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Diffusion with stochastic resetting at power-law times
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What happens when a continuously evolving stochastic process is interrupted with large changes at random
intervals τ distributed as a power law ∼τ−(1+α); α > 0? Modeling the stochastic process by diffusion and the
large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and
dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the
resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for
α < 1, to one that is time independent for α > 1. The dynamics has strong consequences on the time to reach a
distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time
to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.
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Introduction. A wide variety of physical phenomena during
evolution undergo sudden large changes over a time sub-
stantially shorter than the typical dynamical time scale, e.g.,
financial crashes due to a fall in stock prices [1], a sudden
reduction in population size due to catastrophes [2], and sudden
changes in tectonic plate location in earthquakes. Often the
time series of these phenomena exhibits bursts of intense
activity separated by intervals distributed as a power law, e.g.,
in earthquakes [3], material failure under load fatigue [4],
coronal mass ejection from the sun [5], fluorescence decay of
nanocrystals and biomolecules [6,7], neuron firings [8], suc-
cessive crashes in stock exchanges [1,9,10], and email sending
times [11]. Considering the underlying generic situation of
a continuously evolving process interrupted by sudden large
changes at random times, a pertinent question of theoretical
and practical relevance is then: How do these interruptions
affect the observable properties at long times? To get a first
answer, one may model the continuously evolving process by
the widely relevant example of diffusion, and the large changes
as resets to the initial state.

Diffusion with stochastic resetting has been extensively
studied in recent times. Starting with a single diffusing
particle resetting to its initial position [12,13], subsequent
works studied motion in a bounded domain [14], in a
potential [15], for many choices of resetting position [16–18],
for a continuous-time random walk [19,20], for Lévy [21]
and exponential constant-speed flights [22]. Resetting was
also studied in interacting particle systems such as fluctuating
interfaces [13,23] and reaction-diffusion models [24]. Diffu-
sion combined with stochastic resetting mimics the natural
search strategy, whereby an unsuccessful search continues
by returning to the starting position [12], and was used
to optimize search in combinatorial problems [25–27]. A
naturally occurring example of resetting in many-particle
systems is during protein production by ribosomes moving on
mRNA, when the latter suddenly degrades at random times and
the dynamics resets to the initial condition with the production
of a new mRNA [28–30].

While the above works considered resetting at exponen-
tially distributed times (or, a generalized exponential [31]),
we consider here a power-law distribution. Even with random
walks, changing the waiting time distribution for jumps from

an exponential to a power law leads to significant conse-
quences, e.g., rendering normal diffusion anomalous [32–34];
we may then already anticipate our model with a power
law instead of an exponential for resetting times to result
in dramatic changes. Diffusion involves spreading out of a
dynamical observable from a region of high to low concen-
tration, which in the absence of boundaries continues for all
times. In the presence of resetting, the opposing tendencies
of diffusive spreading and confinement around the initial state
due to the abrupt resets lead to surprisingly rich behaviors.
As the exponent of the power law varies, the change in the
relative dominance of diffusion vis-à-vis resetting results in
significantly different behaviors. Strong correlations implied
by a power law pose a challenge for analytic tractability,
yet, remarkably, we are able to characterize these multiple
behaviors by exact closed-form expressions for both static and
dynamic quantities.

In this work, we consider a particle with diffusion constant
D diffusing in one dimension x, and being interrupted at
random times by a reset to its initial location x0. The time
τ between successive resets is distributed as a power law:

ρ(τ ) = α

τ0(τ/τ0)1+α
; τ ∈ [τ0,∞), α > 0, (1)

with τ0 a microscopic cutoff. Figures 1(a) and 1(b) show
typical space-time trajectories for representative α’s. Note that
for α < 1, all moments of ρ(τ ) are infinite. For α > 1, the
first moment is finite: 〈τ 〉 = τ0α/(α − 1); while for α > 2, the
second moment also becomes finite: 〈τ 2〉 = τ 2

0 α/(α − 2). By
contrast, the previously studied exponential ρ(τ ) always has
finite mean and variance. Also, an exponential ρ(τ ) implies a
resetting at any time to occur with a constant probability. By
contrast, a power-law distribution implies, depending on α, the
corresponding probability to depend explicitly on time.

