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In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is
proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is
to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a
single optimization problem of a local function with finite number of physical and ancillary degrees of freedom.
This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate
the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one
of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite
environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel
decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following
the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a
uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically
reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas
of different well-established methods, including the density matrix renormalization group (DMRG), infinite
time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc.,
providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel
implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D)
AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair
state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a
transverse Ising chain and 2D classical Ising model, showing the remarkable efficiency and accuracy of the AOP.
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I. INTRODUCTION

Incredible success has been achieved in, e.g., quantum
chemistry, condensed matter physics, and material sciences,
benefiting from high unification and commercialization of
density functional theory and the first-principle approaches
[1]. But these techniques suffer severe limitations, especially
for the quantum many-body systems with strong correlations,
which is one of the central but challenging topics in modern
physics. For example, the two-dimensional (2D) Heisenberg
models with geometrical frustration [2,3], e.g., the kagome
antiferromagnet [4,5], are believed to realize the exotic
quantum spin liquids, which has no symmetry breaking even at
zero temperature [6] and may exhibit exotic topological orders
[7]. The Hubbard model and its various extended versions
[8] promise to provide theoretical explanations for high-
temperature superconductivity [9]. Unfortunately, analytical
solutions for such models are extremely rare, and numeric
approaches have became extremely important in this field.

Since the Hilbert space increases exponentially with system
size, exact diagonalization can only handle small systems
and thus has strong finite-size effects. Quantum Monte Carlo
(QMC) has extremely wide applications, including calculating
ground states, excitations, Green functions, and dynamic
problems [10–12]. However, QMC suffers the notorious “sign”
problem when calculating frustrated quantum spin models and
fermion models away from half-filling, which is shown to be
nondeterministic polynomial (NP) hard [13].
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In recent years, theories and algorithms based on nu-
meric renormalization group [14] and tensor network (TN)
representation have been through a rapid development. The
density matrix renormalization group [15] is remarkably
accurate for one-dimensional (1D) systems. As it is based
on a matrix product state (MPS) [16] that is essentially a
1D state representation, density matrix renormalization group
(DMRG) becomes inefficient for large 2D systems. Mean-
while, MPS-based algorithms such as (infinite) time-evolving
block decimation (TEBD) was proposed and generalized to
2D quantum systems using an intrinsic 2D state representation
named projected entangled pair state (PEPS) [17] (also called
tensor product state). PEPS can be regarded as a tensor
network (TN) that is defined as contractions of local tensors
and can faithfully represent noncritical 2D quantum states
[18]. Then, the simulations mostly become the calculations
of TN contractions. The related algorithms [17,19–24] have
no “sign” problem and are able to access infinite systems by
using translational invariance.

Beyond quantum many-body physics, the amazing potential
of TN is demonstrated also in many other fields. For example,
a quantum algorithm was proposed to prepare injective PEPS
[25] in a quantum computer [26]. The contraction of a TN
can be applied to solve fundamental computational tasks,
such as search problems [27]. Such an extreme wide range
of TN applications justifies the importance and usefulness of
a general and unified numeric scheme of TN.

Normally, a TN-based algorithm follows a contraction-
truncation scheme in order to optimally solve targeted physical
problems [28]. The goal of the simulation becomes contracting
the corresponding TN, which is usually NP-hard [29]. For
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example, the time evolution is actually the contraction of a
2D TN formed by the local evolution operators [22]. The
computation of the fidelity between two PEPS’s becomes the
contraction of the corresponding TN [30].

Many approaches have been proposed to deal with TN
contractions. One important way is based on tensor renor-
malization group (TRG) [19–21,31,32]. The general idea is
to transform and contract the local tensors in the TN, so the
number of the physical systems of one local tensor increases
in a coarse-graining way. In other words, local degrees of
freedoms are summed over in a specific order, so several
local tensors are “coarse-grained” into one larger tensor which
represents a larger physical subsystem, and the total number
of the tenors in the TN decreases. In this process, truncations
have to be introduced since the bond dimensions of the local
tensors increase exponentially as the renormalization goes on.

Thus, one key ingredient of a TRG-based algorithm is how
to truncate optimally, which determines the complexity of the
coding, computational cost, and accuracy of the algorithm.
For instance, the simple update algorithm [19] provides a
local truncation scheme that is extremely efficient and easy
to implement, and the bond dimensions of the tensors can be
very large. The full update algorithms [17,20,21,33], where in
principle the whole TN should be contracted to obtain globally
optimal truncations, are normally more accurate but expensive.
It allows a comparatively smaller bond dimension. Recently,
symmetries are considered in the TN algorithms so a much
larger bond dimension becomes tolerable [34,35]. However,
how to balance between the truncation scheme and the bond
dimensions is still under debate.

Meanwhile, the error of a PEPS in the contraction-
truncation scheme comes from two aspects: the truncations
of the PEPS and the truncations to obtain the environment
of the PEPS. Specifically speaking, to obtain each truncation
(or variation) in a full update, one needs to contract a TN
where more truncations are inevitable [17,20,21,33]. It makes
the control or estimate of the error a challenging issue. One
typical way to obtain the error estimate is to extrapolate the
bond dimension to infinite under a reasonable assumption. A
recent work shows that a good estimate of the error can be
achieved by a polynomial fit against the bond dimension [36].

Another issue of the contraction-truncation scheme rises
from the diversity of the geometries of 2D lattices. Since the
TN varies for different lattices, the contraction process can
totally differ as can the efficiency and computational cost. In
other words, the algorithm strongly relies on the details of the
models, which hinders further development and applications of
TN-based algorithms, especially for the nonspecialists. Thus,
an efficient, unified, and simple scheme that is less dependent
on models’ details is urgently needed.

Recently, a new clue has been proposed to deal with TN’s
in the another way. Instead of thinking about how to contract
an infinite TN to a local object with optimal truncations, the
key idea is to find a set of local self-consistent equations, from
which the TN itself can be automatically reconstructed from
such local equations to infinite. In other words, the clue is
to encode a uniform TN into local equations. This idea can
be traced back to the canonicalization of MPS [22], where a
uniform MPS can be reconstructed from the self-consistent
canonical conditions. Its two-dimensional generalization was

proposed, where the optimal tree approximation of an infinite
PEPS is encoded in the superorthogonal conditions [23],
which implies a modified version of Tucker decomposition
[37]. Then, the theory of network contractor dynamics (NCD)
[24] was proposed to generalize the encoding idea of PEPS
to any uniform TN, where the self-consistent equations are
determined by the rank-1 decomposition [38] of the local
tensor. Such schemes largely simplify the calculations of TN’s,
giving birth to novel concepts and efficient algorithms which
have been shown to be greatly useful for, e.g., detecting
criticality and calculating ground-state and thermodynamic
properties of many-body systems.

