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Among scaling analysis methods based on the root-mean-square deviation from the estimated trend, it has been
demonstrated that centered detrending moving average (DMA) analysis with a simple moving average has good
performance when characterizing long-range correlation or fractal scaling behavior. Furthermore, higher-order
DMA has also been proposed; it is shown to have better detrending capabilities, removing higher-order polynomial
trends than original DMA. However, a straightforward implementation of higher-order DMA requires a very
high computational cost, which would prevent practical use of this method. To solve this issue, in this study, we
introduce a fast algorithm for higher-order DMA, which consists of two techniques: (1) parallel translation of
moving averaging windows by a fixed interval; (2) recurrence formulas for the calculation of summations. Our
algorithm can significantly reduce computational cost. Monte Carlo experiments show that the computational
time of our algorithm is approximately proportional to the data length, although that of the conventional algorithm
is proportional to the square of the data length. The efficiency of our algorithm is also shown by a systematic
study of the performance of higher-order DMA, such as the range of detectable scaling exponents and detrending
capability for removing polynomial trends. In addition, through the analysis of heart-rate variability time series,
we discuss possible applications of higher-order DMA.
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I. INTRODUCTION

Long-range correlations and fractal scaling behavior of
time series have been observed in a wide variety of systems,
including biological [1–6], economic [7–9], and social sys-
tems [10,11]. Understanding these dynamics has become a
major concern in the field of complex and far-from-equilibrium
systems [12,13]. In addition, recent advances in computing,
communications, and digital storage technologies have led
to the generation of large-scale, high-frequency data [14].
Analysis of this large-scale data would also be important to
obtain insight into the mechanisms underlying long-range cor-
relations in real-world systems. Furthermore, using wearable
devices for medical and healthcare applications, it is possible to
record very long-term, continuous biomedical signals [15,16]
such as electrocardiograms, heart rate, blood pressure, blood
oxygen saturation, body temperature, posture, and physical
activity. In biomedical time series, long-range correlation
has frequently been observed [1–3,5,17]. The importance
of characterizing the long-range correlation in biomedical
time series is underscored by studies demonstrating that
its alteration is associated with a disease state and higher
mortality [5,16–18]. Thus, fast and reliable characterization
of a large-scale time series dataset is a crucial task.

To quantify the long-range correlation, a variety of tech-
niques have been proposed, such as power spectral analy-
sis [19], rescaled range (R/S) analysis [20], structure-function-
based analysis [21], wavelet-transform-based analysis
[22–24], detrended fluctuation analysis (DFA) [3,4,25], and
detrending moving average (DMA) algorithms [8,26–28]. As
in DFA and DMA, one possible method of characterizing a
stochastic process exhibiting fractal scaling behavior, such
as fractional Brownian motion [29], is to estimate the
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power-law increase (∼nα) in the root-mean-square deviation
from a trend, as the observation window size n increases.
In this approach, the power-law exponent α, called the
scaling exponent, is expected to provide an estimate of the
Hurst exponent H of fractional Brownian motion [29]. If
we observe a long-range correlated time series displaying
nondiffusive behavior, such as fractional Gaussian noise
(fGn) [29], we analyze its integrated series (cumulative sum)
as a sample path of a random walk driven by the observed
time series. In this case, long-range correlation properties
of the observed time series are characterized by the scaling
exponent α.

To achieve reliable detection of the scaling behavior in
nonstationary time series with trends, it is essential to dis-
tinguish deterministic trends from the long-range correlation
intrinsic in the stochastic dynamics. Therefore, various types
of detrending procedures used to minimize the effects of trends
have been introduced in scaling analysis [6,26,27,30–33].
Among these methods, centered DMA [8] is one of the best
performing methods [31,34], although its detrending ability
is worse than that of second-order DFA [35]. In DMA, the
trend is estimated using a simple moving average [8,26–28].
As a generalization of DMA, higher-order DMA has also been
proposed [33]. In higher-order DMA, a higher order moving
average, defined based on a moving average polynomial of
degree m, is employed as the estimated trend (Fig. 1). If moving
average polynomials of degree m are employed in the DMA,
the method is referred to as mth order DMA or DMAm. In
this framework, the original DMA is included as the zeroth
order DMA (DMA0). Recently, it has been analytically shown
that higher-order DMA has a better detrending capability for
removing a higher-order polynomial trend [36]. In practical
applications, to analyze nonstationary time series with an
a priori unknown trend, the higher detrending capability
is important for improving the estimation accuracy and
validating the observed scaling behavior [25,31]. However, the

2470-0045/2016/93(5)/053304(11) 053304-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.93.053304


TSUJIMOTO, MIKI, SHIMATANI, AND KIYONO PHYSICAL REVIEW E 93, 053304 (2016)

FIG. 1. Moving average polynomials {ỹn(i)} of degree m at scale n (dashed lines) in centered DMA, where {y(i)} is a discrete sample path
of Brownian motion.

implementation of higher-order DMA significantly increases
the computational cost. Although this fact has not been
explicitly identified, it is likely the main reason why no
systematic and comprehensive study based on Monte Carlo
experiments has been conducted to investigate the performance
of higher-order DMA.

