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Kinetic Monte Carlo investigation of tetragonal strain on Onsager matrices
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We use three different methods to compute the derivatives of Onsager matrices with respect to strain for vacancy-
mediated multicomponent diffusion from kinetic Monte Carlo simulations. We consider a finite difference method,
a correlated finite difference method to reduce the relative statistical errors, and a perturbation theory approach
to compute the derivatives. We investigate the statistical error behavior of the three methods for uncorrelated
single vacancy diffusion in fcc Ni and for correlated vacancy-mediated diffusion of Si in Ni. While perturbation
theory performs best for uncorrelated systems, the correlated finite difference method performs best for the
vacancy-mediated Si diffusion in Ni, where longer trajectories are required.
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I. INTRODUCTION

Stress or strain fields in crystalline solids play a crucial role
in controlling the evolution and migration behavior of defects,
leading to changes in material properties. External stress
delays the coarsening kinetics of precipitates in superalloys [1]
and influences the mobility of dislocations and grain bound-
aries [2–5]. Dislocations and grain boundaries, acting as sinks
or sources of point defects, generate internal strain fields in
their neighborhood, which affects the transport and segregation
of vacancies, self-interstitials, and solute atoms [6–8]. In
turn, changes in the transport properties of vacancies and
interstitials also modify the climb rate of dislocations, and
hence creep [9,10]. Moreover, the presence of stress or strain
changes the formation energies of intrinsic point defects [11],
which affects the migration behavior of solutes [12,13]. To
predict mass transport in strained environments, the influence
of strain on point defect and solute diffusion properties must
be investigated.

Strain affects diffusion from a thermodynamic point of
view by creating or modifying driving forces, and from a
kinetic point of view by changing the transport coefficients
or Onsager matrices [14], which connect the fluxes of species
with the corresponding driving forces. Previous studies have
mainly focused on strain effects on driving forces [15–18],
but the strain-induced modification of Onsager matrices can
also significantly change the diffusion behaviors. Dederichs
et al. [19] have shown that the strain-induced anisotropy of
saddle point configuration leads to an anisotropic diffusion
even in materials which have cubic symmetry under zero
stress. Garnier et al. [20] found that the strain field near an
edge dislocation in Ni causes complex flow patterns for Si
solutes and vacancies. Chan et al. [21] performed atomic
simulations in face-centered cubic (fcc) Pt and Cu to show
that the anisotropic diffusion of vacancies and self-interstitials
under strain strongly depends on the crystal structure and
the crystallographic directions in which the strain is applied.
Sivak et al. [8] investigated the diffusion of point defects
near edge dislocations in body-centered cubic (bcc) Fe and
FCC Cu, and found that the dislocation strain fields induce
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anisotropic migration of point defects. In all of these studies,
the anisotropic diffusion behavior can be addressed from the
strain dependence of Onsager matrices; however, only Garnier
has calculated this effect using an analytical self-consistent
mean field (SCMF) method [20].

Transport coefficients can be computed by combining
two methods: kinetic Monte Carlo (KMC) [22] simulations
and atomic-scale calculation of energy landscapes. KMC
simulations use atomic jump rates to calculate the Onsager
matrices for general systems. If the atomic jump rates follow
the Arrhenius relationship, then the rate is determined by two
quantities from the energy landscape: the attempt frequency
and the migration energy. Migration energies, as well as their
strain dependence, can be obtained from density functional
theory (DFT) calculations [23]. Because KMC is a stochastic
approach, the statistical errors make the strain derivatives
of Onsager matrices more difficult to obtain than Onsager
matrices themselves.

We derive three KMC-based methods to compute the
derivatives of Onsager matrices with respect to strain for
vacancy-mediated solute diffusion in fcc Ni. Migration
energies for atomic jumps and their derivatives with respect
to strains computed by Garnier et al. using DFT [20,23]
inform the KMC simulations. Section II introduces the KMC
algorithm used to compute Onsager matrices. Section III
describes in detail the three derivative approaches for
computing Onsager matrix derivatives with respect to strain,
and the behavior of the statistical error for each approach.
In Sec. IV, we use the computed statistical errors and true
errors to quantitatively compare the performance of the three
approaches for uncorrelated single vacancy diffusion in fcc
Ni and for correlated vacancy-mediated Si diffusion in Ni.
Finally, in Sec. V, we consider the computational efficiency in
general.