Our exact results for the long-time properties of the system
show that the spatial probability distribution exhibits on tuning
α a rich behavior with multiple crossovers. For 0 < α < 1,
the average gap 〈τ 〉 between successive resets being infinite,
a typical space-time trajectory in a given time has a small
number of reset events, and in between diffuses further
away from the initial location, Fig. 1(a); this leads to a
spatial distribution with a width that continually increases in
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FIG. 1. Typical space-time trajectories (red lines), with black lines marking resetting events: Resetting location x0 = 0, diffusion constant
D = 0.5, τ0 = 1.0.

time as
√

t , similar to diffusive spreading. The behavior for
α < 1 is captured in the scaling plots in Figs. 2(a) and 2(b).
By contrast, for α > 1, a finite 〈τ 〉 implies frequent resets
in a given time, so that the particle does not diffuse too
far from its initial location, Fig. 1(b). Hence, one has at
long times a spatial probability distribution that no longer
spreads in time, but is time independent with power-law
tails [Fig. 2(c)]; nevertheless, fluctuations as characterized by
the mean-squared displacement (MSD) diverge with time for
1 < α < 2, while a time-independent behavior emerges only
for α > 2. Previous studies for an exponential ρ(τ ) have shown
that diffusion with resetting always leads to a time-independent
spatial distribution with a finite MSD. Our work highlights that
such a scenario does not necessarily hold for a power law ρ(τ ).

Besides the crossovers at α = 1,2, there is another one at
α = 1/2, where the time-dependent spatial distribution near
the resetting location changes over from a cusp for 0 < α <

1/2 [Fig. 2(a)] to a divergence for 1/2 < α < 1 [Fig. 2(b)].
This feature may be contrasted with exponential resetting,
where the spatial distribution at long times always exhibits
a cusp singularity [12]. As we will show, this difference
in behavior is linked to resetting events occurring with a
probability that is time independent for an exponential ρ(τ ),
but which has an essential time dependence for a power law
ρ(τ ) for 0 < α < 1. We also study the mean first passage time
(MFPT) for the diffusing-resetting particle to reach a distant
target fixed in space. The MFPT is an important quantifier
of practical relevance, e.g., for a diffusing reactant on a
polymer that has to react with an external reactive site fixed
in space [35,36]. A surprise emerging from our results is that
for α > 1, the MFPT exhibits a nonmonotonic dependence on

α, implying an optimal α that minimizes the MFPT to reach a
given target. The derivation and understanding of these results
constitute the rest of this Rapid Communication.

We begin with deriving P r(x,t |x0,0), the probability den-
sity for the particle to be at x at time t , given x = x0 at t = 0.
This probability depends solely on trajectories originating at
the last reset prior to t , when the motion starts afresh (gets
“renewed”) at x0. Then, P r(x,t |x0,0) is given by the propagator
P (x,t |x0,t − τ ) ≡ exp[−(x − x0)2/(4Dτ )]/

√
4πDτ of free

diffusion for time τ (τ ∈ [0,t]) elapsed since the last reset,
weighted by the probability density fα(t,t − τ ) at time t for
the last reset to occur at time t − τ , as [37]

P r(x,t |x0,0) =
∫ t

0
dτ fα(t,t − τ )P (x,t |x0,t − τ ). (2)

To proceed, we require fα(t,t − τ ), which is given by the
probability density G(t − τ ) for a reset at time t − τ and
the probability ρ0(τ ) for no reset in the interval [t − τ,t], as
fα(t,t − τ ) = ρ0(τ )G(t − τ ), where ρ0(τ ) ≡ ∫ ∞