In this paper, to reduce the computational cost of higher-
order DMA, we propose a fast algorithm. Monte Carlo
experiments show that the computational time of our algorithm
is approximately proportional to N , where N is the data length,
whereas that of the conventional algorithm is approximately
proportional to N2. The efficiency of our algorithm is also
shown using a systematic study of the performance of higher-
order DMA, such as the order dependence of the detectable
scaling exponent and detrending capability for removing a
polynomial trend. In addition, as an application of our method,
we analyze heart-rate variability (HRV) time series obtained
from the Physionet database [37].

The organization of this paper is as follows. In Sec. II, we
describe the higher-order DMA. In Sec. III, we propose a first
algorithm for DMA, and demonstrate the efficiency of our
algorithm. In Sec. IV, based on Monte Carlo experiments, we
test the performance of our algorithm and higher-order DMA.
In Sec. V, through the analysis of HRV, we evaluate possible
applications of higher-order DMA. Finally, Sec. VI provides
a summary of our results and discusses possible extensions of
our algorithm.

II. DETRENDING MOVING AVERAGE
(DMA) ALGORITHM

In this section, we briefly review higher-order DMA. To
analyze a long-range correlated time series displaying nondif-
fusive behavior, we first integrate the observed time series
{x(i)}Ni=1, y(i) = ∑i

j=1 [x(j ) − x ], where x is the sample
mean of {x(i)}, and analyze {y(i)}. In the DMA algorithm, to
obtain a moving average polynomial of degree m, we consider
a least-squares polynomial fit for a moving window of length n.
In this case, the coefficients {ãn,k} of the mth order polynomial

fit, i.e., ãn,0(i) + ãn,1(i) i + · · · + ãn,m(i) im, are given by

⎡
⎢⎢⎣

ãn,0(i)
ãn,1(i)

...
ãn,m(i)

⎤
⎥⎥⎦ = B−1

m (i,n)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j

y(j )

∑
j

j y(j )

...∑
j

jmy(j )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where B−1
m (i,n) is the inverse matrix of

Bm(i,n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j

1
∑

j

j · · ·
∑

j

jm

∑
j

j
∑

j

j 2 · · ·
∑

j

jm+1

...
...

. . .
...∑

j

jm
∑

j

jm+1 · · ·
∑

j

j 2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The range of the summations in Eqs. (1) and (2) depends on
time (or position) i, the relative location of the moving average
point, and the moving window size n. In centered DMA,
the summations are calculated over [i − (n − 1)/2,i + (n −
1)/2], where we assume that n is an odd number. In forward
DMA, summations are over [i,i + n − 1]. In backward DMA,
summations are over [i − n + 1,i]. Using {ãn,k(i)} [Eq. (1)],
the moving average polynomial of degree m {ỹn(i)} is given
by

ỹn(i) = ãn,0(i) + ãn,1(i) i + · · · + ãn,m(i) im. (3)

An illustrative example of moving average polynomials in
centered DMA is shown in Fig. 1. The above definition of the
moving average polynomial using Eqs. (1)–(3) is based on the
original procedure proposed in Ref. [33]. However, as will be
shown later, the moving average polynomial can be presented
in a more sophisticated form. In this study, it is shown that the
moving average polynomial [Eq. (3)] is a linear function (filter)
of {y(i)} and does not explicitly depend on i. For example, in
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FIG. 2. Illustration of parallel translation of a moving averaging
window. In centered DMA, each moving average window over
[i,i + n − 1] is shifted by a fixed interval [−n′,n′], where n is the
window size and n = 2n′ + 1. In backward DMA, each moving
average window over [i,i + n − 1] is shifted by a fixed interval
[−n + 1,0].

second-order centered DMA at odd scale n, ỹn(i) is given by

ỹn(i) = 9n2 − 21

4n3 − 16n

(n−1)/2∑
j=−(n−1)/2

y[i + j ]

− 15

n3 − 4n

(n−1)/2∑
j=−(n−1)/2

j 2 y[i + j ], (4)

where i and i2 are not explicitly included [cf. Eq. (3)].

Using the estimated trend {ỹn(i)}, an estimator of the
mean-square deviation from the trend, called the generalized
variance, can be defined as

σ 2
DMA(n) = 1

N − n

∑
i

[y(i) − ỹn(i)]2, (5)

where N is the data length, and the range of the summation
depends on both the analyzed scale n and the type of
DMA. In centered DMA, the summations are calculated over
[1 + (n − 1)/2,N − (n − 1)/2] for odd values of n. In forward
DMA, summation is over [1,N − (n − 1)]. In backward DMA,
summation is over [n,N ]. In the original definition of the
generalized variance [Eq. (5)], the denominator is set to
(N − n) [27]. However, to maintain consistency between our
analytical and numerical arguments throughout this paper, we
replace (N − n) by (N − n + 1) in Eq. (5). Note that the
asymptotic behavior is the same in both cases.