However, one can see that only the TN’s with no loops
(such as a 1D MPS or a tree TN) have been successfully
encoded. For a uniform TN with a regular geometry (e.g., a
square or cubic TN), the encoding just gives an optimal “Bethe
approximation” that contains no loops. It is still unknown how
to construct the self-consistent equations that directly encode
a uniform 2D TN.

It is worth mentioning that building self-consistent equa-
tions is one of the most successful and important ideas in
physics, which is fundamental to, e.g., mean-field theories,
density functional theories, and first-principles approaches
[1,39]. Recently, density matrix embedding theory [40,41]
developed this idea to strongly correlated fermionic models,
where an infinite bulk system is self-consistently mapped
into an impurity model with an entanglement bath. Later,
an extended version of DMET for spin lattice models was
proposed based on a product cluster state [42].

In this work, the ideas mentioned above are extended for
better considering the quantum entanglement in many-body
systems [43], and a simple and unified scheme dubbed as the
ab initio optimization principle (AOP) approach for simulating
the ground states of quantum many-body systems with
translational invariance is proposed. With a given Hamiltonian
Ĥ , a set of self-consistent equations [Eqs. (10)–(12)] are built
which transform the NP-hard ground-state simulation [29]
problem |φ0〉 = min|φ〉〈φ|Ĥ |φ〉 to an optimization problem of
a local function F [Eq. (7)] that contains only finite degrees
of freedom. The solution of the optimization has two kinds
of boundary states, one of which gives the ground state in the
form of TN, and the other plays the role of the “entanglement
bath,” providing an optimal approximation of the entanglement
between the supercell and the infinite environment.

The way to implement AOP is quite simple and generally
independent of the details of the models, where there are
three steps (Fig. 1). Step 1: Choose a proper supercell that is
consistent with the translational invariance of the Hamiltonian
Ĥ . Step 2: Construct the operator F̂ (Fig. 2) of the supercell
from Ĥ . F̂ determines the optimization function F that is to

FIG. 1. Three steps to implement ab initio optimization principle
approach.
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FIG. 2. (a) The operator F̂ ∂ (si ,si+1) is written as a summation of
F̂ L(si ,a) and F̂ R(si+1,a) with eigenvalue decomposition [Eq. (3)].
(b) Given by Eq. (4), F̂(S,aa′) with S = (s1, . . . ,sN ) is obtained by
acting F̂ R(s1,a) and F̂ L(sN ,a′) on the first and last sites of (Î −
εĤB/2), respectively, with Ĥ B the bulk Hamiltonian of a supercell.
(c) The relation between the total Hamiltonian Ĥ and the operator
F̂(S,aa′) given by Eq. (5).

be maximized. Step 3: Start with a set of randomly initialized
boundary states and solve the optimization problem.

The robustness of AOP is justified by the TN scheme.
From the self-consistent equations, the optimization of F is
equivalent to the global optimization of the zero-temperature
density matrix, i.e., max|φ〉 limβ→∞〈φ|e−βĤ |φ〉 under the
assumption that |φ〉 is in an infinite MPS (for 1D Ĥ ) or PEPS
(for 2D Ĥ ) form. The tensor ring decomposition (TRD) is
proposed [Fig. 5(a)], which amazingly encodes the infinite TN
in a local function. When the model is represented in a uniform
TN, the only step to calculate its contraction is to decompose
the local tensor with TRD. AOP provides a wide connection
among well-established methods, including mean-field theory,
infinite time-evolving block decimation (iTEBD) [22], density
matrix renormalization group (DMRG) [15], and NCD [24].
A modified iTEBD and an intrinsic 2D version of DMRG
are suggested in AOP. TRD is shown to be closely related
to rank-1 decomposition [38] and tensor-train decomposition
[44] in multilinear algebra [45].

The paper is organized as follows. First, by taking a 1D
quantum chain as an example, I show how to obtain the
optimization function F from Ĥ , where the relation between
AOP and the mean-field theory is discussed. Second, the
construction of the self-consistent equations is shown, where
F is maximized. Then, AOP is discussed in the scheme of
TN, where the tensor ring decomposition is proposed and
shown to locally encode the infinite TN. An alternating-least-
squares algorithm is introduced to solve the optimization,
which is benchmarked on 1D transverse Ising chain and 2D
classical Ising model. The results show that the ground state
is accurately obtained at the critical point, indicating that AOP
can precisely capture the strong correlations of the quantum
many-body system. An equivalence between the supercell size
and the dimension cutoff is proposed to physically explain the
“finite-size effect” in AOP. The AOP as well as the TRD for
2D quantum models are presented. Finally, the algorithmic
implications of AOP are discussed, and a summary is given.

II. CONSTRUCT THE OPTIMIZATION FUNCTION
WITH BOUNDARY STATES

Below, I take an infinite quantum chain with nearest-
neighbor interactions as the example, whose Hamiltonian

reads

Ĥ =
∑

i

Ĥi,i+1. (1)

The optimization function will be constructed in such a way
that the second-order Trotter-Suzuki decomposition of the
zero-temperature density matrix of the system e−βĤ (β → 0)
is encoded in the self-consistent equations. Note that most of
the discussions below can be readily generalized to two or
higher dimensions.

First, choose the supercell which can simply be a finite
block with N sites. The operator F̂ that determines the
optimization function is formed by two parts: bulk and bound-
ary. Define the bulk Hamiltonian as Ĥ B = J

∑N−1
i=1 Ĥi,i+1.

Minimizing just Ĥ B , i.e., min(〈φ|Ĥ B |φ〉), surely just gives
the result of exact diagnalization with N sites, which suffers
a strong finite-size effect. The problem is how to introduce
a proper boundary to mimic the interactions among the
supercells.

The Hamiltonian on the boundary Ĥ ∂ (sN ,sN+1) = ĤN,N+1

is the interaction(s) between two adjacent supercells. Make a
shift of it as

F̂ ∂ (sN ,sN+1) = Î − εĤ ∂ (sN ,sN+1), (2)

with ε a small number. This shift will not change the ground
state. Introduce an ancillary particle a and rewrite F̂ ∂ as a sum
of operators [Fig. 2(a)] as

F̂ ∂ (sN ,sN+1) =
∑

a

F̂ L(sN ,a) ⊗ F̂ R(sN+1,a). (3)

Eq. (3) can be easily achieved by eigenvalue decomposition.
Then the operator F̂(S,aa′), with S = (s1, . . . ,sN ) represent-
ing the N physical particles in the supercell, is defined as

F̂(S,aa′) = H̃ BF̂ R(s1,a)†F̂ L(sN ,a)H̃ B, (4)

where one has H̃ B = Î − εĤB/2, and F̂ R(s1,a)† and
F̂ L(sN ,a′) act on the first and last sites of the supercell,
respectively [Fig. 2(b)]. One can see that F̂(S,aa′) contains N

physical particles in the supercell and two ancillary particles on
the boundaries. F̂(S,aa′) has a clear relation with Ĥ [Fig. 2(c)]
that is

∑

aa′a′′ ···
· · · F̂(S,aa′)F̂(S ′,a′a′′) · · · = Î − εĤ + O(ε2). (5)

One can see that Eq. (5) gives the second-order Trotter-Suzuki
decomposition of e−εĤ [46].