II. KMC CALCULATION OF ONSAGER MATRICES

Kinetic Monte Carlo simulations evolve a system in time
using stochastic trajectories [22]. The systems we consider
evolve along each trajectory by a vacancy hopping from one
site to the possible nearest neighboring sites. For state i, the
hopping rate νi

k for transition k is expressed from harmonic
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transition state theory [24],

νi
k = νi

0exp
( − Ei

k/kBT
)
, (1)

where νi
0 is the attempt frequency, kB is Boltzmann’s constant,

T is the temperature, and Ei
k is the corresponding migration

energy. For each state in the trajectory, we calculate hopping
rates and select an event based on a pseudorandom number u

from a uniform distribution. The index q of the event selected
satisfies [25]

q−1∑
k=1

νi
k < uνi

tot �
q∑

k=1

νi
k, (2)

where νi
tot = ∑NNN

k=1 νi
k is the sum over all transition rates from

state i, and NNN is the number of nearest neighbors. The escape
time is drawn from an exponential distribution, and the average
value of the sum of all escape times over the trajectory is
the sum of average escape times �ti from each state in the
trajectory,

�ti = 1/νi
tot. (3)

From KMC simulations, we can extract the evolution time
tj = ∑Nstep

i=1 �ti for the j th trajectory, where Nstep is the number
of steps per trajectory. We also measure the total particle
displacement rA

α,j for species A along direction α (α = x,y,z)
during time tj .

We compute the values and relative statistical errors of
Onsager matrices from KMC simulations. The Onsager matrix
LAB connects the flux �JA of species A to the gradient of the
chemical potential μB of species B [14],

�JA = −
∑
B

LAB �∇μB. (4)

The mean squared displacements of the moving species
determine the components of Onsager matrices [26],

LAB
αβ = c

Ntraj

Ntraj∑
j=1

rA
α,j r

B
β,j

2tj
, (5)

where c is a trajectory-independent constant c = 1
�kBT

for
simulation cell volume �, and Ntraj is the number of KMC
trajectories. In the special case of single vacancy diffusion
in bulk system, the diffusion properties of the system are
fully characterized by the transport coefficients LV V

αβ , which
are proportional to the vacancy diffusivities Dαβ in the dilute
limit,

Dαβ = 1

c
LV V

αβ . (6)

Therefore, we will use variable Dαβ for single vacancy
diffusion in bulk Ni, and the more general notation LAB

αβ for
vacancy-mediated diffusion of Si in Ni(Si) alloys. The relative
statistical error of LAB

αβ is

σ
(
LAB

αβ

) =
√

var
(
LAB

αβ

)
LAB

αβ

, (7)

where var(LAB
αβ ) is the variance of LAB

αβ over different KMC
trajectories.

III. DERIVATIVE APPROACHES AND STATISTICAL
ERRORS

We apply three different approaches to calculate derivatives
of the Onsager matrices with respect to strain: the finite
difference (FD) method, the correlated finite difference (CFD)
method, and the perturbation theory (PT) approach. The FD
method is a direct approximation to compute Onsager matrix
derivatives but it has the largest statistical errors. The CFD
method is an improvement of the FD method that reduces the
statistical errors by using correlated sampling. Alternatively,
we use perturbation theory to develop an approach that works
especially well for uncorrelated diffusion systems. We use two
systems to examine the performance of the three methods: one
is uncorrelated single vacancy diffusion in fcc Ni and the other
is correlated vacancy-mediated diffusion of dilute Si in Ni. We
apply a tetragonal strain εαβ = εδαβ(2δαx − δαy − δαz), which
causes the lattice to expand along the x direction and contract
along the y and z directions. We do not consider effects from
shear strain or volumetric strain. Garnier et al. showed that
for vacancy-mediated diffusion of Si in Ni, the influence of
shear strain on the migration energies is small compared to the
influence of tetragonal strain [23], and volumetric strain causes
the migration energies of different atomic jumps to increase
or decrease by the same amount which does not change the
relative probabilities of trajectories.

A. Finite difference method

The finite difference (FD) method approximates the deriva-
tive of the Onsager matrix with respect to strain L′AB

αβ using
the central difference scheme as

L′AB
αβ

∣∣
ε=0 = LAB

αβ (h) − LAB
αβ (−h)

2h
+ O(h2), (8)

where h is the finite difference step size. We obtain LAB
αβ (h)

and LAB
αβ (−h) from independent KMC simulations on the

positively strained and negatively strained diffusion systems,
respectively. Approximating the derivative using Eq. (8)
induces a truncation error with an asymptotic behavior of
O(h2) [27,28]. Similar to LAB

αβ , we compute the relative
statistical error of L′AB

αβ as

σ FD(L′AB
αβ ) =

√
var

[
LAB

αβ (h)
] + var

[
LAB

αβ (−h)
]

2hL′AB
αβ

≈
√

var
[
LAB

αβ (0)
]

√
2hL′AB

αβ

, (9)

which is inversely proportional to the step size h.
Moreover, we expect σ FD(L′AB

αβ ) to be independent of the
number of steps because the Onsager matrix variance var(LAB