In Eq. (1), the calculation steps of summations of {y(i)}
are proportional to n(N − n + 1) ∼ nN . In the scaling anal-
ysis, the analyzed scales are given by a finite sequence
{n1,n2, . . . ,nL}, where L is the number of analyzed scales.
If {nl}Ll=1 is given by a geometric progression with a fixed
common ratio and the last term proportional to the data length
N , the sum of {nl} is proportional to N . Therefore, the total
number of steps in the summations in Eq. (1) is approximately
proportional to N2, which means that the computation time
rapidly increases as the data length N increases.

III. FAST ALGORITHM FOR DMA

To reduce the computational cost of higher-order DMA,
here we propose a fast algorithm. Our approach to devel-
oping a fast algorithm for DMA consists of two principles:
(1) parallel translation of moving averaging windows by a fixed
interval (Fig. 2); (2) recurrence formulas for the calculation of
summations (Fig. 3). The parallel translation of the moving
averaging windows has two advantages. One advantage is that
B−1

m (i,n) in Eq. (1) at each scale n is calculated only once,
not repeatedly. The other advantage is that the moving average
polynomial ỹn(i) [Eq. (3)] is always simplified as follows:

ỹn(0) = ãn,0(0) + ãn,1(0)0 + · · · + ãn,m(0)0m = ãn,0(0).

Thus, it is not necessary to calculate the coefficients of
higher-order terms in Eq. (3). Using this idea, we can derive
simplified forms of the calculation procedure corresponding to

FIG. 3. Illustration of recurrence calculations of Y (k)(i,n). Every r point in the smallest scale n1, Y (k)(lr + 1,n1) (l = 0,1, · · · ) is calculated
using

∑
j j k y(j ) (gray shaded terms). Otherwise, subsequent Y (k)(i,n) values are calculated using recurrence formulas.
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Eqs. (1)–(3). For example, in centered DMA with even-order
m, the moving average polynomial ỹn(i) of degree m at odd
scale n is given by

ỹn(i) =
m/2∑
k=0

⎛
⎝b̃1,2k+1(n)

(n−1)/2∑
j=−(n−1)/2

j 2k y[i + j ]

⎞
⎠, (6)

where b̃i,j (n) are elements of the (m + 1) × (m + 1) matrix
B̃−1

m (n), where B̃−1
m (n) is the inverse matrix of

B̃m(n) =
(n−1)/2∑

j=−(n−1)/2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 j 2 · · · jm

0 j 2 0 · · · 0

j 2 0 j 4 · · · jm+2

...
...

...
. . .

...

jm 0 jm+2 · · · j 2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

In DMA, the calculation of
∑

j j ky(j ) in Eq. (1) [or
Eq. (6)] results in a high computational cost. In our algorithm,
by introducing recurrence formulas to calculate

∑
j j ky(j ),

the computational cost is reduced. As will be shown, the
summations can be recurrently calculated across both time
i and analyzed scales. However, iterative calculations of the
recurrence formulas in the computer will cause rounding errors
to accumulate. To minimize this rounding error accumulation,
we introduce a refresh interval r , where r is a positive integer.
In our algorithm, calculations of

∑
j j ky(j ) at every r point

in the smallest scale are straightforwardly carried out, without
using the recurrence formulas (Fig. 3). In the following subsec-
tion, we provide the details of the algorithm for centered DMA.
The algorithm for backward DMA is provided in Appendix A.

A. Algorithm for centered DMA

In our algorithm for the centered case, the description
of DMA with even order m is exactly the same as that for
(m + 1)th order DMA. Therefore, here we consider even order
DMA. In this case, the mean-square deviation from the trend
at scale n = 2n′ + 1, where n′ is a positive integer, is given by

σ 2
DMA(n) = 1

N − 2n′

N−2n′∑
i=1

[y(i + n′) − ãn,0(i)]2, (8)

where N is the data length and ãn,0(i) is given by

ãn,0(i) = b̃1,1 Y (0)(i,n′) + b̃1,3 Y (2)(i,n′)

+ · · · + b̃1,m+1 Y (m)(i,n′)

=
m/2∑
k=0

b̃1,2k+1 Y (2k)(i,n′). (9)

In Eq. (9), Y (k)(i,n′) is defined by

Y (k)(i,n′) =
2n′+1∑
j=1

(j − n′ − 1)k y(i + j − 1), (10)

and b̃i,j defines elements of the (m + 1) × (m + 1) matrix
B̃−1

m (n′), where B̃−1
m (n′) is the inverse matrix of

B̃m(n′) =
n′∑

j=−n′

⎡
⎢⎢⎢⎢⎢⎣

1 0 j 2 · · · jm

0 j 2 0 · · · 0
j 2 0 j 4 · · · jm+2

...
...