In fact, the ancillary particles {a} carry the quantum
entanglement between different super-cells. To see this, I take
the Heisenberg model as an example, where {a} ranges from
0 to 3. If one limits the number of the states of a in Eq. (3)
as one, i.e., F̂ ∂ � F̂ L(si,0) ⊗ F̂ R(si+1,0)†, then the operators
F̂ L(si,0) and F̂ R(si+1,0)† simply give a mean field in Eq. (5),
i.e.,

F̂ L(R)(si,0) =
∑

α

h̃α
i ŝα

i , (6)

with ŝα
i (α = x,y,z) the spin operators and h̃α

i the mean field
on the ith site. I shall remark that h̃α

i is not obtained by simply
taking the dominant eigenvectors in Eq. (3) but achieved in
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FIG. 3. Graphic representations of (a) the optimization function
F in Eq. (7) that is to be maximized, (b) the operator M̂ in Eq. (8),
and (c) Ĥ in Eq. (9) that consists of (d) the bulk and boundary parts.

a self-consistent way [by Eq. (15)]. In this case, the wave
function of the whole system is just the tensor product of
the states of supercells, and thus there will be no quantum
entanglement among different supercells.

With the operator F̂(S,aa′), introduce the optimization
function F [Fig. 3(a)] as

F = 〈La′μ′ν ′ |〈ASνν ′ |F̂(S,aa′)|ASμμ′ 〉|Raμν〉, (7)

where μ,ν,μ′,ν ′ that take from 0 to χ − 1 (χ is a positive
integer dubbed as the ring rank) represent the ancillary
particles and are traced out in Eq. (7). The boundary states
|ASμμ′ 〉, |La′μ′ν ′ 〉, and |Raμν〉 are three normalized vectors
defined in the corresponding ancillary and physical space. I
will show below that when F is maximized, the ground state
can be given by |ASμμ′ 〉 [see Eq. (13)].

III. AB INITIO OPTIMIZATION PRINCIPLE
WITH TENSOR NETWORK SCHEME

The ground state of a 1D quantum many-body system
obtained by by the AOP approach is actually in the form of an
MPS. To see this, define two operators [Figs. 3(b) and 3(c)] as

M̂(aa′μμ′νν ′) = 〈ASνν ′ |F̂(S,aa′)|ASμμ′ 〉. (8)

Ĥ(Sμμ′νν ′) = 〈La′μ′ν ′ |F̂(S,aa′)|Raμν〉. (9)

Then, F is maximized if the following self-consistent equa-
tions are fulfilled:

〈La′μν |M̂(aa′μμ′νν ′) = Fmax〈La′μ′ν ′ |, (10)

M̂(aa′μμ′νν ′)|Raμν〉 = Fmax|Raμ′ν ′ 〉, (11)

Ĥ(Sμμ′νν ′)|ASμμ′ 〉 � Fmax|ASνν ′ 〉, (12)

with Fmax a constant giving the maximum of F .
Equations (10)–(12) mean that 〈La′μν | and |Raμν〉 are the left
and right dominant eigenstates ofM̂(aa′μμ′νν ′), respectively.
For |ASμμ′ 〉, it is the right dominant eigenstate of Ĥ(Sμμ′νν ′)
under a constraint which will be immediately discussed in the
following part of this section using the language of TN and
MPS. The graphic illustrations of Eqs. (10)–(12) and a detailed

FIG. 4. From the self-consistent equations [Eqs. (10)–(12)], the
optimization function F in Eq. (7) can be written as F = 〈	|
̂|	〉,
where one has 
̂ = Î − εĤ (green shadow) and |	〉 is the ground
state in an MPS form (red shadow) given by Eq. (13). Then, from the
eigenequation 
̂|	〉 = C|	〉, an infinite TN can be constructed.

deduction of these constrained eigenvalue problems are given
in Appendix B. Note that 〈La′μν | and |Raμν〉 are conjugate
to each other if there exists an eigenvalue decomposition of
M̂(aa′μμ′νν ′). This is usually true in physical systems, when
it possesses the invariance under a spatial mirror reflection,
i.e., Eq. (8) is Hermitian. The existence of the solution for
Eq. (11) is justified by the fact that the Hamiltonian (as well
as the density matrix of the system) is Hermitian.

In the TN language, the operator F̂(S,aa′) and the
boundary states |ASμμ′ 〉, 〈La′μ′ν ′ |, and |Raμν〉 are given by
tensors FSS ′aa′ , ASμμ′ , La′μ′ν ′ , and Raμν . One has, for exam-
ple, F̂(S,aa′) = ∑

SS ′aa′ FSS ′aa′ |a′〉|S ′〉〈S|〈a| and |ASμμ′ 〉 =∑
Sμμ′ ASμμ′ |S〉|μ〉|μ′〉, where |∗〉 represents the local basis

in the corresponding physical or ancillary space. Then the
products of operators and vectors in the Hilbert space become
contractions of the corresponding tensor indexes.

Using Eqs. (10) and (11), one can add M̂(aa′μμ′νν ′)’s in
Eq. (7), as shown in Fig. 4. This can be repeated infinite times,
after which one gets F = 〈	|
̂|	〉, where the operator in the
middle (green shadow) is actually 
̂ = (Î − εĤ ) in Eq. (5),
and the state |	〉 has an MPS form [16] (red shadow) that reads

|	〉 =
∑

{S}

∑

{μ}
· · ·ASμμ′AS ′μ′μ′′ · · · |{S}〉, (13)

with {S} = (. . . ,S,S ′, . . . ). Because |	〉 maximize 〈	|
̂|	〉,
such an MPS optimally gives the dominant eigenstate of 
̂,
which actually is the ground state of Ĥ .

The tensor A that gives the ground state MPS is the ground
state of Ĥ, which can be regarded as an “impurity” model
[40–42]. To be more specific, Ĥ consists of two parts: bulk and
boundary. The bulk part is the shift of the bulk Hamiltonian,
and the boundary part is formed by F̂ L, F̂ R [Eq. (3)] and the
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FIG. 5. Graphic representations of (a) the tensor ring decompo-
sition (TRD) given by Eq. (14) and (b) the rank-1 decomposition
[24,38] by Eq. (16). The rank-1 decomposition is special TRD with
the ring rank χ = 1.

boundary states 〈L| and |R〉, as shown by the green shadow in
Fig. 3(d).