αβ )
is independent of Nstep. For the special case of single vacancy
diffusion, the initial configurations of all the vacancy hops are
identical so the average waiting time �ti defined in Eq. (3) is
constant along the trajectories, i.e., �ti = �t . The variance of
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the vacancy diffusivity is

var(Dαβ) = 1

Ntraj(Ntraj − 1)

Ntraj∑
j=1

var

(
rV
α,j r

V
β,j

2tj

)

= var
(
rV
α,j

)
var

(
rV
β,j

)
(Ntraj − 1)N2

step�t
. (10)

In the last equality, the vacancy displacements rV
α,j and rV

β,j

are sums of Nstep uncorrelated jump vectors. Therefore, their
variances var(rV

α,j ) and var(rV
β,j ) are proportional to Nstep,

which cancels the N2
step term in the denominator. For the more

general vacancy-mediated solute diffusion, the analytically
derived statistical error behavior is an approximation if the
solute concentration is in the dilute limit.

B. Correlated finite difference method

The correlated finite difference (CFD) method introduces
an artificial correlation between the KMC trajectories for the
positively and negatively strained diffusion systems to reduce
the statistical error [29,30]. The relative statistical error of CFD
is

σ CFD(L′AB
αβ ) =

√
var

[
LAB

αβ (h)
] + var

[
LAB

αβ (−h)
] − 2cov

[
LAB

αβ (h),LAB
αβ (−h)

]
2hL′AB

αβ

, (11)

where cov[LAB
αβ (h),LAB

αβ (−h)] is the covariance between LAB
αβ (h) and LAB

αβ (−h). The covariance must be positive for the CFD
method to have smaller statistical errors than the FD method. We ensure that the two simulations are correlated by using the same
random number sequence to generate the trajectories. Since there is no difference between the two sets of trajectories as h goes to
zero, the covariance cov[LAB

αβ (h),LAB
αβ (−h)] approaches var(LAB

αβ ) > 0 in this limit. Therefore, we expect cov[LAB
αβ (h),LAB

αβ (−h)]
to be positive for small h.

The covariance cov[LAB
αβ (h),LAB

αβ (−h)] quantifies the difference between statistical errors σ FD(L′AB
αβ ) and σ CFD(L′AB

αβ ) and
decreases linearly with small finite difference step size h. For simplicity, we still confine our discussion to single vacancy
diffusion in which all the initial configurations of vacancy hops are identical. Therefore, if the positively strained system and the
negatively strained system follow identical trajectories, the covariance yields

cov∗[Dαβ(h),Dαβ(−h)] =
∑Ntraj

j=1

[
rV ∗
α,j r

V ∗
β,j

2t∗j

∣∣
ε=h

− Dαβ(h)
][

rV ∗
α,j r

V ∗
β,j

2t∗j

∣∣
ε=−h

− Dαβ(−h)
]

Ntraj(Ntraj − 1)

=
[

1 −
(

εαα

ε

)2

h2

][
1 −

(
εββ

ε

)2

h2

]
�t2(0)

�t(h)�t(−h)
var[Dαβ(0)], (12)

where ∗ denotes that the quantity is computed by assuming
that the two strained systems follow identical trajectories.

The factors [1 − ( εαα

ε
)2h2][1 − ( εββ

ε
)2h2] and

�t2
j (0)

�tj (h)�tj (−h) come
from the effects of the strain-induced lattice deformation and
changes in the average waiting time, respectively. However, the
trajectories of two strained systems cannot be exactly the same
due to the strain difference. We assume that at a given step i,
the vacancy in the positively and negatively strained systems
has a probability pi to choose different jumps and probability
1 − pi to choose the same jump. The probability pi quantifies
the discrepancy between the rate tables of the two differently
strained systems, which is constant during the simulation for
the single vacancy diffusion system, i.e., pi(h) = p(h). We
expand p to first order in h,

p(h) = p(0) + ∂p

∂h
|h=0h + O(h2). (13)

A zero strain difference yields the same rate tables for the
two systems so p(0) = 0. As h increases from zero, the two
rate tables diverge, suggesting that ∂pi

∂h
|h=0 > 0. For the

positively strained system, a fraction 1 − pi of a trajectory
is exactly the same as that of the negatively strained system,
which contributes to the covariance cov[Dαβ(h),Dαβ(−h)].
The covariance cov∗[Dαβ(h),Dαβ(−h)] changes by a factor of

[1 − p(h)], such that

cov[Dαβ(h),Dαβ(−h)] = [1 − p(h)]cov∗[Dαβ(h),Dαβ(−h)]

=
(

1 − ∂p

∂h

∣∣∣
h=0

h

)
var(Dαβ) + O(h2), (14)

which indicates that the covariance decreases with h. More-
over, by comparing Eq .(14) with Eq. (11), we conclude that
σ CFD is proportional to 1/

√
h for small h. The statistical error

of the CFD method σ CFD is independent of Nstep because there
is no Nstep dependence in Eq. (14).

