
PHYSICAL REVIEW E 93, 053308 (2016)

Statistical mechanical analysis of linear programming relaxation for
combinatorial optimization problems

Satoshi Takabe* and Koji Hukushima
Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

(Received 28 January 2016; revised manuscript received 13 April 2016; published 26 May 2016)

Typical behavior of the linear programming (LP) problem is studied as a relaxation of the minimum vertex
cover (min-VC), a type of integer programming (IP) problem. A lattice-gas model on the Erdös-Rényi random
graphs of α-uniform hyperedges is proposed to express both the LP and IP problems of the min-VC in the
common statistical mechanical model with a one-parameter family. Statistical mechanical analyses reveal for
α = 2 that the LP optimal solution is typically equal to that given by the IP below the critical average degree c = e

in the thermodynamic limit. The critical threshold for good accuracy of the relaxation extends the mathematical
result c = 1 and coincides with the replica symmetry-breaking threshold of the IP. The LP relaxation for the
minimum hitting sets with α � 3, minimum vertex covers on α-uniform random graphs, is also studied. Analytic
and numerical results strongly suggest that the LP relaxation fails to estimate optimal values above the critical
average degree c = e/(α − 1) where the replica symmetry is broken.
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I. INTRODUCTION

Relaxation for discrete optimization problems is a basic
and generic strategy to solve them approximately. Using
relaxation techniques by which a part of an optimization
problem is modified, we substitute easy problems for hard
problems to solve. A striking example is a relaxation for
integer programming (IP) problems. Although the IP problem
is generally NP hard, the relaxed linear programming (LP)
problem belongs to the class of P [1]. This fact demonstrates
that the LP relaxation enables us to approximate the IP
problem in polynomial time. The technique is applied to
various practical optimizations such as vehicle routing [2],
scheduling [3], and Boolean compressed sensing [4].

In this relaxation strategy, evaluating the performance of
approximations is an important issue both for worst-case and
average-case analysis. With improvement of mathematical
techniques, worst-case analyses have been strongly advanced
in theoretical computer science. The relaxation plays a key
role in the construction of constant-factor-approximation algo-
rithms for combinatorial optimization problems [5]. Another
attractive issue is average-case behavior of approximations
for randomized optimization problems. It provides not only
prediction of the performance of approximations but also
typical hardness of optimizations. Analytical studies of greedy
algorithms reveal average properties of problems and their
intrinsic structures [6]. It is still challenging, however, to study
the typical behavior of relaxation analytically.

Typical hardness of the optimization problems also has
attracted physicists’ interests because it is described using
a type of phase transition in statistical mechanics. With the
development of the spin-glass theory since the 1970s [7], a
mean-field picture with replica theory has been established.
The spin-glass techniques were then applied to many opti-
mization problems. The picture of phase transitions breaking
a replica symmetry (RS) is associated with the typical hardness
of optimizations [8,9].
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Among them, the minimum vertex cover (min-VC) has also
been studied as a good example to which the spin-glass theory
is applied. It is a well-known NP-hard combinatorial optimiza-
tion problem defined on a graph. Various types of exact or
approximation algorithms such as a leaf removal (LR) [10] are
proposed. The difficulty of approximation has been studied by
computer scientists [11]. In the statistical mechanical view,
the average-case properties have been studied extensively
in terms of phase transition [12]. For instance, mean-field
analyses of the min-VC on random graphs conclude that
replica symmetry breaking (RSB) occurs at a critical average
degree [13–15]. Typical behavior of the LR and its variants
are also studied in solving the min-VC approximately [16,17].
They strongly associate the typical hardness in approximation
with the mean-field picture of the RSB transition. Recently,
average properties of the minimum hitting set (min-HS), the
min-VC on hypergraphs, are also analyzed [18,19]. While the
min-HS involves the multibody interactions from the view of
statistical mechanics, it is suggested that the goodness of the
LR algorithm is characterized by the phase transition in the
spin-glass theory.

The nontrivial relation between the replica symmetry and
the typical hardness in approximation was also suggested in
the case of continuous relaxation by physicists in [20,21].
They studied continuous relaxation with a spherical constraint,
which changes optimization problems to NP-hard quadrati-
cally constrained programming problems. Although it is still
difficult to solve the relaxed problems, these studies indicate
the existence of the typical tightness of relaxation techniques.
It is of interest whether the relation holds in the case of
polynomially solvable relaxation such as the LP relaxation. In
theoretical computer science, mathematical analysis of the LP
relaxation for min-VCs with weights following an exponential
distribution is performed [22]. Such analyses revealed that the
LP relaxation is closely related to the belief propagation in
statistical physics and it is asymptotically tight if the belief
propagation can converge with high probability. Recently, the
typical behavior of the LP relaxation for the unweighted min-
VCs is studied numerically [23], suggesting that a threshold
of good-wrong approximation is close to the RS-RSB one and
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that it is well above a mathematical prediction. In our previous
paper [24], we proposed a statistical mechanical analysis of
the LP relaxation and showed that these two thresholds are
coincident. These results constitute a demonstration that the
LP relaxation typically approximates an NP-hard problem with
good accuracy.

As described in this paper, we study the typical behavior
of the LP relaxation for the min-VCs defined on α-uniform
hypergraphs using statistical mechanical techniques. The min-
VC with α = 2 has a novel property called half integrality,
which enables us to reduce the continuous degree of freedom
in the LP to three states. Consequently, a three-state lattice-gas
model called an LP-IP model is introduced for studying the
LP relaxation of the min-VC. Statistical mechanical analysis
derives successfully an analytical threshold of the typical
hardness of the LP relaxation, which coincides with the
RS-RSB transition of the original min-VC. Although a brief
report on the LP-IP model based on the replica method
has already been published [24], this paper presents the full
details of statistical mechanical analyses of the LP relaxation
for min-VCs including the analysis of the cavity method.
Additionally, we discuss the LP relaxation for the min-HS
to examine whether its typical hardness is associated with
the RS-RSB transition. Because the min-HS, unfortunately,
has no half integrality, the LP-IP model does not completely
capture the LP relaxation of the min-HS but still provides an
interesting feature on the stability of integral solutions against
a perturbation toward continuous values.