Taking one step further, one can repeat for K → ∞
times using the relation 
̂|	〉 = C|	〉 with C a constant and
reconstruct an infinite 2D TN that is formed by the local
tensor FSS ′aa′ (Fig. 4). This TN gives the Trotter-Suzuki
decomposition of e−KεĤ . It means that maximizing F in
Eq. (7) realizes the global optimal contraction of the 2D TN
with the MPS.

AOP grows the infinite TN from a local function, which
differs from existing contraction and truncation schemes.
Taking Levin and Nave’s TRG [31] as an example, each time
after renormalization, the number of tensors is reduced to half
of it. But in AOP, by following the arrows in Fig. 4, the number
of tensors grows from 1 to infinite during the reconstruction
of the TN.

What is amazing is that the maximization of F only corre-
sponds to a specific decomposition of the local tensor FSS ′aa′

[Fig. 5(a)], which is dubbed the tensor ring decomposition
(TRD)

FSS ′aa′ � Fmax

χ∑

μμ′νν ′=1

ASμμ′La′μ′ν ′AS ′νν ′Raμν, (14)

where |FSS ′aa′ − Fmax
∑

μμ′νν ′ ASμμ′La′μ′ν ′AS ′νν ′Raμν | is
minimized and χ is the ring rank, as mentioned above. The
TN reconstruction shown above indicates that TRD is an
intrinsic higher-order tensor decomposition which encodes
the global contraction of the infinite TN.

The ancillary particles μ, μ′, ν, and ν ′ in Ĥ play the role of
carrying the entanglement between a supercell and its infinite
environment. In other words, the boundary states 〈La′μ′ν ′ | and
|Raμν〉 provide an “entanglement bath,” which is shown to be
critically important to reduce the boundary effect cause by the
finiteness of the supercell.

To see this more clearly, one takes the dimension of the
ancillary particles as χ = 1. Then, Eq. (14) becomes

F = 〈La′ |〈AS |F̂(S,aa′)|AS〉|Ra〉. (15)

The maximization of Eq. (15) gives the so-called rank-1
decomposition [38] of FSS ′aa′ [Fig. 5(b)] that reads

FSS ′aa′ � F̃ASLa′A∗
S ′Ra, (16)

with F̃ a constant. In this case, The ground state is the tensor
product of infinite number of |AS〉’s, and 〈La′ | and |Ra〉
determine the mean-field in Eq. (6). Actually, Eq. (16) leads to

the NCD [24]. One can see that the supercell corresponds to the
unit cell in NCD. To increase the accuracy, a renormalization
procedure is utilized in NCD to increase the unit cell size to
infinite. Here in AOP, one increases the ring rank χ instead,
which is more simple and unified. Comparing the physical
pictures in AOP and NCD, one can see that the self-consistent
equations in NCD (which can be obtained with those in AOP
by taking χ = 1) result in the optimal tree TN approximation
with no loops, while those of AOP lead to the infinite TN
with all loops remaining intact. One can also see that rank-1
decomposition is just a special TRD with χ = 1.

IV. ALTERNATING-LEAST-SQUARES ALGORITHM
WITH A FIXED RING RANK

From the self-consistent equations Eqs. (10)–(12), an
alternating-least-squares algorithm is proposed to efficiently
solved the maximization of F . Starting from a randomly
initialized La′μν and Raμν with a chosen χ , one calculates
Ĥ(Sμμ′νν ′) as well as its dominant eigenstate that is ASμμ′ ;
then, with the newly obtained ASμμ′ , calculate M̂(aa′μμ′νν ′)
and update La′μν and Raμν with the left and right dominant
eigenstates of M̂(aa′μμ′νν ′). Repeat this procedure until the
preset convergence is reached.

But if one simply uses the iteration procedure above, the
result may converge to a trivial fixed point given by Eq. (16)
with the ring rank χ = 1. This will bring instability to the
calculations. One way to stabilize the nontrivial fixed points
with a preset χ is to constrain La′μν and Raμν to be rank χ . In
detail, each time with updated La′μν and Raμν , one calculates
L̃a′μν and R̃aμν that fulfill the following optimizations:

max
L̃a′μν

∑

a′μν

L̃∗
a′μνLa′μν, while

∑

a′μ

L̃∗
a′μνL̃a′μν ′ = Iνν ′ ,

(17)
max
R̃aμν

∑

aμν

R̃∗
a′μνRa′μν, while

∑

aμ

R̃∗
aμνR̃aμν ′ = Iνν ′ ,

with Iνν ′ a (χ × χ ) identity and ∗ means conjugate. It means
L̃a′μν and R̃aμν are the optimal isometries that maximize
Eq. (7). L̃a′μν and R̃aμν can be easily obtained by singular value
decomposition of L and R [47], i.e., L = USV †, L̃ = UV †

and similarly for R̃. In this way, one stabilize a nontrivial fixed
point with the preset χ .

Amazingly, important physical information of the system
can be extracted from L and R: The singular value spectrum
S is exactly the (bipartite) entanglement spectrum; the matrix
defined as X = USU † gives the dominant eigenstate of the
transfer matrix of 〈	|	〉 (see Appendix B). Note that X is
essentially related the the observables (see Appendix C).

Furthermore, such a way of stabilizing is the result of two
constraints in the optimization. In Fig. 4 following the first
two arrows, we use Eqs. (10) and (11) to extend the local
contraction to 〈	|
̂|	〉 with |	〉 an infinite MPS formed by
tensor A. To do so, one should fulfill the constraint

∑

aμν

LaμνL
∗
aμν =

∑

aμν

RaμνR
∗
aμν = 1. (18)

Here, we assume there exists the eigenvalue decomposition of
M̂ in Eq. (8), so its left and right dominant eigenstates are
conjugate to each other. Such a constraint can be fulfilled by
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directly solving Eqs. (10) and (11). Then, following the third
arrow in Fig. 4, we obtain the whole TN by using the fact that
〈	|
̂|	〉 is minimized. There is another constraint here, which
is the normalization of the MPS,

〈	|	〉 = 1. (19)

The second constraint leads to L̃a′μν and R̃aμν in Eq. (17) by
solving a generalized eigenvalue equation. The deduction in
detail can be found in Appendix B.

With this algorithm, there is only one step to optimally
solve the contraction problem of a uniform TN: Decompose
the local tensor with TRD.

The AOP algorithm is essentially a variational method. In
AOP, it is the average of the density matrix that is maximized
(〈	|
̂|	〉). One can look at the two main steps of the
reconstruction of the infinite TN. The first step is from the local
optimization function [Eq. (7)] to 〈	|
̂|	〉. The purpose of this
step is to let the density matrix and the ground state appear in
the formula. The second step is from 〈	|
̂|	〉 to an infinite 2D
TN. The purpose is to guarantee that 〈	|
̂|	〉 is maximized,
i.e., the energy is minimized, under the constraint that |	〉
is normalized. In this sense, AOP is a variational method,
but the most significant difference is that AOP translates the
variational problem into a set of local eigenvalue equations.
To find the optimal solution of the variation is to solve the
eigenvalue equations. In this way, AOP makes calculations
simple and unified.