τ
dτ ′ ρ(τ ′) =

(τ/τ0)−α; τ � τ0, using Eq. (1). Let gn(t); n � 0, be the prob-
ability density for the nth reset at time t , with

∫ ∞
0 dt gn(t) =

1 ∀n. Here, g0(t) = δ(t) accounts for the initial condition
x = x0 at t = 0, which itself is a reset. One has [38] gn(t) =∫ t

0 dτ ρ(t − τ )gn−1(τ ); n � 1, since the probability for the nth
reset at time t is given by the probability for the (n − 1)th
reset at an earlier time τ and the probability that the next
reset happens after an interval t − τ . By definition, we have
G(t) = δ(t) + ∑∞

n=1 gn(t), and a straightforward calculation
using Laplace transform (LT) to compute gn(t) yields for large
t that G(t) = 1/〈τ 〉 for α > 1, and G(t) = tα−1 for 0 < α < 1.
For an exponential ρ(τ ) = r exp(−rτ ), G(t) = r for all t > 0.
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FIG. 2. (a), (b) Data collapse of exact spatial distribution for α < 1 for different times, following Eq. (5). (c) Time-independent distribution
for α > 1, Eq. (8). Resetting location x0 = 0, diffusion constant D = 0.5, τ0 = 1.0.
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By contrast, for the power law for 0 < α < 1, G(t) is time
dependent, which we show later to significantly affect the
observable properties. We get for t � τ0 [39,40],

fα<1(t,t − τ ) = sin(πα)

π
τ−α(t − τ )α−1, (3)

fα>1,τ�τ0 (t,t − τ ) = 1

τ0

(
α − 1

α

)(
τ

τ0

)−α

, (4)

and
∫ τ0

0 dτ fα>1,τ<τ0 (t,t − τ ) = 1 − ∫ t

τ0
dτ fα>1,τ�τ0 (t,t −

τ ). Knowing fα , Eq. (2) allows one to derive P r(x,t |x0,0).
Spatial distribution, α < 1. For large t � τ0, we have [40]

P r(x,t |x0,0) = �(α) sin(πα)e−z/t

π
√

4πDt
U

(
α,α + 1

2
,
z

t

)
, (5)

where z ≡ (x − x0)2/(4D), and U (a,b,x) is the confluent
hypergeometric function [41]. In the limit t → ∞, the right-
hand side does not approach a time-independent form. Since
the average time 〈τ 〉 between successive resets is infinite
for α < 1, a typical space-time trajectory shows bursts of
resets separated by very long time intervals during which
the particle diffuses further and further away from its initial
position [see Fig. 1(a)] leading to the spatial distribution (5)
that continually broadens in time. While 〈x − x0〉 = 0 due to
the mirror symmetry about x0 of the dynamics, the MSD grows
linearly with time as in pure diffusion. The time dependence in
Eq. (5) is captured by the data collapse in Figs. 2(a) and 2(b).

The limiting behavior of P r(x,t |x0,0) for small and large x

reveals rich and hitherto unexpected features. Using large and
small x behavior of U (a,b,x) [42] yields

P r(x,t |x0,0)

∼

⎧⎪⎪⎨⎪⎪⎩
�(α−1/2)
(4Dt)1−α

sin(πα)
π3/2|x−x0|2α−1 ; |x − x0| → 0, 1

2 < α < 1,

�(1/2−α)�(α)√
4πDt

sin(πα)
π3/2 ; |x − x0| → 0, α < 1

2 ,

e−(x−x0)2/(4Dt); |x − x0| → ∞.