This paper is organized as follows. In the following
section, we define the min-VC and its LP relaxation. To
investigate randomized problems, random graphs and their
useful properties are also introduced. We explain the definition
of average-case properties over random graphs and the typical
behavior of the LP relaxation. In Sec. III we propose the
LP-IP model and present details of the analysis using the
replica method. The model with three-state Ising spins includes
the min-VC. It also includes LP-relaxed solutions as specific
limits in a model parameter. By choosing the parameter in the
model appropriately, we obtain three RS solutions for ground
states of the model. We also devote some discussion to their
stability. In Sec. IV, we present some numerical results of
the LP relaxation. In the case of the min-VCs, the statistical
mechanical analysis agrees well with the numerical results.
For the min-HS, however, analytical results are no longer
coincident with the numerical results but these results suggest
that the typical hardness of the LP relaxation is associated
with the RS-RSB transition. The last section is devoted to a
summary and discussion of the results and salient implications.
In the Appendix, an alternative cavity analysis of the LP-IP
model is presented.

II. MIN-VC, LP RELAXATION, AND THEIR
RANDOMIZATION

A. Definitions of min-VC and hypergraphs

Let an α-uniform hypergraph G = (V,E) be a hypergraph
of which the edges connect to α different vertices in V without
multiplicity. Each vertex is labeled by i ∈ V = {1, · · · ,N}.
Each edge in G is then defined as Ea = (i1, · · · ,iα) ∈ E ⊂

V α (i1 < · · · < iα), where a ∈ {1, · · · ,M = |E|}. We assign
a binary variable xi to the ith vertex. The vertex i is called
covered if xi = 1, and is called uncovered otherwise.

The min-VC problem offers each edge for the constraint
that it should connect to at least one covered vertex. The
covered vertex set V ′ is defined as a subset of V that satisfies
all constraints for edges. The (unweighted) min-VC problem
searches for the minimum cardinality |V ′| of the covered
vertex set. As described in this paper, the minimum cover ratio
xc(G) = |V ′|/N on G is studied especially in the large-N
limit. Then, it is expressed as a form of the IP problem as

Minimize xIP
c (G) = N−1cTx,

Subject to Ax � 1, x � 0, x ∈ ZN, (1)

where x = (x1, · · · ,xN )T, c = (1, · · · ,1)T, and an M × N

incident matrix A = (aij ) is defined as aai1 = · · · = aaiα = 1 if
(i1, · · · ,iα) = Ea and aaj = 0 otherwise. The inequality holds
on each element of vectors. Here, the min-VC problem on
hypergraphs (α � 3) is especially called the min-HS. The
min-VC and min-HS, as well as other IP problems, are difficult
to solve exactly in their worst case.

B. LP relaxation

The LP relaxation is a fundamental approximation for the
IP problem. To use the LP relaxation, it is sufficient to replace
the integral conditions x ∈ ZN in the IP with continuous ones
x ∈ RN . In the case of the min-VC, the LP-relaxed problem
reads

Minimize xLP
c (G) = N−1cTx,

Subject to Ax � 1, x � 0, x ∈ RN . (2)

Although this change on degrees of freedom engenders good
feasibility of the problems, it might provide optimal solutions
different from the IP problems.

From the view of computational complexity and approxi-
mation, it is important whether the optimums can be obtained
exactly, or not, using the LP relaxation. The Hoffman-Kruskal
theorem is a mathematical result for the LP relaxation [25]. Let
us consider an LP problem given as min c̃Tx, s.t. Bx � p in
general. We define a matrix B as a totally unimodular matrix if
all sub-determinants of B take only −1, 0, or 1. The theorem
claims that the optimal value of the LP-relaxed problem is
equal to that of the original IP problem if the matrix B is a
totally unimodular matrix and p is an integral vector. Because
an incident matrix A of a hypertree, i.e., a hypergraph with
no cycles, is totally unimodular, the theorem ensures that the
optimal value of the min-VC on a hypertree can be found
exactly by the LP relaxation.

C. Randomized min-VC

As described in Sec. I, it is our goal to find a phase transition
of the typical behavior of the LP relaxation for the randomized
min-VC. Here, we introduce the Erdös-Rényi random graphs
as a graph ensemble. The Erdös-Rényi random graphs are
generated by choosing edges from all pairs of N vertices with
probability p. The number of edges is then expected to be
pN (N − 1)/2. The average degree defined by the average

053308-2



STATISTICAL MECHANICAL ANALYSIS OF LINEAR . . . PHYSICAL REVIEW E 93, 053308 (2016)

number of edges connected to each vertex is p(N − 1). In this
paper, we set p = c/N where c is a constant average degree
of O(1), leading to a sparse random graph. In the case of α-
uniform hypergraphs, the definition of the ensemble is similar
to the α = 2 case. Each edge is set randomly with probability
c(α − 1)!/Nα−1 from every α-tuple of vertices. The degree
distribution then converges to the Poisson distribution with
mean c in the large N limit. One of the novel properties of
the ensemble is to exhibit a bond-percolation transition at
cp = 1/(α − 1). If c < cp, most of vertices belong to trees
and a finite number of short cycles exist. Otherwise, a giant
connected component emerges. There exists a huge number
of long cycles in the component. Another property is called
locally tree-like structure [26]. The likelihood of short cycles
decays as the size of graphs grows if the average degree c is
constant. The absence of short cycles indicates that a state on a
vertex is predictable using information related to its neighbors.
This structure is especially important when the cavity method
is applied to a system.

The min-VC problems on the Erdös-Rényi random graphs
have been studied using the replica method [13] and cavity
method [14,27] developed in the spin-glass theory. These
studies provide an estimation of the average minimum-cover
ratio, i.e., an optimal value averaged over random graphs in
the thermodynamic limit, defined as

xIP
c (c) = lim

N→∞
xIP

c (G), (3)

where (· · · ) is an average over the Erdös-Rényi random
graphs with N vertices and the average degree c. These
statistical mechanical analyses under the RS ansatz estimate
xc(c) of the problem, including the case of hypergraphs, for
c < c∗ = e/(α − 1) (e = 2.71 · · · ) [18]. Above the threshold
c∗, the replica symmetry is broken, which results in an
incorrect estimation of the minimum-cover ratio. Aside from
these studies, it was also confirmed that a polynomial-time
approximation algorithm called leaf removal works well
in the RS region [16]. However, in the RSB region, this
graph-removal algorithm cannot estimate xc correctly. A giant
connected component called the LR core is left. These results
suggest that the replica symmetry in the spin-glass theory has
a close relation to the typical behavior of an approximation
algorithm [18,19].