For the computational cost of each iteration on a 1D quan-
tum system, it is about O(2dNχ2 + 2dN+4χ2) for updating
ASμμ′ , where the first terms is from contracting twice the
sparse matrix Ĥ B and the second term is from contracting the
F̂ R(s1,a) and F̂ L(sN ,a′) (d is the dimension of the physical
Hilbert space on each local site). The computational cost
for updating La′μν and Raμν is about O(dNχ2 + dN+2χ4 +
d8χ4 + d4χ4) with a proper contraction order. Meanwhile,
the efficiency of the algorithm is very high, which only takes
O(102) iterations to reach the convergence (e.g., of the energy)
to 10−10.

V. BENCHMARK

First, the performance of AOP is tested on the infinite
transverse Ising chain. The Hamiltonian is written as

Ĥ =
∑

i

ŝx
i ŝx

i+1 − h
∑

i

ŝz
i , (20)

with h the magnetic field. This model was exactly solved by
fermionization [48]. At h = 0.5, a quantum phase transition
occurs, where the energy gap vanishes and the quantum en-
tanglement entropy scales logarithmically with the subsystem
size [49].

To investigate the boundary effect caused by the finiteness
of the supercell, the bond energy Ei,i+1 = 〈Ĥi,i+1〉 versus the
position i at the critical point h = 0.5 for different sizes of the
supercell N are calculated and shown in Fig. 6(a). E0,1 (and
EN,N+1) stands for the bond energy between two adjacent
supercells. I take χ = 6 and ε = 10−4. All bond energies are
remarkably accurate by comparing with Eexact obtained by
exact solution on the infinite chain, while in the middle of the
chain, Ei,i+1 converges greatly to Eexact as N increase. The

FIG. 6. (a) The bond energy Ei,i+1 = 〈Ĥi,i+1〉 versus position i at
h = 0.5, χ = 6, and ε = 10−4 for different sizes of the supercell N .
Eexact is the exact solution of the infinite chain by fermionization [48].
E0,1 (and EN,N+1) is the bond energy between two adjacent supercells.
In the middle of the chain, Ei,i+1 converges to Eexact as N increases,
where the error is about O(10−7). (b) For N = 10 and h = 0.5, E1,2

(on the boundary of the supercell) and E5,6 (in the middle) versus χ at
ε = 10−3 and 10−4. One can see that the boundary effect decay with χ ,
where E5,6 converges accurately to Eexact. The systematic error of E1,2

is caused by the Trotter-Suzuki error ∼O(ε2). By fitting at ε = 10−4,
an exponential convergence E5,6 = Eexact − e−1.179χ−8.2704 is found.
For comparison, E1,2 and E5,6 obtained by exact diagonalization
(ED) at N = 12 with open and periodic boundary conditions are also
shown.

error is O(10−6) ∼ O(10−7). In Fig. 6(b), the bond energies
E1,2 (on the boundary of the supercell) and E5,6 (in the middle)
versus χ at ε = 10−3 and 10−4 are shown with N = 10 and
h = 0.5. One can see that as χ increases, both E1,2 and E5,6

converge to Eexact. E1,2 suffers a systematic error caused by
the Trotter-Suzuki decomposition, which decreases with ε. An
exponential convergence is found, e.g., for ε = 10−4, one has
E5,6 = Eexact − e−1.179χ−8.2704.

For comparison, E1,2 and E5,6 given by the exact diago-
nalization (ED) on a N = 12 chain with open and periodic
boundary conditions are shown. The finite-size effect of ED is
strong. Especially on the boundary, the error is ∼10−2. With
AOP, the error, even on the boundary, is only ∼O(ε), which
is around 10−4 ∼ 10−6. It suggests that the boundary states
provide a good approximation of the interactions between a
supercell and its infinite environment.

Figure 7 shows the error of the average energy per site

�E =
∣∣∣∣∣

1

N

N−1∑

i=0

Ei,i+1 − Eexact

∣∣∣∣∣/|Eexact|. (21)

By fitting, it is found that as N increases, the error �E

decreases in a logarithmic way,

�E = (−1.1 ln N + 4.8)×10−6. (22)

It is amazing that even with χ fixed, the error still decreases
logarithmically, which will be later explained by the entangle-
ment.

It is known that one of the most important signatures of
quantum many-body systems is entanglement [43]. To see
if AOP can truly capture the many-body characteristics of the
system with an “entanglement bath,” the entanglement entropy
at the critical point h = 0.5 is calculated. The definition of
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×

FIG. 7. The relative error of the average energy per site given by
Eq. (21). By fitting, it is found that �E satisfies a logarithmic relation
with N [Eq. (22)].

entanglement entropy is written as

S = −
χ∑

μ=1

λ2
μ ln

(
λ2

μ

)
, (23)

with λ the entanglement spectrum between two infinite halves
of the chain. Here, the chain is cut at the boundary of the
supercells. It is known that at the critical point, S scales
logarithmically with both the size of the subsystem and the
dimension cutoff of the MPS [49–53]. Figures 8(a) and 8(b)
show the χ and N dependence of S, respectively. A logarithmic
scaling behavior of S versus χ and N is obtained, consistent
with existing results. It suggests that the entanglement is
accurately captured by the boundary states with AOP. Such
a behavior of S also explains the scaling of the error shown in
Fig. 7.

Recall that N (size of the supercell) is not the size of the
subsystem when calculating the (bipartite) entanglement. In
fact, the subsystem is one half of the infinite chain, and thus
its size is infinite. The logarithmic scaling versus N implies
an equivalence between N and χ . Specifically speaking,
the increase of χ directly enables the state to carry more
entanglement, while the increase of N , which intuitively
reduces the “finite-size effect” of the supercell, strengthens

FIG. 8. The entanglement entropy S versus (a) the ring rank χ

with different supercell size N and (b) versus N with different χ . One
can see that S scales linearly with both log2 χ and log2 N , consistent
with the conformal field theory and the former numeric results
[49–53].

FIG. 9. (a) The TN of the partition function of 2D Ising model
on square lattice is formed by one inequivalent local tensor F given
in Eq. (24). The yellow shadow shows a tensor cluster with Lx = 3
and Ly = 2. (b) For different (Lx,Ly), the log-log plot of the error
of free energy (per site) versus χ is shown at the critical temperature
Tc = 2/ ln(1 + √

2), indicating an algebraic scaling between the error
and χ .

the entanglement that a fixed χ can carry. Thus the larger N

or χ is, the more the entanglement can be captured, and the
smaller the error would be. In the limit of N → ∞, one can
have the exact result (with open boundary condition, precisely
speaking) with χ = 0. The argument above actually gives the
physical picture of the “finite-size effect” in AOP.