(6)

Thus, as |x − x0| → 0, the behavior crosses over from being
with a cusp for α < 1/2 [Fig. 2(a)] to being divergent
for 1/2 < α < 1 [Fig. 2(b)]. This crossover behavior stems
from the form of fα<1(t,t − τ ), which is peaked at τ = 0,t ,
implying that most resets are close to either the present or the
initial time. However, as α crosses 1/2, the relative weight of
these peaks changes, with the peak at τ = 0 becoming more
dominant for α > 1/2; this leads to a significant increase in
reset events at small intervals prior to the time of observation,
thereby increasing the probability for the particle to be close to
the resetting location, and effecting the mentioned crossover
from a cusp to a divergence around x0 across α = 1/2. The
behavior of P r(x,t |x0,0) for |x − x0| � 1 is dominated by
the propagator of the free diffusing particle, due to many
trajectories having last resets close to the initial time and free
diffusion without reset at subsequent times.

Spatial distribution, α > 1. We get for t � τ0 [40],

P r(x,t |x0,0) =
{

1 − 1

α

[
1 −

(
t

τ0

)1−α]}
×exp(−z/τ0)√

4πDτ0
+ (α − 1)τα−1

0

α
√

4πD

×
[

γ (β,z/τ0)

z−β
−e−z/t

tβ

∞∑
k=0

�(α−1/2)(z/t)k

�(α+k + 1/2)

]
,

(7)

where β ≡ α − 1/2 and γ (a,x) is the lower incomplete
gamma function. As before, 〈x − x0〉 = 0 by symmetry, while
the MSD for α > 2 converges at long times to 2Dτ0(α −
1)2/[α(α − 2)], and diverges with time for 1 < α < 2 as t2−α ,
thus exhibiting a crossover at α = 2.

Unlike for α < 1, here P r(x,t |x0,0) is independent of time
as t → ∞ to yield a nontrivial steady state [43]

P r
ss(x|x0) =

(
α − 1

α
√

4πDτ0

)
G
( |x − x0|√

4Dτ0

)
; (8)

G(y) = y1−2αγ (α − 1/2,y2) + e−y2
. Using γ (a,x)/xa →

1/a as x → 0, γ (a,x) → �(a) as x → ∞ gives

P r
ss(x|x0) ∼

⎧⎪⎨⎪⎩
(α−1)(2α+1)

α(2α−1)
√

4πDτ0
; |x − x0| → 0,

(α−1)�
(
α− 1

2

)
α
√

4πDτ0

[ 4Dτ0
(x−x0)2

]α−1/2
; |x − x0| → ∞.

(9)

The steady state distribution has power-law tails and a cusp
around x0, Fig. 2(c). Equation (7) implies a late-time relaxation
to the steady state as ∼ t1/2−α . As for α < 1, fα>1(t,t − τ )
explains the above behavior: Eq. (4) implies a large number
of resets in the small interval [t,t − τ0], while those outside
this interval occur with a probability decaying as a power law.
Hence, the probability of finding the particle very far from the
resetting position is relatively small, explaining the power-law
tails in Eq. (9). That the MSD is infinite for 1 < α < 2 is
explained by the fact that in this range, 〈τ 2〉 is infinite, so that
although trajectories on an average are reset after a time 〈τ 〉,
there are huge fluctuations around the average in the actual
time between resets. This feature leads at a given time t to a
finite probability for the particle to be at a position |x| � |x0|,
owing to trajectories that were last reset in a time of duration
substantially longer than 〈τ 〉. Such events contribute a fat-
enough tail to P r

ss(x|x0) that the MSD does not have a finite
value even at long times. Invoking a similar argument implies
a finite MSD at long times for α > 2 when 〈τ 2〉 is finite.

First-passage time. Let f r(x0,T ) be the first-passage time
distribution (FPTD), i.e., f r(x0,T )dT is the probability that the
motion starting at x = 0 crosses x0 for the first time between
times T and T + dT . We have f r(x0,T ) = −∂q(x0,T )/∂T ,
with q(x0,T ) the probability that the motion has not crossed
x0 up to time T . The MFPT is 〈T 〉 ≡ ∫ ∞

0 dT Tf r(x0,T ) =
q̃(x0,0), where q̃(x0,s) is the LT of q(x0,T ), and we have used
q(x0,∞) = 0. A renewal theory argument akin to that used for
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P r(x,t |x0,0) gives

f r(x0,T ) =
∫ T

0
dτ q(x0,T − τ )fα(T ,T − τ )f (x0,τ ), (10)

since a trajectory reaching x0 from x = 0 for the first time at
time T is last reset at an earlier instant T − τ ; τ ∈ [0,T ], and
has not passed through x0 before that.