...
. . .

...
jm 0 jm+2 · · · j 2m

⎤
⎥⎥⎥⎥⎥⎦. (11)

We would like to point out that moving average polynomials of
higher-order centered DMA are identical with Savitzky-Golay
filters [38,39].

In our algorithm, if the condition i = ri ′ + 1 is satisfied,
where i ′ = 0,1, . . . ,�(N − 1)/r� (�·� is the floor function)
and the refresh interval r is a positive integer, Y (k)(i,n′

1) at the
smallest scale n′

1 is straightforwardly calculated using Eq. (10).
Otherwise, subsequent Y (k)(i,n′

l) values are calculated using
recurrence formulas:

Y (k)(i + 1,n′
l) =

k∑
j=0

(
k

j

)
(−1)k−j Y (j )(i,n′

l)

−(−n′
l − 1)k y(i) + (n′

l)
k y(i + 2n′

l + 1).

(12)

In addition, the relation between the two scales, i.e., n′
l and

n′
l+1, is given by

Y (k)(i,n′
l+1) =

k∑
j=0

(
k

j

)
(n′

l − n′
l+1)k−j Y (j )(i,n′

l)

+
2n′

l+1+1∑
j=2n′

l+2

(j − n′
l+1 − 1)k y(i + j − 1). (13)

If the two conditions, i.e., n′
l > n′

1 and i = ri ′ + 1, are
satisfied, Y (k)(i,n′

l) is calculated using Eq. (13).
For example, in second-order centered DMA, σ 2

DMA(n) at
scale n = 2n′ + 1 is given by

σ 2
DMA(2n′ + 1) = 1

N − 2n′

N−2n′∑
i=1

[
y(i + n′) − (9n′2 + 9n′ − 3)Y (0)(i,n′) − 15Y (2)(i,n′)

8n′3 + 12n′2 − 2n′ + 3

]2

. (14)

In this case, the recurrence formulas for the calculation of Y (k)(i,n′
l) values are given by

Y (0)(i + 1,n′) = Y (0)(i,n′) + y(i + 2n′ + 1) − y(i), (15)

Y (1)(i + 1,n′) = Y (1)(i,n′) − Y (0)(i,n′) + (n′ + 1)y(i) + n′ y(i + 2n′ + 1), (16)

Y (2)(i + 1,n′) = Y (2)(i,n′) − 2Y (1)(i,n′) + Y (0)(i,n′) − (n′ + 1)2y(i) + n′2 y(i + 2n′ + 1). (17)
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In addition, when n′
l > n′

1 and i = ri ′ + 1, the values of Y (k)(i,n′
l) are calculated as follows:

Y (0)(i,n′
l+1) = Y (0)(i,n′

l) +
2n′

l+1+1∑
j=2n′

l+2

y(i + j − 1), (18)

Y (1)(i,n′
l+1) = Y (1)(i,n′

l) + (n′
l − n′

l+1) Y (0)(i,n′
l) +

2n′
l+1+1∑

j=2n′
l+2

(j − n′
l+1 − 1) y(i + j − 1), (19)

Y (2)(i,n′
l+1) = Y (2)(i,n′

l) + 2(n′
l − n′

l+1) Y (1)(i,n′
l) + (n′

l − n′
l+1)2 Y (0)(i,n′

l) +
2n′

l+1+1∑
j=2n′

l+2

(j − n′
l+1 − 1)2 y(i + j − 1). (20)

B. Setting of refresh interval

To obtain an accurate and fast analysis method, opti-
mization of the refresh interval r is crucial. To determine
the value of r , we evaluate the effect of the rounding error
accumulation induced by recurrence formulas. Figure 3 shows
the relative error induced by iterative calculations of the
recurrence formulas [Eq. (12)], where the relative error is
defined as the absolute difference between the two methods,
i.e., with and without recurrence formulas, divided by the
root-mean-square deviation σDMA(n) of the method without
recurrence formulas. As shown in Fig. 4, the relative error
rapidly increases as the number of iterations increases. To
achieve a sufficiently small relative error, i.e., less than 10−5,
we set r = 104 for centered DMA2 and r = 100 for centered
DMA4 in the following analysis. In addition, we set r = 105

for centered DMA0, backward DMA0, and backward DMA1;
r = 104 for backward DMA2; r = 103 for backward DMA3;
and r = 102 for backward DMA4.

C. Comparison of computation times

To evaluate the efficiency of our algorithm, here we
estimate the computation time of DMA when combined with
DFA [25] via Monte Carlo experiments. DFA was performed
based on the original C code available on PhysioNet at
http://physionet.org/physiotools/dfa. Here, the analyzed scales
{nl} are the odd integers nearest to the geometric progression
with a common ratio of 21/8. Thus, the number of the analyzed
scales is approximately proportional to log N , where N is the
data length.