Note that the error of energy away from the critical point
is O(10−10) with even a smaller number of iteration time to
reach the same convergence.

To demonstrate its performance on contracting a 2D TN,
the TRD is used to calculate the classical 2D Ising model
on a square lattice at the critical temperature. The obtained
free energy is compared with the exact solution by the Bethe
ansatz [54].

As shown in Fig. 9(a), the TN of the partition function of
2D Ising model is formed by one inequivalent local tensor F

defined as

Fsuslsd sr
= e−(susl+sl sd+sd sr+sr su)/T, (24)

where su, sl , sd , and sr are the four spins located on four
corners of a square and T is temperature. By using TRD on
tensor clusters with different (Lx,Ly), the χ dependence of the
error of free energy (per site) at the critical temperature Tc =
2/ ln(1 + √

2) is shown in Fig. 9(b). One can see that the larger
Lx or Ly is, the better the precision will be. Differing from
the exponential scaling at the critical point for 1D quantum
model, the log-log plot of the error versus χ indicates an
algebraic scaling in critical 2D classical systems.

Table I shows the errors with iTEBD [22], NCD [24],
and AOP by fixing χ = 16. Note that in all these three
algorithms, χ stands for the dimension of the MPS. For
iTEBD, canonicalization of MPS is employed to reach the
optimal truncations of the MPS. For NCD, the cell tensor that
is decomposed by rank-1 decomposition is renormalized so its
size reaches infinite. For AOP, I choose tensor clusters with
(Lx,Ly) = (1,1) and (3,3) to do the TRD. One can see that
AOP bears the best accuracy. A convergence of O(10−12) is
reached after O(10) iterations, implying a great efficiency.
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TABLE I. Errors of free energy (per site) of 2D Ising model
with different methods at the critical temperature. Here, I fix χ =
16. For iTEBD, canonicalization of MPS is employed. For NCD,
renormalization is used to increase the cell tensor size to infinite. For
AOP, I choose (Lx,Ly) = (1,1) and (3,3).

iTEBD [22] NCD [24] AOP (1,1) AOP (3,3)

Error 1.1 × 10−7 3.7 × 10−8 3.1 × 10−8 1.5 × 10−8

VI. AB INITIO OPTIMIZATION PRINCIPLE FOR
TWO-DIMENSIONAL QUANTUM SYSTEMS

Considering that AOP in 1D quantum systems actually
realizes the global contraction of a 2D TN (Fig. 4), it can
be used directly to contract 2D TN’s regardless of their
physical meanings. For this reason, AOP can be used to
calculate the observations and the optimal truncations of a
PEPS in real/imaginary time evolutions, which are essentially
TN contraction problems. Note that since the whole TN is
encoded, such a truncation scheme actually realizes the full
update [17,20,21] of the PEPS, even with a finite supercell.

Except using its TN contraction scheme to observe or
evolve, there is an intrinsic AOP approach for 2D (or
higher-dimensional) quantum models, benefiting from the fact
that most of the discussions given above are independent
of dimensionality. It corresponds to the TRD that encodes
a 3D uniform TN. There are also three steps: choose a
supercell, construct the optimization function F , and solve
the self-consistent equations.

Figure 10(a) gives the construction of the optimization
function F for a 2D quantum system, which is formed by
an operator F̂ in the center surrounded by five boundary
tensors. The tensors in red (XI , XII , Y I , and Y II ) provide
the “entanglement bath” that mimics the interactions between
a supercell and its environment. Figure 10(b) shows the
sketch of the operator F̂ of the 2D quantum model on
square lattice, where the supercell is chosen as a square. The
maximization of F leads to the TRD for a 3D TN shown in
Fig. 10(c). One can then define three operators and obtain
five self-consistent equations in a way similar to Eqs. (9)
and (8) and Eqs. (10)–(12), respectively. For example, Ĥ
[similar to Eq. (9)] is defined by taking away |A〉 and 〈A|
from F . Repeatedly using the self-consistent equations in a
similar way as in 1D quantum systems, one can readily see
that TRD encodes an infinite 3D TN, i.e., the 3D TN can
be reconstructed. Meanwhile, the ground state is in the form
of a PEPS formed by the tensor in blue A. Considering the
existence of the solution to the self-consistent equations, it is
similar to the AOP for 1D quantum systems: It requires the 2D
system to be invariant under spatial mirror reflections, which
is usually true for physical models.

The TRD (AOP) for a 3D TN (2D quantum systems) self-
consistently contains the TRD for a 2D TN (1D quantum
system). Specifically speaking, the optimization function F
for a 3D TN in Fig. 10(a) is a contraction of a 3D tensor
cluster. After contracting the black bonds in the z-direction, it
becomes a 2D object that has the same form as that in Fig. 5(a).
The boundary tensors satisfy the consistent equations of the
TRD in a 2D TN. For the computational cost by taking square

FIG. 10. (a) Sketch of the optimization function F for a 2D
quantum system, where the operator F̂ is located in the center. The x

and y denote the two spatial dimensions of the 2D model. The black
bonds in the z direction represent the physical indexes of the operator
F̂ , and the ground state is a PEPS formed by the blue tensor A. The
four red tensors XI , XII , Y I , and Y II are the boundary tensors with
ancillary indexes that play the role of “entanglement bath.” (b) The
operator F̂ of a 2D quantum system on a square lattice is constructed
by choosing a square as the supercell. (c) The sketch of tensor ring
decomposition (TRD) of a 3D TN, where the optimization function
F is maximized.

lattice as an example, the leading terms is from the TRD of
such a 2D TN, which scales as O(χ8d2Lx+2Ly ), where χ is the
ring rank, Lx and Ly give the size of the supercell, and d is the
dimension of a physical particle.

VII. ALGORITHMIC IMPLICATIONS OF AB-INITIO
OPTIMIZATION PRINCIPLE

AOP brings useful and novel implications to iTEBD [22]
and DMRG [15,55]. In iTEBD, one usually follows the
evolution-truncation procedure. Specifically speaking, each
time after evolving the MPS, the bond dimension increases.
Then, one finds the optimal isometry to truncate the bond
dimension so it is limited to a preset cutoff. AOP implies a
more efficient way to do this by showing that the local tensor
ASμμ′ is actually the dominant eigenstate of a matrix formed
by the local projector and the isometries [Eq. (9)]. In detail,
with a given ASμμ′ , one calculates the optimal isometries La′μν

and Raμν using iTEBD. Then, one updates ASμμ′ by solving
the eigenproblem given by Eq. (12). At the second step, in the
language of iTEBD, one evolves the MPS for infinite times
until it converges without renewing the isometries.