C. Perturbation theory method

An alternative approach for computing the derivatives is
based on the perturbation theory, which treats the tetragonal
strain ε as a perturbation on the unstrained system. As ε is
small, the vacancy in the perturbed system follows similar tra-
jectories to the unperturbed system. We can compute Onsager
matrices of the strained diffusion system by reweighing the
trajectories based on relative probabilities from the unstrained
system. The unnormalized probability that the vacancy in
the strained system follows the j th unstrained trajectory is∏Nstep

i=1 γi(ε), where γi(ε) = νi
q (ε)

νi
tot(ε)

is the probability that the
vacancy takes the qth jump among NNN possible choices at
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the ith step of the j th trajectory, and q = q(i,j ) is the index
of the jump that is selected at the given step for the unstrained
system. Following the importance sampling [31–33], we use
the probability ratios between the strained and unstrained
systems to estimate the probability distribution for the strained
trajectories and compute the ensemble average as

LAB
αβ (ε) = c∑Ntraj

j=1 Pj (ε)

Ntraj∑
j=1

Pj (ε)
rA
α,j (ε)rB

β,j (ε)

2tj (ε)
, (15)

where the reweighting factor is

Pj (ε) =
Nstep∏
i=1

γi(ε)

γi(0)
. (16)

To obtain the strain derivative L′AB
αβ from Eq. (15), we expand

all of the terms on the right-hand side to first order in ε. The
reweighting factor Pj (ε) deviates from one as a result of the
variation of the jump frequencies due to the migration energy

changes, Ei
k(ε) = Ei

k(0) + ε
∂Ei

k

∂ε
+ O(ε2),

Pj (ε) = 1 + ε

kBT

Nstep∑
i

NNN∑
k=1

νi
k

νi
tot

(
∂Ei

k

∂ε
− ∂Ei

q

∂ε

)
+ O(ε2).

(17)

The species displacement rA
α,j (ε), a sum of strain-modified

jump vectors, is

rA
α,j (ε) = rA

α,j (0)(1 + εαα). (18)

The total evolution time tj (ε) of each trajectory is an
accumulation of waiting times �ti(ε), which follow

�ti(ε) = 1

νi
tot(ε)

= �ti(0) + ε�t2
i (0)

NNN∑
k=1

νi
k

kBT

∂Ei
k

∂ε
+ O(ε2).

(19)

We compute the reweighted ensemble average by substituting
Eqs. (17)–(19) into Eq. (15), and extract the derivative L′AB

αβ

from the first order terms as

L′AB
αβ

∣∣
ε=0 = c

Ntraj

Ntraj∑
j=1

(�αβ,j + Rαβ,j + ταβ,j ), (20)

where

�αβ,j = 1

kBT

Nstep∑
i

NNN∑
k=1

νi
k

νi
tot

(
∂Ei

k

∂ε
− ∂Ei

q

∂ε

)

×
[
rA
α,j (0)rB

β,j (0)

2tj (0)
− LAB

αβ (0)

]
(21)

comes from the reweighting process,

Rαβ,j =
(

εαα

ε
+ εββ

ε

)
rA
α,j (0)rB

β,j (0)

2tj (0)
(22)

is the contribution due to the tetragonal strain-induced lattice
deformation, and

ταβ,j =
(

1

tj

Nstep∑
i=1

�t2
i

NNN∑
k=1

νi
k

kBT

∂Ei
k

∂ε

)
rA
α,j (0)rB

β,j (0)

2tj (0)
(23)

is due to the change in the average waiting time for each
vacancy hop. We compute the relative statistical error as

σ PT(L′AB
αβ ) = c

L′AB
αβ

√
var(�αβ,j + Rαβ,j + ταβ,j )

Ntraj − 1
. (24)

Unlike the FD and CFD methods, the statistical error of
the PT approach increases proportionally to the square root of
number of steps. According to Eq. (24), the behavior of σ PT

is determined by the behavior of var(�αβ,j + Rαβ,j + ταβ,j ),
which is

var(�αβ,j+Rαβ,j+ταβ,j )

= var(�αβ,j )+var(Rαβ,j )

+var(ταβ,j )+2cov(Rαβ,j ,�αβ,j )

+2cov(ταβ,j ,�αβ,j )+2cov(Rαβ,j ,ταβ,j ), (25)

where �αβ,j , Rαβ,j , and ταβ,j are terms defined in
Eqs. (21), (22), and (23) characterizing the contributions
from the reweighting process, lattice deformation, and average
waiting time changes, respectively. For the case of single va-
cancy diffusion, Rαβ,j and ταβ,j equal the term (rV

α,j )(rV
β,j )/2tj

multiplied by constants. Therefore, according to Eq. (10), their
variances var(Rαβ,j ) and var(ταβ,j ) as well as their covariance
cov(Rαβ,j ,ταβ,j ) are independent of Nstep. However, �αβ,j

is a sum of Nstep terms that are identically distributed and
independent of each other, so its variance var(�αβ,j ) as well
as the covariance cov(Rαβ,j ,�αβ,j ) and cov(ταβ,j ,�αβ,j ) are
proportional to Nstep. The net effect is that the variance
var(�αβ,j + Rαβ,j + ταβ,j ) changes linearly with the number
of steps or, equivalently, σ PT ∝ √

Nstep, for Nstep 	 1.