Here, we specifically examine the LP relaxation for min-
VCs and min-HSs. The LP-relaxed average minimum-cover
ratio xLP

c (c) is also a valid quantity used to evaluate the typical
behavior of the LP relaxation. Given that the average degree
c < cp, a large part of the graphs consists of (hyper)trees. The
connected component with short cycles consists of O(log N )
vertices. Therefore, it does not affect the average ratio. From
the Hoffman-Kruskal theorem, the LP-relaxed optimal value
on (hyper)trees is equal to that of the original min-VC
problems. We therefore confirm that xLP

c (c) = xIP
c (c) if c < cp.

Once the bond percolation occurs above cp, the Hoffman-
Kruskal theorem cannot be applied directly because a giant
component with long cycles exists. The recent numerical study
suggests that the relation xLP

c (c) = xIP
c (c) is correct up to c =

2.62(17) [23] above the bond-percolation threshold cp = 1
in the case of min-VCs with α = 2. In the next section, we
analytically obtain the threshold by analyzing the LP-IP model.

III. LP-IP MODEL

In this section, typical behavior of the LP relaxation for min-
VC problems is studied using the replica method. Although it
is difficult in general to analyze a model with continuous spin
variables on sparse random graphs, a novel property called
half integrality enables us to estimate the LP-relaxed min-VC
with α = 2 using a statistical mechanical method.

A. Half integrality

By applying an appropriate transformation, the LP problem
is able to map onto an optimization problem constrained on a
convex polytope or simplex. Then, an extreme-point solution
is defined with a feasible solution located on an extreme point
of the polytope. It is sufficient to search an extreme-point
solution for solving the LP problem the cost function of which
is linear. The simplex method, the first useful algorithm for
the LP problems, is based on this strategy [28]. Although it
takes exponential time in the worst case, it solves most of the
problems in polynomial time.

In the case in which α = 2, the LP-relaxed min-VC
problems have half integrality, that is, all elements of an
arbitrary extreme-point solution consist of half integers [29].
From this property, we define the minimum half-integral ratio,

ph(G) = 1

N
min

x: optimal

∣∣∣∣
{
i ∈ V

∣∣∣∣ xi = 1

2

}∣∣∣∣, (4)

on a graph G. It results in xLP
c (G) = xIP

c (G) if ph(G) = 0.
Considering random graphs, the average ratio of half integers
is defined as

ph(c) = lim
N→∞

ph(G). (5)

Along with xLP
c (c), ph(c) provides a good evaluation of the

typical behavior of the LP relaxation. The half integrality also
enables us to analyze the LP relaxation by the three-state Ising
model with hard-core constraints as shown later. As described
in this paper, we specifically study the model by the replica
method or cavity method. However, the LP relaxation for
the min-HS (α � 3) has no half integrality. One can expect
that variables in the LP-relaxed solutions take multiples of
1/α, but this is not the case. Figure 1 presents a frequency
distribution of variables of the LP-relaxed solutions solved
by a revised simplex method using LP_solve_5.5 solver [30],
which searches extreme-point solutions. A discrete property
of the solutions for α > 2 is denied by the observation. In this
case, we discuss the results of the model as an approximation
of the LP relaxation and examine its validity mainly using
numerical simulations.

B. LP-IP model

The min-VC and min-HS are represented by a hard-core
lattice-gas model. We first transform an occupancy variable xi

to a three-state Ising variable σi ∈ {−1,0,1} by σi = 2xi − 1.
If σi = 1, vertex i is covered and σi = 0 represents xi = 1/2.
The partition function of the three-state Ising model is the
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FIG. 1. Frequency distribution of variables in the LP-relaxed min-
HS, averaged over 100 random graphs with α = 3, N = 1600, and
c = 2.0.

following:

�(G)=
∑

σ

exp

(
−μ

∑
i

σi

) ∏
{i1,··· ,iα}∈E

θ

⎛
⎝ iα∑

j=i1

σj + α−2

⎞
⎠.

(6)
Therein, θ (x) is a unit step function that takes one if x � 0 and
zero otherwise. Although the ground-state energy corresponds
to the LP relaxed value, the ground states of the model
might differ from the optimal extreme-point solutions. On
graph G1 = ({1,2},{(1,2)}), for example, optimal extreme-
point solutions are (x1,x2) = (1,0) and (0,1), but the ground
states of the model (6) include another solution (x1,x2) =
(1/2,1/2) in addition to the correct ones, which produces a
wrong estimation of ph(G1). Omitting this trivial ground state,

a penalty term is introduced as follows:

�r (G) =
∑

σ

exp

(
−μ

∑
i

σi − μr
∑

i

(
1 − σ 2

i

))

×
∏

{i1,··· ,iα}∈E

θ

⎛
⎝ iα∑

j=i1

σj + α − 2

⎞
⎠. (7)

The penalty term adds some cost with a constant r ∈ R to
half-integral variables. When r is larger than 1, it is regarded
as Ising spin constraints in the large-μ limit. Consequently,
the ground states correspond to IP optimal solutions. This
limit is defined as an IP limit. In the case in which 0 < r < 1
and μ → ∞, the number of half integers is minimized by
the penalty term though the ground-state energy is equivalent
to LP-relaxed optimal values. We thus call this limit an LP
limit. For negative r , the penalty terms have no influence on
the system. This three-state limit provides the same ground
states obtained by Eq. (6), including trivial ground states. We
designate this effective model the LP-IP model, which enables
us to estimate the LP relaxation and original IP problems in
the case in which α = 2 by setting the value of r appropriately.

The average minimum cover ratios, xLP
c (c) and xIP

c (c),
are the densities averaged over the random graph ensemble.
It is our task to calculate an average free-energy density
N−1ln �r (G). The replica method and cavity method are often
used to estimate the free-energy density directly. Here, we use
the replica method developed in an earlier study [31]. The
alternative cavity method is presented in the Appendix, where
the essentially same results derived in this section are obtained.