In this sense, AOP (in 1D) is similar to iTEBD with a super
block of N sites [22]. Normally, one only takes N = 2 in
iTEBD. One essential difference between these two schemes
is that AOP avoids the imaginary time evolution truncation of
the MPS and unifies everything to a more efficient and simple
local optimization problem. Note that the high complexities of
the existing TN-based algorithms originates mostly from the
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evolution and truncation tricks, which are strongly relies on the
details of the model. AOP largely simplified such complexities.

Considering that iTEBD is essentially a power algorithm
where the projector e−εH is plainly acted on a give state to drive
it to the ground state, it is not an efficient eigenvalue problem
solver. For a given ε [with a Trotter-Suzuki error O(ε2)], the
computational cost is approximately ∼1/ε. In AOP where the
matrices that are to be explicitly dealt with just have small
dimensions [Eqs. (9) and (8)], one can use mature techniques
(such as the Lanczos algorithm [56]) to efficiently solve the
eigenvalue problems. Consequently, the costs with different ε

are approximately the same. That is one reason for AOP to
have a higher efficiency.

Meanwhile, the tensors La′μ′ν ′ (and also Raμν) in AOP
actually gives the left (right) dominant eigenstate in an MPS
that extends in the vertical direction of the TN, which have
been proved to be useful in calculating time evolutions [57].

Besides its high efficiency, it should be emphasized
that AOP has a more elegant and natural generalization
in 2D quantum systems. Note that the complexity of the
evolution-truncation scheme in 2D largely relies on the
geometry of the lattice, while, in AOP, one avoids such
a evolution-truncation scheme and just handles a single
optimization problem, which brings great simplification and
unification to the simulation in 2D.

As to DMRG [15] one can access to the infinite chain by uti-
lizing the MPO representation of the 1D Hamiltonian [16,55].
The boundary tensors La′μν and Raμν is analog to the reduced
matrices of the left and right environments. Equation (9)
corresponds to the effective Hamiltonian in DMRG. One key
difference between (1D) AOP and DMRG is how to obtain the
boundary tensors as well as how to reconstruct the translational
invariant MPS from the local tensor, which is essential to the
algorithms. Besides, in 2D DMRG [58], one still transfers
the system into a chain with long-range interactions, and the
ground state is in a 1D MPS form that violates the area law
of 2D quantum states [59]. In this sense, the 2D AOP can
be treated as an intrinsic 2D version of infinite DMRG. The
key is to properly introduce certain ancillary particles in the
optimization problem that leads to a uniform PEPS.

As to TRD, what it can provide is far more than rank-1
decomposition. One can see that TRD is similar to the so-called
tensor train decomposition (TTD) [44], but the boundaries,
algorithms, and properties essentially differ from each other.
Specifically speaking, TTD decomposes a tensor into an MPS
with an open boundary, meaning the first and last tensors in the
MPS do not directly share any indexes. With TRD, the tensor
is decomposed into a periodic MPS formed by the boundary
tensors [Figs. 5(a) and 10(c)]. TTD is reached by a sequence
of singular value decompositions, while TRD is realized by
recursively solving the self-consistent equations to locate the
dominant eigenstates of corresponding matrices. TTD is a local
decomposition of the tensor itself, while TRD can be regarded
as a global decomposition of the infinite TN that is formed by
the local tensor.

VIII. SUMMARY AND OUTLOOK

A simple and fundamental numeric approach, AOP, is
proposed to simulate the ground states of translational invariant
quantum lattice models with strong correlations. The simula-

tion that contains infinite degrees of freedom is transformed
to a local optimization problem in a supercell, where the
entanglement between a supercell and the infinite environment
is optimally approximated by the boundary states. In AOP,
TRD is proposed, which is local but encodes the global
contraction of the infinite TN.

AOP relies little on the details of the model and has a
unified form with TRD. Thus, it is easy to be implemented
or commercialized. The current discussions suit spins and
bosons. For fermions, the “entanglement bath” in AOP should
be modified by combining with the density matrix embedding
theory [40–42].

AOP provides a fundamental picture for existing many-
body methods, providing novel connections among mean-field
theory, iTEBD, DMRG, NCD, DMET, rank-1 decomposition,
and TTD. More properties and applications of AOP as well as
TRD in the fields of both many-body physics and multilinear
algebra [45] are to be explored in the future.
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APPENDIX A: AB INITIO OPTIMIZATION
PRINCIPLE IN PRACTICE

For those who intend to use AOP to solve physical
problems, a practical introduction of how to implement AOP
is given below. This is especially for those who are not familiar
with TN algorithms. Steps 1 and 2 are for initialization. Steps
3 to 7 are to calculate TRD. Step 8 is to compute physical
quantities.

Step 1. From the Hamiltonian in Eq. (1), choose a supercell
and write the shift of bulk Hamiltonian H̃ B = Î − εĤB/2
as a matrix in local basis. Do the same thing with the
boundary Hamiltonian F̂ ∂ = Î − εĤ ∂ . Note that Ĥ B contains
all interactions inside a supercell, and Ĥ ∂ contains all
interactions between two adjacent supercells. The supercell
should be chosen so there is no interaction among nonadjacent
supercells.

Step 2. Use singular value decomposition (SVD) to calcu-
late F̂ L and F̂ R , as shown in Eq. (3). Calculate the operator F̂

as Eq. (4) [also see Fig. 2(b)] and restore it as a fourth-order
tensor.

Step 3. Give an initial guess of the boundary state |A〉,
which is a third-order tensor. While its elements can be totally
random, it is better to be symmetrical for the two ancillary
indexes, i.e., ASμμ′ = A∗

Sμ′μ, to guarantee the existence of the

eigenstates of M̂ in Eq. (8).
Step 4. Calculate F̂ in Eq. (8) [also see Fig. 3(b)] and its left

and right dominant eigenstates 〈L| and |R〉, and reshape them
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into third-order tensors. To compute this eigenvalue problem,
one can use 〈L| and |R〉 obtained from the last iteration as the
initial guess.

Step 5. Calculate the orthogonal parts of 〈L| and |R〉 that
fulfill Eq. (17) using SVD [one can see Eqs. (B8) and (B9) in
Appendix B], and update them.

Step 6. Calculate the effective Hamiltonian Ĥ using Eq. (9)
[also see Fig. 3(c)] and its right eigenstate |A〉. Again, one can
use |A〉 obtained in the last iteration as the initial guess.

Step 7. Check if |A〉 converges. If it does, then proceed to
Step 8. If not, then go back to Step 4.

Step 8. Use the tensor |A〉 to construct an MPS, which
gives the ground state of the system, and calculate the inter-
ested physical quantities, such as energy and entanglement.
According to the deductions in Appendix B, there is a simple
way to calculate observables in AOP. See Appendix C about
the computations of observables.