IV. COMPUTATIONAL RESULTS

A. Single vacancy diffusion in fcc Ni

We first compare the performance of the three approaches
outlined above for single vacancy diffusion in Ni. We introduce
one vacancy into a 6 × 6 × 6 fcc Ni supercell with periodic
boundary conditions imposed in all three directions. The
vacancy diffusion in the unstrained system is isotropic and the
random walk is uncorrelated. Introducing tetragonal strain εαβ

breaks the cubic symmetry, but does not introduce correlation
between successive hopping steps. We use KMC to generate
trajectories of vacancy hops and compute the derivative of the
vacancy diffusivity component Dxx with respect to strain ε

using the three different derivative approaches. For the special
case of single vacancy diffusion, the analytical solution for
D′

xx is [14]

D′AS
xx

∣∣
ε=0 = 1

2

NNN∑
k=1

(
2
εxx

ε
− 1

kBT

∂Ek

∂ε

)
l2
kxν0 exp

(
− Ek

kBT

)
,

(26)

which we use as a reference value to evaluate the relative
true errors εM = |D′M−D′AS

D′M | (M = FD, CFD, PT). The jump
vectors �lk , attempt frequency ν0, migration energies Ek , and
their derivatives ∂Ek

∂ε
are from the DFT calculation by Garnier

et al. [20,23]. When ε = 0, all of the migration energies are
identical, i.e., Ek = E, but their derivatives with respect to
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σFD εFD

σCFD εCFD

10-5 10-4 10-3 10-210-3

10-2

10-1

100

2
1 1

2

Ntraj = 5x105

h

1
1

FIG. 1. Relative statistical errors σ and true errors ε of the strain
derivative of diffusivity D′

xx as a function of the finite difference
step size h for the FD and CFD methods. In all the plots, we use
different shaped symbols to denote the errors from different methods:
squares for FD and triangles for CFD (and diamonds for PT in
the other figures). We use open symbols for the relative statistical
errors σ and solid symbols for the relative true errors ε. We want the
statistical errors to be a good estimate of the true errors so that the
systematic errors are negligible. In this figure, the relative statistical
errors decrease monotonically with increasing h. The statistical errors
estimate the true errors well for small h. However, the good agreement
between errors breaks down for h larger than 2 × 10−4.

strain ε are not. We use the relative statistical errors σM

calculated from Eqs. (9), (11), and (24), and the relative true
errors εM to quantitatively compare the performance of the
three methods. The relative true errors εM in Figs. 1–8 are root-
mean-square (rms) true errors computed from multiple KMC
runs with identical parameters. The true error contains the
contributions from statistical fluctuations, as well as systematic
errors which are difficult to assess quantitatively. However, the
systematic errors are negligible when the statistical error is a
good estimate of the true error.

Figure 1 shows that there is an optimal finite difference
step size h for the FD and CFD methods that minimizes
the statistical errors, and for which statistical errors are a
good estimate of the true errors. The statistical errors of
both approaches decrease monotonically with h. The relative
statistical error of the FD method is inversely proportional to
step size σ FD ∝ 1/h, which agrees with Eq. (9). For the the
CFD method, the statistical error σ CFD stays below σ FD and is
inversely proportional to the square root of h, σ CFD ∝ 1/

√
h

for small h, which verifies the analytical behavior described
in Eq. (14). When h increases, unlike the monotonically
decreasing statistical errors, the truncation errors increase
proportionally to h2 as Eq. (8) shows. The truncation errors
are non-negligible when h exceeds 2 × 10−4, causing the true
errors to deviate from the statistical errors. Based on our testing
data points, we choose h = 2 × 10−4 so that statistical errors
are minimal and remain a good estimate of the true errors.