In the replica method, we use the replica trick ln �r (G) =
limn→0(�r (G)n − 1)/n. Considering that each edge is set
randomly with probability (α − 1)!c/Nα−1, the average over
random graphs is taken as shown below:

�r (G)n =
∑

σ

exp

(
−μ

n∑
a=1

∑
i

σ a
i − μr

n∑
a=1

∑
i

{
1 − (

σa
i

)2
}) n∏

a=1

∏
{i1,··· ,iα}∈E

θ

⎛
⎝ iα∑

j=i1

σj + α − 2

⎞
⎠

=
∑

σ

exp

⎡
⎣−μ

∑
a,i

σ a
i − μr

∑
a,i

{
1 − (

σa
i

)2
}

− cN

α
+ c

αNα−1

∏
i1<···<iα

n∏
a=1

θ

(
ξa +

∑
k

ξ a
k + α − 2

)
+ O(1)

⎤
⎦. (8)

We introduce an order parameter of the replicated system [31] as

c(�ξ ) = 1

N

∑
i

n∏
a=1

δ
(
ξa,σ a

i

)
, (9)

where δ(·,·) is Kronecker’s delta. Rewriting Eq. (8) by using a replicated vector �ξ and its frequency ratio, the partition function is

�r (G)n 	
∫

�

⎛
⎝∏

�ξ
dc(�ξ )

⎞
⎠ exp

⎧⎨
⎩N

⎡
⎣−

∑
�ξ

c(�ξ ) ln c(�ξ ) − μ
∑

�ξ
c(�ξ )ξ − μr

⎛
⎝n −

∑
�ξ

c(�ξ )ξ̃

⎞
⎠− c

α

+ c

α

∑
�ξ,{−→ξk }

c(�ξ )
α−1∏
k=1

c(
−→
ξk )

n∏
a=1

θ

(
ξa +

∑
k

ξ a
k + α − 2

)⎤⎦
⎫⎬
⎭, (10)
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where ξ = ∑n
a=1 ξa , ξ̃ = ∑n

a=1(ξa)2, and

� =
⎧⎨
⎩{c(�ξ )}

∣∣∣∣∣∣
∑

�ξ
c(�ξ ) = 1, c(�ξ ) � 0 (∀�ξ ∈ {±1,0}n)

⎫⎬
⎭. (11)

Introducing a Lagrange multiplier λ for
∑

�ξ c(�ξ ) = 1, we obtain saddle-point equations for {�ξ} as follows:

c(�ξ ) = exp

⎡
⎣−1 + λ − μξ + μr ξ̃ + c

∑
−→
ξ1 ,··· ,−−→ξα−1

α−1∏
k=1

c(
−→
ξk )

n∏
a=1

θ

(
ξa +

α−1∑
k=1

ξa
k + α − 2

)⎤⎦. (12)

To solve these equations, we assume the replica symmetric ansatz that the order parameter depends only on ξ and ξ̃ . Two effective
fields h1 and h2 are then defined as

c(�ξ )
RS= c(ξ,ξ̃ ) ≡

∫
dP (h1,h2)

1

Zn
exp(μh1ξ + μh2ξ̃ ), (13)

where Z = 1 + 2 exp(μh2) cosh(μh1) [32]. Then, Eq. (12) is represented by a joint probability distribution P (h1,h2). Using the
fact that the numbers of ξa = −1 and 0 in �ξ are given, respectively, by (ξ̃ − ξ )/2 and n − ξ̃ , we find the following:

∫
dP (h1,h2)

1

Zn
exp(μh1ξ+μh2ξ̃ ) = exp

⎡
⎣−1+λ−μξ+μr ξ̃+c

∫ α−1∏
k=1

dP
(
h

(k)
1 ,h

(k)
2

){
1−exp

[
μ
∑

k

(−h
(k)
1 +h

(k)
2

)]
Zα−1

}n−ξ̃

×
(

1−exp
[
μ
∑

k

(−h
(k)
1 +h

(k)
2

)]
Zα−1

{
1+

∑
k

exp
[
μ
(
h

(k)
1 −h

(k)
2

)]}) ξ̃−ξ

2

⎤
⎦. (14)

A Laplace transformation enables us to write down a self-consistent equation of P (h1,h2):

P (h1,h2) =
∞∑

d=0

e−c cd

d!

∫ d∏
i=1

α−1∏
k=1

dP
(
h

(i,k)
1 ,h

(i,k)
2

)× δ

(
h1 + 1 +

d∑
i=1

u2
({(

h
(i,k)
1 ,h

(i,k)
2

)}
; μ
))

× δ

(
h2 − μr−1 +

d∑
i=1

[
u1
({(

h
(i,k)
1 ,h

(i,k)
2

)}
; μ
)− u2

({(
h

(i,k)
1 ,h

(i,k)
2

)}
; μ
)])

, (15)

where

u1
({(

h
(i,k)
1 ,h

(i,k)
2

)}
; μ
) = 1

μ
ln

[
1 − exp

[−∑α−1
k=1 μ

(
h

(i,k)
1 − h

(i,k)
2

)]
∏

k

{
1 + exp

[
μ
(
h

(i,k)
1 + h

(i,k)
2

)]+ exp
[− μ

(
h

(i,k)
1 − h

(i,k)
2

)]}
]
, (16)

and

u2
({(

h
(i,k)
1 ,h

(i,k)
2

)}
; μ
) = 1

2μ
ln

[
1 − exp

[−∑α−1
k=1 μ

(
h

(i,k)
1 − h

(i,k)
2

)](
1 +∑

k exp
[
μ
(
h

(i,k)
1 − h

(i,k)
2

)])
∏

k

{
1 + exp

[
μ
(
h

(i,k)
1 + h

(i,k)
2

)]+ exp
[− μ

(
h

(i,k)
1 − h

(i,k)
2

)]}
]
. (17)

Our aim is to solve this equation in the μ → ∞ limit. The parameter r has a crucial role in the limit.
The following three cases are characterized by the value of r .

C. Case 1: IP limit (r > 1)

In the case in which r > 1, the effective field h2 diverges. Then, the self-consistent equation of P (h1,∞) is reduced to

P (h1,∞) =
∞∑

d=0

e−c cd

d!