For choosing the value of ε to shift the Hamiltonian, it
depends on the request of precision, since ε determines the
Trotter-Suzuki error that is approximately O(ε2). Meanwhile,
the smaller ε is, the more time it will take to do Steps 5 and
6. Luckily, Ĥ and M̂ are local matrices, and their dominant
eigenvector can be efficiently found by existing eigenvalue
algorithms. In practice, a suggested value would be 10−3

to 10−6.
The efficiency of AOP algorithm is shown to be remarkably

high. One fundamental feature in AOP is the employment
of eigenvalue equations, instead of the contractions and
truncations of the TN. Comparing with iTEBD where one
only contracts one layer of MPO to the MPS and then
truncates (also see Sec. VII), while in AOP, one solves the
eigenvalue equations. Figure 11 shows the comparison of
the efficiency between these two schemes. In Fig. 11(a),
the standard AOP algorithm is used, where the eigenvalue
equations given by Eqs. (10)–(12) are solved in each iteration.
In Fig. 11(b), the results are calculated in a way similar to
iTEBD, i.e., a contraction-truncation way. In each iteration,
L and R are updated by solving Eqs. (10) and (11), which is
analogous to the canonicalization of MPS aiming at obtaining
the environment, and A is updated as A ← ĤA, which is
analogous to contracting one layer of MPO with the truncation
determined by the canonicalization. The bond energy in the
middle of the supercell �E3,4 against iteration time is given
as an example. Here, I take h = 0.5 (critical point), χ = 8,
N = 6, and ε = 10−4. One can see in Fig. 11(a) that with AOP,
it only takes about 30 iterations for �E3,4 to reach O(10−6).
For the contraction-truncation scheme in Fig. 11(b), it takes
104 iterations to converge to O(10−4). For the total CPU time,
AOP is faster almost by two orders of magnitude.

APPENDIX B: CONSTRAINTS IN AB INITIO
OPTIMIZATION PRINCIPLE

The purpose of this section is to prove that the local
eigenvalue equation that A satisfies is the one given in Sec. IV,
i.e., to prove why L̃ and R̃ can be chosen as the optimal
isometries obtained from the SVD of L and R. Meanwhile,
the deduction below will show how the entanglement spectrum
naturally appears in AOP. I will use graphic representations of
the equations to present examples.

FIG. 11. The convergence of the relative error of the bond
energy in the middle of the supercell �E3,4 along with iteration
time. The parameters are h = 0.5, N = 6, χ = 8, and ε = 10−4.
One can see in (a) that with the standard AOP, �E3,4 converges
to O(10−6) with only about 30 iterations. For comparison, in the
contraction-truncation scheme (see the details in the main text in
Appendix A), it takes O(104) iterations to converge approximately to
O(10−4). The iterations are stopped when the change of �E3,4 after
one iteration is smaller than 10−10. To reach such a convergence, the
CPU time that AOP and contraction-truncation scheme takes are 69
and 3557, respectively.

From the algorithm shown in Sec. IV (also in Appendix A),
one can see that 〈L| and |R〉 satisfy

(B1)

(B2)

The arrow denotes that after contracting all shared bonds on
the left-hand-side, the result is given by the object on the
right-hand side multiplied by a constant. Equations (B1) and
(B2) are fulfilled under the constraint Eq. (18) while optimizing
the function Eq. (7).

From the constraint given by Eq. (19), it is easy to find
that the optimization of the tensor A results in a generalized
eigenvalue problem

(B3)

For simplicity, we set the constant in Eq. (B3) as 1. X and
Y are the left and right dominant eigenvector of the matrix
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formed by A and its conjugate, which read

(B4)

(B5)

Normally, X and Y are Hermitian (because of the structure of
the matrix formed by A and A†). It is not convenient and easy
to directly solve Eq. (B3). One possible problem is that X and
Y might be singular, and the generalized eigenvalue problem
cannot be transformed into a regular one by simply taking their
inverses. Here, we suppose that the local (regular) eigenvalue
equation of A with the constraint Eq. (19) fulfilled is given by
L̃ and R̃, which reads

(B6)

One needs to find out what L̃ and R̃ are. To this end, substitute
Eq. (B6) into the right-hand side of Eq. (B3),

(B7)

Comparing the first and last expressions in Eq. (B7), one has

(B8)

(B9)

Note that any constants appearing on the right-hand side of
Eqs. (B8) or (B9) can be absorbed into X or Y . Substituting
Eqs. (B8) and (B9) into Eqs. (B1) and (B2), respectively, one
has

(B10)

(B11)

By multiplying R̃ on both sides of Eq. (B10), and multiply-
ing L̃ on both sides of Eq. (B11), one uses Eq. (B6) again and
obtains

(B12)

(B13)

By comparing Eqs. (B12) and (B13) with the eigenvalue
equations of X and Y given by (B4) and (B5), one has the
restriction for L̃ and R̃, which is

(B14)

Under the assumption that L̃ and R̃ are conjugate to each
other, Eq. (B14) directly leads to the orthogonal conditions
given by Eq. (17) in Sec. IV.

With the knowledge that L̃ and R̃ are orthogonal isometries,
one can readily see that Eqs. (B8) and (B9) can be reached by
singular value decomposition (SVD) of L and R that read

L = USV †, R = USV†.

Then, one has

L̃ = UV †, L = XL̃, X = USU †,

R̃ = UV†, R = Y R̃, Y = USU†.

It can be also seen that since S (note S = S) is a singular
spectrum that is real, X and Y are naturally Hermitian,
which is consistent with the AOP theory. In fact, S is the
entanglement spectrum of the ground state. This is because S

is the eigenvalue spectrum of X and Y , which are the left and
right dominant eigenstates of the transfer matrix that forms
〈MPS|MPS〉 (with |MPS〉 the ground state). Thus, X and Y

represent the reduced density matrix (in the ancillary space)
of the left and right infinite halves of the system, respectively.
The entanglement spectrum S is obtained by diagonalizing
such reduced density matrices with U (or U).

APPENDIX C: CALCULATIONS OF OBSERVABLES

It is very easy to calculate observables in AOP. Knowing
that the ground state |	〉 is actually an MPS, the observable
〈Ô〉 becomes the contraction of the operator, the ground-state
MPS and its conjugate, i.e., 〈Ô〉 = 〈	|Ô|	〉/Z, with the
normalizing factor Z = 〈	|	〉. In AOP, one in fact does not
have to calculate the whole contraction. From the deductions
in Appendix B, we know that with the SVD of L and R,
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one already has the dominant left and right eigenstates of the
transfer matrix of 〈	|	〉, as shown in Eqs. (B4) and (B5).
Taking the supercell size N = 4 as an example, the bond
energy in the middle of the supercell E2,3 and that between
two adjacent supercells E0,1 can be written as

(C1)

(C2)

Equations (C1) and (C2) can be easily generalized to other
observables.
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