FIG. 4. Relative error induced by iterative calculations of recur-
rence formulas [Eq. (12)]. The relative error is defined in the text.
The mean values of the relative error when n = 11 were calculated
using 100 samples of white Gaussian noise.

As shown in Fig. 5, the straightforward implementation
of DMA provokes a much higher computational cost that is
approximately proportional to N2. In contrast, the computation
time of our DMA algorithm is approximately proportional
to N1. In addition, when the mth order centered DMA
is compared to the (m + 1)th order DFA as a comparable
method [36], the computation time of DMA is comparable
to (or slightly better than) that of DFA.

IV. NUMERICAL STUDY OF HIGHER-ORDER DMA

To date, there are few numerical studies of the performance
of higher-order DMA [33,36]. In this study, using analysis of
the basic properties of higher-order DMA (such as the range
of detectable scaling exponents and detrending capability for
removing a polynomial trend), we discuss the efficiency of our
algorithm.

A. Limit of detectable scaling exponent

In this section, we investigate the scaling exponent de-
tectable by centered DMA and backward DMA when applied

FIG. 5. Comparison of computation times. The CPU time of the
process calculating σDMA(n) were measured on a Windows PC with an
Intel Core i7-5930K (3.5 GHz). The computation times were averaged
over 100 runs.
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FIG. 6. Estimated scaling exponent α for mth order DMA versus
the scaling exponent β of the analyzed time series. Numerically
generated time series displaying the power-law scaling of the power
spectral density, S(f ) ∼ f −β , were analyzed. The length of the time
series is N = 105. The mean value of α, estimated using linear
regression of log10 σDMA(n) versus log10 n in the range 102 � n �
104, was calculated based on 10 samples. Dashed lines represent the
relation α = (β + 1)/2.

to artificially generated signals with a power-law power
spectral density, S(f ) ∼ f −β , where f is the frequency. The
relation between α and β of these signals is expected to obey
α = (β + 1)/2 [36]. However, it is known that, depending
on the analysis method, a limitation of the detectable scaling
exponent exists [36,40].

In our analysis, we vary β over −2 � β � 9, and estimate
the exponent α in the scaling range [102,104]. As shown in
Fig. 6, the upper limit of the detectable scaling exponent
depends on the order of DMA. As predicted by an analytical
calculation based on the single-frequency response function,
in the case of centered DMA with even order m, the upper
limit of α is given by m + 2 [36]. On the other hand, in the
case of backward DMA with order m, the upper limit of α

is given by m + 1, which is also predicted using the structure
of the single-frequency response function (see Appendix B).
Because the single-frequency response function of mth order
forward DMA is the same as that of mth order backward DMA,
the upper limit of α in forward DMA is the same as that in
backward DMA.

To obtain the numerical results shown in Fig. 6(a), the
time series of length 105 was analyzed 1100 times for each
DMA method. Using our algorithm, the total computational
time for calculating σDMA(n) in DMA0, DMA2, and DMA4

was roughly 53 s, 112 s, and 12 min, respectively, excluding
the time required to generate and read the data. In contrast,
if we use the straightforward algorithm to obtain the same
results, the estimated computational time in DMA0, DMA2,
and DMA4 was 26 h, 43 h, and 90 h, respectively. Without
using our algorithm, the Monte Carlo study of higher-order
DMA requires considerable computational costs.

B. Detrending capability

One advantage of higher-order DMA is better detrending
performance, which is particularly important when improving
the estimation accuracy of the scaling exponent of nonsta-
tionary time series. To show this effect, we investigate the

scaling behavior estimated by centered and backward DMAs
when applied to nonstationary signals with a polynomial
trend. In our analysis, the analyzed time series are generated
by superposition of white Gaussian noise and a qth degree
polynomial function. As shown in Fig. 7, as the DMA order
increases, the effect of the polynomial trend is either attenuated
or completely removed. Specifically, the fourth-order centered
DMA yields excellent results up to the fifth degree polynomial
trend. It is analytically shown that centered DMA with even
order m can remove the mth degree polynomial trend in
the analyzed time series {x(i)}, or the (m + 1)th degree
polynomial trend in {y(i)} (see Appendix C). In contrast, our
numerical results suggest that mth order backward DMA can
remove an (m − 1)th degree polynomial trend in the analyzed
time series {x(i)}, or an mth degree polynomial trend in
{y(i)}. An analytical proof of this property is also given in
Appendix C. Therefore, the zeroth-order backward DMA has
poor detrending ability, as shown in Fig. 7(c).

Compared to backward DMA, centered DMA at the same
(even) order has better detrending ability. In addition, centered
DMA shows better scaling behavior at small scales than
backward DMA. Therefore, we recommend centered DMA
for scaling analysis, unless there is a strong reason to use
backward DMA.