Figures 2 and 3 show that the optimal number of KMC
steps for uncorrelated diffusion systems is one. Figure 2
verifies that the relative statistical errors σ FD and σ CFD are
independent of Nstep as we expect, and σ PT ∝ √

Nstep holds for
all Nstep values. Figure 3 shows that for fixed computational

100 101 102 103 104 105

10-3

10-2

10-1

100

101

2
1

σFD εFD

σCFD εCFD

σPT εPT

Nstep

Ntraj = 5x105

h = 2x10-4

FIG. 2. Relative errors of D′
xx as a function of Nstep for a fixed

number of trajectories, Ntraj = 5 × 105. The relative statistical errors
of the FD and CFD methods do not depend on Nstep, while for the PT
method, σ PT ∝ √

Nstep. The statistical errors estimate the true errors
well for all values of Nstep.

effort, defined as the total number of vacancy hops during
one KMC run Ntot = NstepNtraj, all of the statistical errors
increase monotonically with the number of steps. The FD and
CFD methods have statistical errors that increase as

√
Nstep,

whereas the PT method statistical error increases faster as
Nstep. Using a larger number of steps means that a smaller
number of trajectories can be applied, which leads to a direct
increase in statistical errors. On the other hand, the figures
also show that the statistical errors match the true errors
across the entire range of Nstep from 2 to 5 × 104, which
means reducing the number of steps in each trajectory does
not introduce significant systematic errors. Therefore, the most
efficient way to reduce the statistical errors of all three methods
is setting Nstep = 1, for which the KMC results extracted from
the mean square displacements yield the analytical expression
of Eq. (26).

Figure 4 shows that the PT approach has the best perfor-
mance of the three methods for the uncorrelated diffusion

100 101 102 103 10410-4

10-3

10-2

10-1

100

101

1
1

1
2

N
traj
xNstep = 1x107

h = 2x10-4

σFD εFD

σCFD εCFD

σPT εPT

Nstep

FIG. 3. Relative errors of D′
xx vs Nstep for a fixed total computa-

tional effort, Ntot = NstepNtraj = 107. For the FD and CFD methods,
σ FD and σ CFD ∝ √

Nstep, whereas for the PT method, σ PT ∝ Nstep.
The statistical errors estimate the true errors well for all values of
Nstep.
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103 104 105 10610-4

10-3

10-2

10-1

100

σFD εFD

σCFD εCFD

σPT εPT

2
1

Nstep = 50
h = 2x10-4

Ntraj

FIG. 4. Relative errors of D′
xx vs the number of trajectories Ntraj.

We choose h and Nstep such that the statistical errors are a good
estimate of the true errors. As Ntraj increases, the statistical errors
of all three methods decrease as σ ∝ 1/

√
Ntraj. The CFD method

produces lower statistical errors than the FD method using correlated
trajectories, and the PT method has the lowest statistical errors.

system. Even though the optimal number of steps is one,
we use Nstep = 50 and h = 2 × 10−4 to make an illustrative
comparison between the three methods. All of the statistical
errors follow σ ∝ 1/

√
Ntraj, and the PT approach has the

lowest relative statistical and true errors. By reducing the
number of steps, we can still decrease the errors of the PT
method by up to a factor of

√
50 ≈ 7 for the same number of

trajectories, but σ FD and σ CFD do not follow the same trend.
Therefore, the PT approach is the best way to compute the
diffusivity derivatives for the uncorrelated diffusion system.

B. Vacancy-mediated diffusion of Si in Ni

The second system that we use to test the three derivative
approaches is vacancy-mediated Si diffusion in Ni, which is
a correlated diffusion system. We introduce a vacancy and
a substitutional Si atom into a 6 × 6 × 6 fcc Ni supercell
with periodic boundary conditions in all three directions. The
vacancy hops are anisotropic because the jump frequencies
depend on the relative position of the Si atom with respect to
the vacancy. Moreover, successive vacancy hops are correlated
due to the interaction between the vacancy and Si. We compute
the derivative of the Onsager matrix component LNiSi

αβ with
respect to strain ε and the corresponding statistical and true
errors, σ and ε. We use the energy barriers and their derivatives
with respect to strain for atomic jumps computed by Garnier
et al. using DFT calculations [20,23]. The reference value of
L′NiSi

αβ used to compute the true errors is from the self-consistent
mean field (SCMF) calculation by Garnier et al. [34].

Figure 5 shows that for vacancy-mediated diffusion of Si
in Ni, the improved performance of using correlated sampling
is not as effective as for single vacancy diffusion, whereas
there still exists an optimal h that minimize the statistical
errors while keeping the truncation errors negligible. Figures 5
and 1 differ since the statistical error of the CFD method
for correlated diffusion (shown in Fig. 5) no longer strictly
follows σ CFD ∝ 1/

√
h for small h because the assumption

we use to derive Eq. (14), i.e., that the initial configurations
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2

FIG. 5. Relative statistical and true errors of L′NiSi
xx as a function

of finite difference step size h. Similarly to the single vacancy
diffusion system, for both finite difference methods the statistical
errors decrease monotonically with increasing h. The statistical errors
are a good estimate of the true errors for small h, but the agreement
breaks down for h larger than 2 × 10−4.