Note that in the absence of resetting, we have
the FPTD f (x0,T ) = |x0|/

√
4πDT 3 exp[−x2

0/(4DT )], thus
〈T 〉 = ∞ [44]. In our case, the existence of a steady state for
α > 1 allows for a finite MFPT, which we now demonstrate.
Let us introduce a dimensionless variable y ≡ |x0|/

√
4Dτ0,

given by the ratio of the distance to the location of desired first
passage to the diffusive length scale in the system. The LT of
Eq. (10) gives the dimensionless MFPT T (α) ≡ 〈T 〉/τ0 as a
function of y � 1 [40]:

T (α) = √
π

(
α

α − 1

)[
ye−y2 + γ (α + 1/2,y2)

y2α

]−1

. (11)

As α → ∞, T (α → ∞) = (
√

π/y) exp(y2). The expression
for fα>1 implies that this limit corresponds to resetting
deterministically after every τ0 time, so that the FPTD is
re−rt ; r ≡ y/(

√
π ) exp(−y2), leading to the form of T (α →

∞). Figure 3 shows that the MFPT at a fixed y changes
nonmonotonically with α; the value at which T (α) shows a
minimum as a function of α can be obtained numerically.
The existence of a minimum implies a result relevant both
physically and in the context of search processes in a
crowded environment. Namely, for a given distance |x0| to

a fixed target and a given diffusion constant D, an optimal α

minimizes the time to get to the target for the first time.
Equation (11) implies that the MFPT diverges as α

approaches unity from above, and in fact, the MFPT is infinite
for α < 1. This is because for α < 1, the long-time behavior is
similar to free diffusion, with the spatial distribution expanding
indefinitely in time. Then, the probability of a typical trajectory
to achieve a first passage through a given location fixed in space
gets smaller with time, and only an atypical one reaches the
target, resulting in an infinite MFPT.

Conclusions. We considered the dynamics of a particle
diffusing and resetting to its initial position at random times
sampled from a power law ∼τ−(1+α). Our exact calculations
demonstrated many interesting effects: on tuning α across 1,
the motion at long times crosses over from being unbounded
in time to one that is time independent even in the absence of
boundaries. This behavior may be contrasted with resetting
at exponentially distributed times that always leads to a
time-independent state at long times. A surprising behavior
emerges in the time-dependent spatial distribution around the
resetting location for α < 1: it shows a crossover from a
cusp for α < 1/2 to a divergence for 1/2 > α > 1. Although
the motion at long times is time independent for α > 1, the
mean-squared displacement diverges with time for 1 < α < 2,
but is time independent for α > 2. For the mean time to reach
for the first time a distant target fixed in space, we revealed
for α > 1 that there exists of all possible reset strategies an
optimal one corresponding to a particular α that minimizes the
mean time.

Our investigations open up many possibilities for future
studies. In the context of search problems, it is interesting to
study the time to reach targets randomly distributed in space by
one or many independent searchers. Such a situation emerges
in the context of animal foraging, where a reset corresponds
to returning to the nest [45]. One may further study the effects
of disorder in space due to geographical obstructions and
predators that alter the path of a searcher. To this end, our
setup can be generalized to a motion on a lattice with every
site having as a waiting time a random variable quenched in
space and time. Another interesting followup of our work is to
extend it to many-particle interacting systems, and investigate
how dynamics at multiple scales interplays with resetting. Our
observed crossovers arise from the nontrivial time dependence
of the probability of last reset, and should be observable in
other systems; our initial results on interfaces confirm this
expectation [46].
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critically reading the manuscript.
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