V. APPLICATION OF HIGHER-ORDER DMA

Our algorithm facilitates the application of higher-order
DMA to real-world time series. As shown in Fig. 7, undesirable
scaling behavior induced by deterministic trends is removed or
attenuated by increasing the order of the DMA. In other words,
the slope of the desirable scaling behavior is not changed
by increasing the order of DMA used. Therefore, to validate
the observed scaling behavior, we must demonstrate that the
estimated scaling exponent remains unchanged when the order
of the DMA is increased.

As an application of centered DMA, here we analyze
HRV time series obtained from the Physionet database [37].
Long-term HRV in healthy subjects has been shown to exhibit a
1/f β-type power spectrum, where β is close to unity for young
adults; this behavior derives from the intrinsic stochasticity
of heart-rate dynamics [16,18]. As shown in Fig. 8, the
1/f -scaling behavior was confirmed using centered DMA.
The estimated scaling exponent in centered DMA was α ≈ 1.1,
independent of the order of DMA used. Note that α = 1 for
large scales, which is equivalent to β = 1 for low frequencies,
because of the relation α = (β + 1)/2. When we compare the
estimated results obtained using DMA and DFA, the mth order
centered DMA yields very similar results to (m + 1)th order
DFA. This similarity may originate from the similarity of the
single-frequency response functions [40].

The total number of heart beats over 24 h is approximately
105. Furthermore, in medical cohort studies using 24-h HRV,
analysis of a large number datasets would be sometimes
required [18]. When analyzing these datasets using higher-
order DMA, our algorithm might be useful.

VI. SUMMARY AND DISCUSSION

We have proposed a fast algorithm for higher-order DMA
that can significantly reduce the computational cost relative
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FIG. 7. Detrending capability for removing a polynomial trend. The analyzed time series were generated by superposition of white Gaussian
noise and a qth order polynomial function, and analyzed by centered DMA (center) and backward DMA (right). The estimated values of σDMA(n)
for each value of n were averaged over 10 samples. From top to bottom, linear, quadratic, cubic, quartic, and quintic trends were analyzed.
The left panels show sample time series, where polynomial functions are described using dashed lines. The dashed lines in the center and right
panels indicate lines with slope 0.5.

to the conventional straightforward implementation. Using
our algorithm for centered DMA and backward DMA, we
have numerically shown the order dependence of detectable
scaling exponents and the detrending capability for remov-
ing a polynomial trend. These properties are also derived

analytically. Centered DMA exhibits better performance than
forward DMA or backward DMA with the same (even) order.
In practical applications, to validate the observed scaling
behavior, it is necessary to demonstrate that the estimated
scaling exponent remains unchanged when the order of DMA
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FIG. 8. 1/f scaling behavior of heart-rate variability (HRV).
(a) HRV time series of a normal subject (a 35-year-old male) [37].
(b) Log-log plots of σDMA vs. n for centered DMA combined with
DFA (solid lines) [25]. In the case of DFA, the fluctuation functions
F (n) were plotted instead of σDMA; In solid lines from top to bottom,
the orders of DFA are 1, 2, 3, 4, and 5. The curves have been shifted
vertically for better visibility.

is increased. For practical applications, our algorithm for
higher-order DMA is an important contribution.

To date, the performance of higher-order DFA has been
extensively and systematically studied [41–44], and DFA has
become a widely used method. In comparison, studies using
higher-order DMA are rare. Our algorithm could help further
systematic study of the performance of higher-order DMA and
facilitate increasingly widespread application of DMA.

In addition, further extension of higher-order DMA is
possible. Zeroth-order DMA with a simple moving average has
been extended to higher-dimensional data analysis [45], cross-
correlation analysis [46,47], and multifractal analysis [48]. In
a similar fashion, by extending our algorithm, higher-order
DMA could be extended to a wide range of analysis techniques.
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APPENDIX A: ALGORITHM FOR BACKWARD DMA

In mth order backward DMA, the mean-square deviation
from the trend is given by

σ 2
DMA(n) = 1

N − n + 1

N−n+1∑
i=1

[y(n + i − 1) − ã0(i)]2, (A1)

where ã0(i) is given by

ã0(i) =
m∑

k=0

b̃1,k+1 Y (k)(i). (A2)

In Eq. (A2), Y (k)(i,n) is given by

Y (k)(i,n) =
n∑

j=1

(j − n)k y(i + j − 1), (A3)

and b̃i,j is an element of the matrix B−1
m (n), where B−1

m (n) is
the inverse matrix of

Bm(n) =
0∑

j=−n+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 j j 2 · · · jm

j j 2 j 3 · · · jm+1

j 2 j 3 j 4 · · · jm+2

...
...

...
. . .