∫ d∏
i=1

dP
(
h

(i)
1 ,∞)

δ

(
h1 + 1 + 2

∑
i

α−1∏
k=1

θ
(− h

(k)
1

)
max

(
h

(1)
1 , · · · ,h

(α−1)
1

))
. (18)

This equation is equivalent to that of the original min-VC on α-uniform hypergraphs [18]. P (h1,∞) has a sharp peak around
some integral values of h1 if μ � 1. We therefore assume an integer-field ansatz that the effective field h1 takes an integer in the
μ → ∞ limit. Equation (18) is solved under this ansatz. The average minimum cover ratio is expressed as shown below:

xIP
c (c) = 1 −

[
W [(α − 1)c]

(α − 1)c

] 1
α−1
[

1 + W [(α − 1)c]

α

]
. (19)
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Therein, W (x) denotes the Lambert’s W function defined by
W (x)eW (x) = x. The RS ansatz gives the correct value of xIP

c (c)
below the threshold c∗ = e/(α − 1).

D. Case 2: LP limit (0 < r < 1)

Let us consider the case in which 0 < r < 1. Figure 2
shows a numerical solution of Eq. (15) with μ = 30 obtained
using the population dynamics [33]. Results show that the
joint probability density P (h1,h2) is supported on triangular
parts located at (h1,h2) = (m + l/2 − 1, − l/2) with m,l � 0
and m,l ∈ Z. Considering that the effective fields fluctuate
because of the infinitesimal penalty μr−1, these values are
represented by (m + l/2 − 1 + vμr−1, − l/2 + wμr−1) with
some coefficients v and w. The numerical simulations imply
that the fluctuation has the following property:

w � 1, − w + 1 � v � w − 1. (20)

This infinitesimal-field ansatz is conserved by Eq. (15). It
is also consistent with numerical solutions obtained by the
population dynamics.

The joint probability distribution of the effective field is
then decomposed into some probabilities with support on each
triangle as

P (h1,h2) =
∞∑

l,m=0

R(l,m) (21)

where

R(l,m) =
∫

dP (h1,h2)
∑

(v,w)∈D
δ

[
h1−

(
m+ l

2
−1

)
−vμr−1

]

× δ

(
h2 + l

2
− wμr−1

)
, (22)

and D = {(v,w) ∈ Z2|w � 1, − w + 1 � v � w − 1}.
A set of effective fields (h1,h2) is distinguished

using a likelihood of spin values. We define sev-
eral regions as follows: P = {(h1,h2)| h2 < −|h1|}, Q =
{(h1,h2)| h2 > h1, h1 < 0}, R = {(h1,h2)| h2 > 0, h1 = 0},
and S = {(h1,h2)| h2 > −h1, h1 > 0}. When we define a set

-1  0  1  2  3  4
h1

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

h 2
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-6.5
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-5

-4.5
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-3.5

-3

FIG. 2. Saddle-point solution P (h1,h2) of Eq. (15) obtained using
a population dynamics with α = 2, c = 4, μ = 30, and r = 0.01. The
fraction on each point is shown by the logarithmic gray scale. The
number of population is 104 and 104 iterations are executed.

of probabilities that a spin takes 1, 0, and −1 as (p1,p0,p−1),
the sets in each region of P , Q, R, and S are (0,1,0), (0,0,1),
(pα,0,1 − pα) with pα ∈ (0,1) and (1,0,0), respectively. As-
suming Eq. (20), the weights of these states read

P =
∞∑
l=2

R(l,0), Q = R(0,0) + R(1,0),

(23)

R = R(0,1), S =
∑

m+l�2,m�1

R(l,m).

Equation (15) enables us to obtain self-consistent equations as
follows:

P =
∑

k

e−c ck

k!
{1 − (Q′)α−1}k − Q = e−c(Q′)α−1 − Q,

Q = Q′ + Q′′,

Q′ =
∑

k

e−c ck

k!
{1 − (Q′)α−1 − (α − 1)(P + Q′′)(Q′)α−2}k

= exp[−c(Q′)α−2{(α − 1)(P + Q) − (α − 2)Q}],

Q′′ =
∑

k

e−k ck

k!
k(α − 1)(P + Q′′)(Q′)α−2

× {1 − (Q′)α−1 − (α − 1)(P + Q′′)(Q′)α−2}k−1

= c(α − 1)(P + Q′′)(Q′)α−1,

R =
∑

k

e−c ck

k!
k(Q′)α−1

× {1 − (Q′)α−1 − (α − 1)(P + Q′′)(Q′)α−2}k−1

= c(Q′)α,

S = 1 − P − Q − R, (24)

where Q′ = R(0,0) and Q′′ = R(1,0). Substituting X = P +
Q and Y = Q′, we find

X= exp(−cY α−1), Y= exp{−cY α−2[(α−1)X − (α−2)Y ]}.
(25)

The spin variable takes 1 with probability pα and −1 otherwise
if (h1,h2) is located in region R. It is the third ansatz to
consider the probability pα = 1/α on α-uniform hypergraphs.
Then, using the solution of Eq. (25), the LP-relaxed average
minimum cover ratio reads

xLP
c (c) = 1−1

2

[
X+Y+c(α−1)(X−Y )Yα−1+2c

α−1

α
Yα

]
,

(26)

and the average fraction of half integers is represented as

ph(c) = (X − Y )[1 − c(α − 1)Yα−1]. (27)

For any α, X is equal to Y below the average degree
c∗ = e/(α − 1). In this case, X = Y = [W ((α − 1)c)/(α −
1)c]1/(α−1) engenders xLP

c (c) = xIP
c (c) and ph(c) = 0, which

suggests that the LP relaxation typically solves the problem
with high accuracy. However, it is apparent that X > Y leads
to ph(c) > 0. As presented in later sections, the LP-relaxed
value is apparently below the optimal one. These facts reveal

053308-6



STATISTICAL MECHANICAL ANALYSIS OF LINEAR . . . PHYSICAL REVIEW E 93, 053308 (2016)

0

 0.5

1

 1.5

2

0 1 2 3 4 5

m
ax

 |Λ
(c

)|

c

α=2
α=3

FIG. 3. Maximal absolute eigenvalue for the local-stability matrix
as a function of the average degree c. Solid and dotted lines represent
the case of min-VC (α = 2) and min-HS (α = 3), respectively. The
horizontal solid line is max |�(c)| = 1, above which the local stability
breaks.

that a phase transition as for the typical behavior of the LP
relaxation occurs at critical average degree c = c∗. In the case
of α = 2, ph(c) is equivalent to the average fraction of a core
generated by a leaf removal algorithm [16] though it is not the
case if α � 3 [18].

