
that both the x and p PDFs are Gaussian in the tails as well
as at the peaks (i.e., at x = p = 0). A REPUR is saturated
only when the RE-accentuated sectors in both dual PDFs are
Gaussian [31]. On the other hand, it is also clear that both
PDFs (27) as a whole are highly non-Gaussian. We would
therefore not expect REPURs with different indices to saturate
the bound. This is clearly illustrated in Fig. 1. In passing, we
note that for any ζ 	= 0 the Shannon entropy power UR is
the furthest from saturating the bound, and so is the least
informative of all the family of REPURs.
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FIG. 1. Plot of N1+t (x)N1+r (p) (in units of �
2) for the state

|ψζ 〉 as a function of log10(1 + r) and different values of the
squeezing parameter, ζ . The lower bound �

2/4 is saturated for
both N∞(x)N1/2(p) and N1/2(x)N∞(p). For other indices, REPURs
deviate from the bound with the maximum deviation at r = 0, which
corresponds to Shannon’s EP.

By way of comparison, we can also calculate the VUR for
the state |ψζ 〉. The variances involved are

〈(�X)2〉ζ = N 2 �

ω

[
1

2
(1 + e−2ζ ) +

√
sechζ (1 − tanh ζ )

]
,

〈(�P )2〉ζ = N 2
�ω

[
1

2
(1 + e2ζ ) +

√
sechζ (1 + tanh ζ )

]
.

For ζ = 0, we have 〈(�X)2〉0〈(�P )2〉0 = �
2/4, i.e., the VUR

is saturated. This is no surprise because, in this case, the
vacuum |ψ0〉 = |0〉 is the usual (Glauber) coherent state.
However, as the squeezing parameter ζ is increased the product
blows up rapidly, which makes the VUR uninformative. So
the set of REPURs outperform both the Shannon EPUR and
the VUR by providing more information on the structural
features of |ψζ 〉 via the related PDFs (e.g., Gaussian peaks
and tails in p-x quadratures). A similar type of behavior can
be also seen in a particular class of Schrödinger cat states
represented by two superposed Glauber coherent states with
the variable amplitude parameter [18]. In the aforesaid case
the Fourier transform duals were chosen to be two orthogonal
phase quadratures (x0 and xπ/2). Specifically for r = −1/2
and r → ∞ it was observed that the entropic inequality (10)
(and hence also the associated REPUR) were saturated for the
amplitude parameter β < 1/2, which according to [31] implies
Gaussianity of the respective tails and peaks in state PDFs.
Since the REPUR is not saturated for β � 1/2 either peaks or
tails cannot be Gaussian. Closer analysis indeed revealed that
the state PDFs for β � 1/2 start to develop two separated peaks
corresponding to the separation of two overlapping Gaussian
wave packets. In addition, for any r the REPURs are for large
β independent of the value of β. This is a consequence of two
facts: (a) for large β the two Gaussian wave packets no longer
overlap and (b) REPs are immune to piecewise rearrangements
of the PDF [18,31].

We note that the conventional VUR does not pose any
restriction on the variance of the observable whose conjugate
observable has a PDF with infinite covariance matrix. So,
such a state is maximally uncertain. In contrast to this, the
set of related REPURs brings considerably more information
about the structure of these states. To illustrate this we
discuss in our second example a power-law tail wave packet
(PLTWP). PTLWPs are archetypal examples of quantum
states with anomalous (scaling) behavior during their temporal
evolution [34]. For definiteness we will consider the PLTWP
of the form

ψ(x) =
√

γ

π

√
1

γ 2 + (x − m)2
, (28)

which entails the Cauchy PDF with a scale parameter γ and
median m. The Fourier transform reads

ψ̂(p) = e−imp/�

√
2γ

π2�
K0(γ |p|/�) (29)

(K0 is the modified Bessel function). With these results we can
immediately write two representative REPURs:

N1(|ψ̂ |2)N1(|ψ |2) = 0.0052�
2π4 > �

2/4, (30)

N1/2(|ψ̂ |2)N∞(|ψ |2) = �
2

4
. (31)

Note also that 〈(�p)2〉ψ = �
2π/16c2 and 〈(�x)2〉ψ → ∞ (the

latter behavior is symptomatic of many PLTWPs), and so the
Schrödinger-Robertson’s VUR is completely uninformative.
What can we conclude from (30) and (31)? First, the
REPUR (31) is saturated. This implies that the peak part
of |ψ |2 and the tail part of |ψ̂ |2 are Gaussian (as can be
directly checked). Shannon’s EPUR (30) implies: (a) the
involved PDFs are not Gaussian, (b) in contrast to other
REPURs it quantifies only shape structures of PDFs but is γ

insensitive [31], and (c) from (11) [cf. also (21)] the lower
bound of Hirschman’s UR is log2(π�e) while (30) gives
log2(π�e) + 0.5141, so one could still gain 0.5141 bits of
information should the system by prepared in a Gaussian state.
Finally, we note that N∞(|ψ̂ |2) = 0 and N1/2(|ψ |2) → ∞,
hence the related REPUR is indeterminate (in fact, regular-
ization dependent). This behavior is easy to understand. For a
strongly leptokurtic PDF (such as |ψ |2) N1/2 accentuates the
very flat power-law tails of |ψ |2, and hence N1/2 represents
the variance of a very flat (almost equiprobable) Gaussian
PDF. Similarly, N∞ accentuates only the peak part of |ψ̂ |2 that
is sharply (almost δ function) peaked, and so N∞ represents
the variance of the Gaussian PDF with zero spread. Let us
finally mention that in [31] it is shown how to deduce from
REPs the scaling characteristics for Lévy stable and Laplacian
PLTWPs.

Conclusions. In this Rapid Communication we have for-
mulated a one-parameter class of Rényi-entropy-power-based
URs for pairs of observables in an infinite-dimensional
Hilbert space. The tower of inequalities obtained possess a
clear advantage over the single VUR by revealing the finer
structure of the underlying PDFs further to their standard
deviations. This was demonstrated on two relevant quantum-
mechanical examples and mathematically substantiated via the
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reconstruction theorem. We have also established a formal
link between the Robertson-Schrödinger VUR and Shannon-
Hirschman UR and highlighted the limited scope of the VUR.
Notably, we have shown that the Robertson-Schrödinger VUR
is a simple consequence of the REPUR with the index r = 0.
while other REPURs in the class set fundamental (irreducible)

limits on higher-order cumulants in conjugate information
PDFs.
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