...

jm jm+1 jm+2 · · · j 2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(A4)

In our algorithm, if the condition i = ri ′ + 1 (i ′ = 0,1, · · · ) is
satisfied, Y (k)(i,n1) at the smallest scale n1 is straightforwardly
calculated using Eq. (A3). Otherwise, subsequent Y (k)(i,nl)
values are calculated using recurrence formulas,

Y (k)(i + 1,n) =
k∑

j=0

(
k

j

)
(−1)k−j Y (j )(i,n)

−(−n)k y(i) + 0k y(i + n). (A5)

Note that in Eq. (A5), we define 00 = 1. In addition, the
relation between two scales, nl and nl+1, is given by

Y (k)(i,nl+1) =
k∑

j=0

(
k

j

)
(nl − nl+1)k−j Y (j )(i,nl)

+
nl+1∑

j=1+nl

(j − nl+1)k y(i + j − 1). (A6)

Therefore, if the two conditions, i.e., nl > n1 and i = ri ′ + 1,
are satisfied, Y (k)(i,nl) is calculated using Eq. (13).

APPENDIX B: SINGLE-FREQUENCY RESPONSE
FUNCTION OF FORWARD AND BACKWARD DMA

Recently, we proposed an analytical approach using the
single-frequency response function of DMA [36,40]. The
single-frequency response function is obtained by considering
the response of DMA for the analysis of a single-frequency
component with amplitude A and frequency f . The square
root of the single-frequency response function provides an
analytical prediction of σDMA(n) when a single-frequency
component is analyzed using DMA. Furthermore, the power-
law tail structure of the single-frequency response function for
n � 1/f determines the upper limit of the scaling exponent
detectable by DMA [36,40]. That is, when the single-frequency
response function is proportional to nν for n � 1/f , the upper
limit of the detectable scaling exponent is equal to ν/2.

In the case of mth order forward DMA and backward
DMA, the single-frequency response functions have the same
functional form, and, when n � 1/f , these response functions
can be expanded as follows:

�
2
m(n,f,A) = π2mA2f 2m

23
∏m

j=1(2j − 1)2
n2m+2 + O(n2m+4). (B1)

We have analytically confirmed that Eq. (B1) holds when m =
1,2, . . . ,5. Therefore, we conjecture that Eq. (B1) holds in
general. Hence, in the range where Eq. (B1) holds, the upper

053304-8



FAST ALGORITHM FOR SCALING ANALYSIS WITH . . . PHYSICAL REVIEW E 93, 053304 (2016)

limit of the detectable scaling exponent for mth order forward
and backward DMA is equal to m + 1.

APPENDIX C: ANALYTICAL DERIVATION OF
DETRENDING CAPABILITY

When we consider the sum of two uncorrelated time series
{x(A)(i)} and {x(B)(i)}, the superposition law of the mean-
square deviation in DMA holds [35]:

[
σ

(A+B)
DMA (n)

]2 = [
σ

(A)
DMA(n)

]2 + [
σ

(B)
DMA(n)

]2
, (C1)

where σ
(A+B)
DMA (n), σ

(A)
DMA(n), and σ

(B)
DMA(n) denote the root-

mean-square deviation corresponding to {x(A)(i)}, {x(B)(i)},
and {x(A)(i) + x(B)(i)}, respectively. Therefore, if a time series
is given by the sum of stochastic noise and a polynomial
trend, the additive law of mean-square deviations holds.
Therefore, we can study the separate effects of the polynomial
trends. Although the detrending ability of zeroth-order DMA
has already been shown by Shao et al. [35], we consider
higher-order DMA.

1. Centered DMA

First, we study the detrending capability of the mth order
centered DMA, where m is chosen to be an even number.
To simplify the calculation, we assume a qth order polynomial
function defined in the range [−n′,n′], where the scale is given
by n = 2n′ + 1:

x(q)(i) = c0 + c1i + · · · + cqi
q =

q∑
k=0

ck ik. (C2)

Note that by employing parallel translation, an arbitrary situ-
ation when analyzing polynomial functions can be described
in this form. In this case, the integrated series in [−n′,n′] is
given by

y(q)(i) =
i∑

j=−n′
x(q)(j ) =

q∑
k=0

ck

i∑
j=−n′

jk. (C3)

Using the following expression based on Faulhaber’s formula,

i∑
j=−n′

jk =
{

1
k+1

∑k
j=0(−1)jBj

(
k+1
j

){ik+1−j + (−1)k (n′)−j+k+1} for k �= 0

i + n′ + 1 for k = 0
, (C4)

where Bj are the Bernoulli numbers. We express y(q)(i) as

y(q)(i) = c0 +
q∑

k=0

ck

k + 1

k∑
j=0

(−1)jBj

(
k + 1

j

)
{ik+1−j + (−1)k (n′)−j+k+1}

= c0 +
q∑

k=0

ck

k + 1

k∑
j=0

(−1)jBj

(
k + 1

j

)
(−1)k (n′)−j+k+1 +

q∑
k=0

⎧⎨
⎩

q∑
j=k

cj

j + 1
(−1)j−kBj−k

(
j + 1

j − k

)⎫⎬
⎭ ik+1. (C5)