Here, we discuss the stability of the RS solution. In terms
of statistical mechanics, the convexity of the free energy
called the de-Almeida and Thouless (AT) condition [34] is
a reasonable qualification to study its stability. Unfortunately,
however, no method has been established to verify the AT
condition of the models defined on finite connectivity graphs.
As a necessary condition, we study local stability of the
self-consistent equations [35]. A perturbation (δX,δY ) added
to a possible solution (X,Y ) is transformed through Eq. (25) as(

δX′
δY ′

)
=
(

0 WX

WY (α − 2)W (X − Y )

)(
δX

δY

)
, (28)

where W = −c(α − 1)Yα−2. The eigenvalues of the matrix are

�(c) = W

2
[(α − 2)(X − Y ) ±

√
(α − 2)2(X − Y )2 + 4XY ].

(29)

The solution of Eq. (15) is stable in terms of its self-consistent
equations if the maximal absolute value of these eigenvalues
is below 1. In the case of the min-VC with α = 2, �(c)
increases below c < c∗ = e and reaches 1 at c = c∗. Above the
threshold, however, it decreases and the RS solution remains
stable up to c = ∞, as shown in Fig. 3. In contrast, �(c)
of min-HSs with α � 3 increases monotonously. The RS
solution loses its linear stability above the threshold. This
difference shows that the half-integer relaxation in our model
is insufficient for the min-HS to describe the LP-relaxed
solutions, whereas the min-VC holds the half integrality.

E. Case 3: Three-state limit

For the parameter r < 0, the penalty term does not affect
the system. The ground states consist not only of optimal

extreme-point solutions but also of other trivial ground states.
The RS solution in this limit thus cannot predict the typical
behavior of the LP relaxation except for its approximate value.
For example, the half-integral ratio ph is always positive for
any c, which is quite different from numerical results of the
LP problem shown below.

IV. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations of two
types to confirm our RS analyses in the LP limit and IP limit.
One is the Markov-chain Monte Carlo simulation for estimat-
ing optimal values of the original problems. We especially
use the replica-exchange Monte Carlo (EMC) [36,37] method
to accelerate equilibration of the system. We set 50 replicas
with different values of chemical potential. An optimal value
on each graph is evaluated by the minimum density found
in at least 217 Monte Carlo steps. It is then averaged over
800 random graphs with 16–512 vertices and extrapolated to
xIP

c using a quadratic function of N−1. The evaluated optimal
values are compared to the analytical RS solutions of the LP-IP
model. The other is LP relaxation. It is performed mainly to
examine the validity of LP-limit solutions for both min-VCs
and min-HSs. We generate at least 800 random graphs and
solve the LP-relaxed problems using the LP_solve_5.5 solver.
Especially in the case of min-VCs, the LR algorithm is
executed as pretreatment because of accurate estimation of
the half-integral ratio ph.

We first discuss numerical results for the optimal or
approximate values of min-VCs. Figure 4 shows optimal or
approximate cover ratios obtained using the EMC and LP
relaxation. For a relatively small average degree, it is apparent
that the RS solutions and LP-relaxed numerical results well
agree with the optimal values estimated by the EMC. This
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 0.48

 0.5

 0.52

 0.54

 2  2.5  3  3.5  4e

x c
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EMC
RS (IP-limit)

RS (LP-limit)
LP (N=50)

LP (N=200)

FIG. 4. The minimum-cover ratio in Erdös-Rényi random graphs
with α = 2 as a function of the average degree c. Circles are numerical
results given by the replica exchange Monte Carlo method. Square
marks are numerical results obtained using the revised simplex
method with vertex cardinalities N = 50 (open) and 200 (filled).
These are averaged over 800 random graphs for the Monte Carlo
method and 1600 random graphs for the LP relaxation. The solid and
dotted lines, respectively, show the RS solutions in the IP limit and
the LP limit. The vertical dashed line represents the critical average
degree c∗ = e.
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FIG. 5. Half-integral ratio ph as a function of the average degree
c. Circles denote data obtained only using the revised simplex method
with vertex cardinality N = 800. Other open marks are numerical
results obtained using the simplex method after running a leaf removal
algorithm with N = 50, 200, 800, and 2000. These are averaged over
1600 random graphs. The solid line represents the RS solution in
the LP limit. The vertical dashed line represents the critical average
degree c∗ = e.

shows that the LP relaxation typically approximates the orig-
inal problems in good accuracy in the RS phase. In contrast,
when the average degree is above the critical threshold c = e,
the RS solutions in the IP limit become unstable. It leads
to a wrong evaluation for the optimal values compared to the
EMC. Then higher RSB solutions are necessary to estimate the
optimal values exactly. In the case of the LP relaxation, our
statistical mechanical prediction still agrees with the numerical
data. We also confirm that the LP relaxation typically fails to
estimate the optimal values if the average degree is larger than
c∗. The LP-relaxed approximate value of the min-VC goes to
1/2 in the large-c limit, while the optimal value of the min-VC
is asymptotically close to 1.

Next, we specifically examine the half-integral ratio ph

representing a typical property of the approximate solutions.
In Fig. 5, it is apparent that numerical data obtained using
the LP relaxation are well above our analytic prediction.
Generally speaking, LP-relaxed problems have several optimal
extreme-point solutions because of the existence of a leaf, a
pair of vertices both of which are of degree 1. For instance,
we assume that a graph G2 consists of an odd cycle and a
leaf, and that a vertex in the cycle is connected to one in
the leaf by an edge. Then, an LP-relaxed min-VC on G2 has
two solutions: one has all half-integral variables; the other has
integral variables in the leaf. If one simply runs a solver, then
one obtains the average ratio with half-integral variables, not
the minimum ratio ph predicted by the LP-IP model. For this
reason, the discrepancy in ph arises. We therefore perform an
LR algorithm before executing the LP relaxation, by which
half-integral variables induced by the leafs can be avoided.
Figure 5 shows the minimum half-integral ratio estimated
using the procedure. As expected, the modified LP method
reduces the number of half-integral variables after performing
the LR algorithm. Therefore, this LR+LP method obtains the
optimal extreme-point solutions and improves the numerical
estimation of ph. Although there remains a finite-size effect
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 0.3
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FIG. 6. Minimum-cover ratio in Erdös-Rényi random graphs with
α = 3 as a function of the average degree c. Circles are numerical
results given by the replica exchange Monte Carlo (EMC) method.
Marks denote the data obtained using the revised simplex method
for vertex cardinalities of N = 800 (square) and 1600 (triangle).
These are averaged over 800 random graphs. The solid and dotted
lines, respectively, show the RS solutions in the IP limit and the LP
limit. The vertical dashed line represents the critical average degree
c∗ = e/2. In the inset, the LP-relaxed approximation values obtained
by numerical results with N = 1600 (triangle) and the RS solution
in the LP limit (dashed line) are shown for relatively large c. The
horizontal solid line is an upper bound of the LP relaxation for the
min-HS (α = 3).

for small sizes and around the threshold c 	 e, the numerical
estimations are close to the analytic results with increasing
size. Our analysis correctly predicts not only the approximate
value of xc but also the typical property of the LP relaxation.