of all vacancy hops are identical, no longer holds. We
find that σ CFD ∼ 1/h0.73, which lies between 1/

√
h and the

upper bound 1/h, suggesting that the correlation between the
positively strained and negatively strained system is reduced
for vacancy-mediated Si diffusion in Ni, but the covariance
cov[LAB

αβ (h),LAB
αβ (−h)] is still positive. However, similar to

Fig. 1, the statistical errors for both FD and CFD methods
decrease monotonically with h and closely match the true
errors for h < 2 × 10−4. When h exceeds 2 × 10−4, the true
errors deviate from statistical errors due to the increasing
truncation errors, which dominate the true errors for large
h. The optimal value of h among our testing data points is
2 × 10−4, which is when the truncation errors start to become
comparable to the statistical errors.

Figures 6 and 7 show that among our testing data points, the
optimal value of Nstep that minimizes the statistical errors while
having negligible systematic errors is 200. The statistical error
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FIG. 6. Relative errors of L′NiSi
xx vs Nstep for a fixed number of

trajectories. The statistical errors behave similarly to those of the
single vacancy diffusion system. However, the true errors behave
differently: there is a threshold value of Nstep = 2 × 102 above which
the statistical errors estimate the true errors well, while below this
value the true errors become larger than the statistical errors.
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FIG. 7. Relative errors of L′NiSi
xx vs Nstep for a fixed total com-

putational effort NstepNtraj = 2 × 107. The statistical errors behave
similarly to those of the uncorrelated single vacancy diffusion
system: σ FD and σ CFD ∝ √

Nstep, while σ PT ∝ Nstep. However, in
this correlated case, there is a threshold value of Nstep = 2 × 102

above which the statistical errors are a good estimate of the true
errors, while below this value the true errors become larger than the
statistical errors.

curves in Fig. 6 follow the analytical behavior for uncorrelated
diffusion that σ FD and σ CFD are independent of Nstep, and
σ PT increases proportionally with

√
Nstep. Therefore, similar

to Fig. 3, for the same computational effort the statistical errors
of all three methods can be reduced by decreasing the number
of steps, as Fig. 7 shows. However, for correlated vacancy-
mediated Si diffusion in Ni, there exists a minimum number
of steps below which the statistical errors deviate from the
true errors for all three methods due to a correlation-induced
bias. Short trajectories, especially one-step trajectories, which
work well for uncorrelated diffusion systems, produce large
errors for the correlated diffusion system because they do
not capture the correlation between successive vacancy hops.
Theoretically, the correlation time of the system quantifies the
lower bound of Nstep that we can use to obtain good statistical
results. Uncorrelated diffusion systems can be regarded as
special cases with correlation time equal to zero. The true
error curves in Figs. 6 and 7 verify the existence of the
correlation-induced bias, which increases with decreasing
number of steps and dominates the true error when Nstep is
small. We need to use long enough trajectories to make the
correlation-induced bias negligible compared to the statistical
errors. For all three methods, out of our testing data points,
Nstep = 200, is the minimum number of steps for which the
statistical errors remain a good estimate of the true errors, i.e.,
for which the correlation-induced bias is negligible.

Figure 8 shows that the CFD method is the optimal approach
to compute the strain derivative of LNiSi

xx for vacancy-mediated
Si diffusion in Ni. As is shown in Fig. 4, for single vacancy
diffusion, the PT approach works better than the FD and CFD
methods because we can employ short vacancy trajectories (as
short as one step) without introducing significant systematic
errors. For correlated diffusion, we need to use longer trajecto-
ries, i.e., larger Nstep, to make sure that the correlation-induced
bias is negligible. The statistical error of the PT approach is
σ PT ∝ √

Nstep, which effectively shifts the σ PT curve upwards
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FIG. 8. Relative errors of L′NiSi
xx vs Ntraj. We choose h and Nstep

such that the statistical errors estimate the true errors well. Similarly
to the single vacancy diffusion system, as Ntraj increases, the statistical
errors of all three methods decay as σ ∝ √

Ntraj. The CFD and PT
methods give similar magnitudes of statistical errors, which are lower
than those of the FD method.

relative to the σ FD and σ CFD curves, both of which do not
depend on Nstep for a fixed number of trajectories. We see
from the figure that for vacancy-mediated Si diffusion in Ni,
using the optimal value of 200 for the number of steps, the
PT approach produces slightly larger statistical errors than the
CFD method for the same number of trajectories. We expect
that the CFD method will outperform the other two methods
for systems with larger correlation times.

V. CONCLUSION

We compare the performance of the three derivative
approaches, i.e., FD, CFD, and PT methods, for uncorrelated
single vacancy diffusion in fcc Ni and for correlated vacancy-
mediated Si diffusion in Ni. The FD method uses a central
difference scheme to compute the derivatives by subtracting
KMC results from systems with positive and negative strains.
The CFD method is an improvement of the FD method, in
which we apply the same random number sequence to create
artificial correlation between the positively and negatively
strained systems to reduce the statistical errors. We choose
an appropriate finite difference step size h to minimize both
the truncation errors and the statistical errors for the FD and
CFD methods. The PT approach is an alternative way to
compute derivatives, for which the statistical errors depend
on the number of steps in each trajectory, σ PT ∝ √

Nstep, for
fixed Ntraj. The PT approach has the best performance of the
three for uncorrelated diffusion systems, but performs worse
for the correlated diffusion system in which a small number of
steps causes a correlation-induced bias. For vacancy-mediated
Si diffusion in Ni, the PT approach produces slightly larger
statistical errors than those of the CFD method.

For the same computational effort, the PT approach re-
quires less computational time than the other two methods.
The FD and CFD methods require two KMC calculations
for the positively strained and negatively strained systems
separately, whereas the PT approach requires only one KMC
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calculation. Therefore, obtaining derivatives using the PT
approach requires about one-half the time of using the FD and
CFD methods. The ratio of PT run time and the FD or CFD
run time is not exactly half because PT requires three extra
terms, i.e., �αβ,j , Rαβ,j , and ταβ,j defined in Eqs. (21)–(23),
but that can be faster than recomputing the table of rates at
every hopping step.

The FD, CFD, and PT methods can compute other deriva-
tives of physical quantities that can be extracted from KMC
trajectories and can be applied to systems with stronger point
defect interactions and more complicated crystal structures
than Ni-Si alloys. We applied the derivative approaches to
computing the derivatives of Onsager matrix components with
respect to tetragonal strain for Ni with Si in the dilute limit.
However, the methods are more general and can compute
derivatives with respect to other changing variables such
as temperature, external magnetic fields, or small radiation
doses. The FD method requires a large number of KMC

trajectories to achieve acceptable statistical errors, and we
find that the CFD and PT methods are more efficient since
they require fewer trajectories to reach the same level of
accuracy. For systems with stronger point defect interactions
and more complicated crystal structures, successive diffusion
steps are usually strongly correlated. In these cases, we expect
the CFD method to outperform the PT approach because
the longer KMC trajectories that we apply to eliminate the
correlation-induced bias cause larger statistical errors for the
PT approach, but do not affect the statistical errors of the CFD
method.
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stress field due to pressurized nanometric He bubbles on the
mobility of an edge dislocation in iron, Philos. Mag. 90, 1075
(2010).

[5] M. R. Gilbert, S. Queyreau, and J. Marian, Stress and tem-
perature dependence of screw dislocation mobility in α-Fe by
molecular dynamics, Phys. Rev. B 84, 174103 (2011).

[6] E. J. Savino, Point defect-dislocation interaction in a crystal
under tension, Philos. Mag. 36, 323 (1977).

[7] V. M. Chernov, D. A. Chulkin, and A. B. Sivak, Interaction
of intrinsic point defects with dislocation stress fields in hcp
zirconium crystal, Crystallogr. Rep. 55, 83 (2010).

[8] A. B. Sivak, V. M. Chernov, N. A. Dubasova, and V. A. Romanov,
Anisotropy migration of self-point defects in dislocation stress
fields in BCC Fe and FCC Cu, J. Nucl. Mater. 367-370, 316
(2007).

[9] Hui Yang, Minsheng Huang, and Zhenhuan Li, The influence of
vacancies diffusion-induced dislocation climb on the creep and
plasticity behaviors of nickel-based single crystal superalloy,
Comput. Mater. Sci. 99, 348 (2015).

[10] Yingxin Zhao, Qihong Fang, Youwen Liu, Pihua Wen, and
Yong Liu, Creep behavior as dislocation climb over NiAl
nanoprecipitates in ferritic alloy: The effects of interface stresses
and temperature, Int. J. Plastic. 69, 89 (2015).

[11] K. Sato, T. Yoshie, Y. Satoh, Q. Xu, E. Kuramoto, and M.
Kiritani, Point Defect Production Under High Internal Stress
Without Dislocations in Ni and Cu, Radiat. Eff. Defects Solids
157, 171 (2002).

[12] M. P. Macht, A. Müller, V. Naundorf, and H. Wollenberger,
Ion irradiation induced mass transport of Ni in Ni and Fe-
20Cr-20Ni, Nucl. Instrum. Methods Phys. Res. Sec. B 16, 148
(1986).

[13] A. Müller, V. Naundorf, and M. P. Macht, Point defect sinks in
self-ion-irradiated nickel: A self-diffusion investigation, J. Appl.
Phys. 64, 3445 (1988).

[14] A. R. Allnatt and A. B. Lidiard, Atomic Transport in Solids
(Cambridge University Press, Cambridge, 1993).
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