Lastly, we present the case of min-HS problems with α = 3.
Figure 6 shows the optimal values estimated using the EMC
and the approximate values obtained by the LP relaxation,
together with the analytical results derived in the previous
section.

All the results coincide mutually for a sufficiently small
average degree. The relaxed values, however, are markedly
smaller than the optimal values of the original problem
above the critical average degree c = e/2, where the replica
symmetry of the min-HS is broken. We therefore confirm that
the LP relaxation typically fails to approximate min-HSs in
the RSB region. As a striking difference between min-VCs
and min-HSs, we point out that the RS solutions in the LP
limit are also unstable above the critical threshold. Whereas
the discrepancy between the numerical LP-relaxed results and
the analytic estimations is quite small as shown in Fig. 6, it
increases gradually as c becomes large as one can see in its
inset.

In the large-c limit, the LP-relaxed value on α-uniform
graphs converges to 1/α whereas the analytic solutions
converge to 1/2. Our result implies that the existence of
the RSB region in the LP limit results from the lack of half
integrality in min-HSs. To obtain a better analytic prediction,
one must consider the model with more degrees of freedom,
beyond the half-integrality condition.

053308-8



STATISTICAL MECHANICAL ANALYSIS OF LINEAR . . . PHYSICAL REVIEW E 93, 053308 (2016)

V. SUMMARY AND DISCUSSION

In this paper, we describe the details of the statistical
mechanical analysis of typical behavior of the LP relaxation.

The LP relaxation of the min-VC can be mapped onto
the LP-IP model with three-state Ising variables assisted
by the novel property called half integrality. Three distinct
ground states are derived by fixing a parameter r of the
model and taking a large field (zero temperature) limit. The
replica method in the spin-glass theory enables us to solve
the model approximately in these limits. In the IP limit with
r > 1, the ground states are reduced to optimal solutions
of the original min-VCs. The ground states in the LP limit
with 0 < r < 1 correspond to the LP-relaxed approximate
solutions with minimum half-integral variables. In the three-
state limit with r < 0, the ground states are not constructed
by the extreme-point solutions which are unsuitable for the
LP-relaxed solution. The RS solution in the LP limit is
stable for the arbitrary average degree. Therefore, the LP-limit
solution coincides with the numerical result. However, the RS
solution in the IP limit is unstable above c∗ = e. In fact the
LP relaxation fails to approximate optimal solutions above the
critical threshold.

We also discuss the case of the min-HS, min-VCs on
α-uniform hypergraphs. Because the min-HS has no half in-
tegrality, the LP-IP model with three-state Ising is insufficient
for describing the LP relaxation of the min-HS. It is, however,
worth studying the LP-IP model for a half-integer relaxed
problem toward an understanding of the LP relaxation.

It is particularly interesting that the RS solution in the LP
limit is still stable below the critical threshold of the min-
HS. This stability suggests that the original problem is stable
against addition of the half-integral variables to its solution.
Above the threshold, the analytic estimation by the RS solution
in the LP limit deviates from the optimal value of the original
problem. The RS solution is simultaneously unstable, meaning
the emergence of the RSB solutions. This fact implies that
the half-integer relaxed problem decreases the value of the
cost function from the original problem but it is still typically
difficult to solve. In fact, LP-relaxed approximate solutions
obtained using the numerical simulations include not only half
integers but also other real values. These results suggest that the
LP-relaxed min-HS typically fails to approximate the original
problem in the RSB region.

One of the striking facts obtained through our analysis is
that, in the case of α = 2, the minimum half-integral ratio ph

has the same mathematical expression as the LR core [16].
It strongly suggests that a common graph structure is the
origin of the wrong estimation in two different approximation
algorithms, which is unfortunately not identified. A key
ingredient of the graph structure may be the core, in which
there exist entangled odd long cycles and clustering of the

optimal solutions occurs [38]. In min-K-XORSAT, a K core
is also regarded as a trigger for the typical hardness [39].
Then, it is naively expected that some graph structures will
be a cause of both the replica symmetry breaking and the
typical hardness in other combinatorial optimization problems.
As for min-HSs, in contrast, it is an open problem whether
the minimum nonintegral ratio is related to the core ratio.
In general, the relation between an emergence of some graph
structures and the RS-RSB transition is thus still to be revealed.
It is interesting to consider the RSB picture more generally
from the perspective of graph topology.

In this paper, we utilize the half integrality for constructing
the LP-IP model. Recently, from the view of discrete
convexity, bisubmodular relaxation which is equivalent to
the LP relaxation with half integrality is proposed [40]. It
is related closely to an approximation technique previously
known as the roof duality. It has been applied to more general
approximation called generalized roof duality in optimization
and inference [41]. Because variables in a relaxed problem
take {0,1/2,1}, the LP-IP model and its analyses in this
paper are applicable to the relaxation. Statistical mechanical
approaches will be of help to elucidate a typical property of
these schemes theoretically.

We have demonstrated statistical mechanical analysis of
the typical behavior of an approximation algorithm for com-
binatorial optimization problems. Particularly, we emphasize
the LP relaxation based on the simplex method, which
searches extreme points of a polytope generated by constraints.
We construct the effective model as the LP-IP model by
extending the degree of freedom of spins and adding a
penalty term to a conventional hard-core lattice-gas model
for the min-VC. Within the framework of the LP relaxation,
the theoretical standard model is necessary for the relaxed
problems without the half integrality and also for other solvers
such as a cutting-plane approach [42]. Another task is a
statistical mechanical study on other relaxations proposed in
the literature of mathematical optimization. These analyses
are expected to be helpful to provide conjectures related to the
average complexity of optimization problems in theoretical
computer science and probability theory. We hope that they are
useful to investigate the deep relation between the spin-glass
theory and optimization problems.

ACKNOWLEDGMENTS

This research was supported by Grants-in-Aid for Scientific
Research from Ministry of Education, Culture, Sports, Science
and Technology, Japan (Grants No. 22340109, No. 25610102,
and No. 25120010); for Japan Society for the Promotion of
Science (JSPS) fellows (Grant No. 15J09001); and by the
JSPS Core-to-Core program “Non-equilibrium dynamics of
soft-matter and information.”

APPENDIX: CAVITY ANALYSIS OF THE LP-IP MODEL

In this Appendix, we present detailed analyses of the model discussed in this paper using the alternative cavity method.
Although we explain the case of α-uniform random hypergraphs here, it is straightforward to calculate more general models
defined on a sparse hypergraph.
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Using a factor graph representation G = (V,F,E), the LP-IP model (6) is represented as

�r (G) =
∑

σ

exp

(
−μ

∑
i

σi − μr
∑

i

(
1 − σ 2

i

))∏
a∈F

θ

⎛
⎝∑

j∈∂a

σj + α − 2

⎞
⎠, (A1)

where ∂a = {i ∈ V | (a,i) ∈ E}. We assume that the graph is locally treelike and that it has no degree correlations. By the
Bethe-Peierls (BP) approximation, the likelihood that a variable on vertex i takes σ is

Pi(σ ) 	 1

Zi

exp(−μσ − μrδσ,0)
∏
a∈∂i

Pa\i(σ ), (A2)

where Pa\i(σ ) is the marginal probability of σ ∂a\i under the condition σi = σ . We similarly define Pi\a(σ ) as a probability of
σi = σ on a cavity graph G\a. These probabilities are regarded as messages on the graph. They satisfy the following recursive
relations:

Pi\a(σ ) 	 1

Zi→a

exp(−μσ − μrδσ,0)
∏

b∈∂i\a
Pb\i(σ ), (A3)

Pa\i(σ ) 	 1

Za→i

∑
σ ∂a\i

θ

⎛
⎝σ +

∑
j∈∂a\i

σj + α − 2

⎞
⎠ ∏

j∈∂a\i
Pj\a(σj ). (A4)

By substituting a spin value, we obtain

Pi\a(1) 	 1

Zi→a

e−μ
∏

b∈∂i\a
Pb\i(1),

Pi\a(0) 	 1

Zi→a

e−μr
∏

b∈∂i\a
Pb\i(0), (A5)

Pi\a(−1) 	 1

Zi→a

eμ
∏

b∈∂i\a
Pb\i(−1),

and

Pa\i(1) 	 1

Za→i

,

Pa\i(0) 	 1

Za→i

⎛
⎝1 −

∏
j∈∂a\i

Pj\a(−1)

⎞
⎠, (A6)

Pa\i(−1) 	 1

Za→i

⎛
⎝1 −

∏
j∈∂a\i

Pj\a(−1) −
∑

k∈∂a\i
Pk\a(0)

∏
j∈∂a\{i,k}

Pj\a(−1)

⎞
⎠.

It is convenient to introduce cavity fields defined as shown below:

Pi\a(σ ) ≡ eμξi→aδ(σ,1)+μνi→aδ(σ,0)

1 + eμξi→a + eμνi→a
,

(A7)

Pa\i(σ ) ≡ eμξ̂a→i δ(σ,1)+μν̂a→i δ(σ,0)

1 + eμξ̂a→i + eμν̂a→i

,

where δ(·,·) is Kronecker’s delta. BP equations for these fields are explicitly written down as

ξi→a = −2 +
∑

b∈∂i\a
ξ̂b→i , νi→a = −1 − μr−1 +

∑
b∈∂i\a

ν̂b→i , ξ̂a→i = 1

μ

× ln

⎡
⎣1 −

⎛
⎝1 +

∑
k∈∂a\i

eμνk→a

⎞
⎠ ∏

j∈∂a\i

1

1 + eμξj→a + eμνj→a

⎤
⎦,

ν̂a→i = 1

μ
ln

⎡
⎣1 −

∏
j∈∂a\i

1

1 + eμξj→a + eμνj→a

⎤
⎦− 1

μ
ln

⎡
⎣1 −

⎛
⎝1 +

∑
k∈∂a\i

eμνk→a

⎞
⎠ ∏

j∈∂a\i

1

1 + eμξj→a + eμνj→a

⎤
⎦. (A8)
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Here, we consider a graph ensemble for which the degree distribution of variable nodes is pk (k � 0). Letting P̃ (ξ,ν) be a
frequency distribution of a set of cavity fields (ξ,ν), then from Eq. (A8) we find a self-consistent equation of P̃ (ξ,ν) as

P̃ (ξ,ν) =
∞∑

k=0

kpk

c

∫ k−1∏
i=1

α−1∏
j=1

dP̃ (ξ (i,j ),ν(i,j ))δ

(
ξ + 2 +

k−1∑
i=1

v2({ξ (i,j )},{ν(i,j )}; μ)

)

× δ

(
ν + 1 + μr−1 −

k−1∑
i=1

[v1({ξ (i,j )},{ν(i,j )}; μ) − v2({ξ (i,j )},{ν(i,j )}; μ)]

)
, (A9)

where

v1({ξ (i,j )},{ν(i,j )}; μ) = 1

μ
ln

⎡
⎣1 −

α−1∏
j=1

1

1 + eμξ (i,j ) + eμν(i,j )

⎤
⎦, (A10)

and

v2({ξ (i,j )},{ν(i,j )}; μ) = 1

μ
ln

⎡
⎣1 −

⎛
⎝1 +

∑
j

eμν(i,j )

⎞
⎠ α−1∏

j=1

1

1 + eμξ (i,j ) + eμν(i,j )

⎤
⎦. (A11)

To obtain the single-spin probability Pi(σ ), we also introduce effective fields such as cavity fields and obtain the frequency
distribution of those fields. In the case of Erdös-Rényi random graphs, the distribution is equivalent to that of cavity fields
because an identity pk−1 = kpk/c (k � 1) holds.

By interpreting the definition of effective fields appropriately, it is apparent that the self-consistent equation is equivalent to
Eq. (15) obtained using the replica method. Further assumptions are necessary to analyze the case of the large-μ limit. They
correspond to the ansatz discussed in Sec. III D. We correctly obtain the typical property of the LP relaxation by taking the LP
limit.
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