As described in Eq. (C5), we can express y(q)(i) as

y(q)(i) = ĉ0 + ĉ1 i + ĉ2 i2 + · · · + ĉq+1 iq+1. (C6)

To calculate the moving average point at i = 0, we first
obtain the coefficients {ak} of the least-squares polynomial by
minimizing

I ({aj }) =
n′∑

i=−n′

(
y(q)(i) −

m∑
k=0

aki
k

)2

. (C7)

That is, we solve the following equations:

∂I ({aj })
∂ai

= 0, (C8)

where i,j = 0,1, . . . ,m. When q � m, equations given by
Eq. (C8) for even i values result in⎡

⎢⎢⎢⎢⎣
ρ0 ρ2 · · · ρm

ρ2 ρ4 · · · ρm+2

ρ4 ρ6 · · · ρm+4
...

...
...

ρm ρm+2 · · · ρ2m

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a0 − ĉ0

a2 − ĉ2

a4 − ĉ4
...

am − ĉm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
...
0

⎤
⎥⎥⎥⎥⎦, (C9)

where

ρk =
n′∑

i=−n′
ik. (C10)

Because when m < 2n′ + 1, a unique solution to Eq. (C9)
exists, we obtain

ak = ĉk for k = 0,2,4, . . . m. (C11)

In this case, the mth order centered moving average at i = 0
is given by

ỹn(0) = a0 = ĉ0. (C12)

Therefore, the square deviation at i = 0 is calculated as

[y(q)(i) − ỹn(i)]2|i=0 = [ĉ0 − ỹn(0)]2 = 0, (C13)

which means that when q � m, the mth order moving average
coincides with the (q + 1)th order polynomial function y(q)(i).
In other words, this result demonstrates that σ 2

DMA(n) = 0
when the qth order polynomial function x(q)(i) for q � m is
analyzed using mth order centered DMA. On the other hand,
when q > m, the square deviations from the trend take nonzero

053304-9



TSUJIMOTO, MIKI, SHIMATANI, AND KIYONO PHYSICAL REVIEW E 93, 053304 (2016)

values. For instance, when m = 2 and q = 3, we obtain

σ 2
DMA(n) = 9 c2

3(n4 − 10n2 + 9)2

5017600
∼ n8, (C14)

and when m = 4 and q = 5, we obtain

σ 2
DMA(n) = 25 c2

5(n6 − 35n4 + 259n2 − 225)2

7 868 399 616
∼ n12.

(C15)

2. Backward DMA

Next, we study the detrending capability of mth order
backward DMA. In this case, we consider a qth order
polynomial function x(q)(i) [Eq. (C2)] defined in the range
[−n + 1,0]. In this range, the integrated series yn(i) is given
by

y(q)(i)=
i∑

j=−n+1

x(q)(j )= ĉ0 + ĉ1 i + ĉ2 i2 + · · · + ĉq+1 iq+1,

(C16)

where

ĉ0 = c0 +
q∑

k=0

ck

k + 1

k∑
j=0

(−1)jBj

(
k + 1

j

)

(−1)k (n − 1)−j+k+1,

ĉk+1 =
q∑

j=k

cj

j + 1
(−1)j−kBj−k

(
j + 1
j − k

)

for k = 0, . . . ,q.

To minimize

I ({aj }) =
0∑

i=−n+1

(
y(q)(i) −

m∑
k=0

aki
k

)2

, (C17)

we solve⎡
⎢⎢⎢⎢⎣

ρ0 ρ1 · · · ρm

ρ1 ρ2 · · · ρm+1

ρ2 ρ3 · · · ρm+2
...

...
. . .

...
ρm ρm+1 · · · ρ2m

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

a0 − ĉ0

a1 − ĉ1

a2 − ĉ2
...

am − ĉm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
0
...
0

⎤
⎥⎥⎥⎥⎦, (C18)

where

ρk =
0∑

i=−n+1

ik, (C19)

and thus obtain

ak = ĉk for k = 0,1,2, . . . m. (C20)

In this case, the backward moving average at i = 0 is given by

ỹn(0) = a0 = ĉ0. (C21)

Therefore, the square deviation at i = 0 is calculated as
[ĉ0 − ỹn(0)]2 = 0. This result indicates that when q � m − 1,
the mth order moving average coincides with the qth order
polynomial function y(q)(i), and σ 2

DMA(n) = 0. On the other
hand, when q > m − 1, the square deviations from the trend
take nonzero values. For example, when m = 2 and q = 2, we
obtain

σ 2
DMA(n) = c2

2 (n − 3)2 (n − 2)2 (n − 1)2

3600
∼ n6. (C22)

Based on the same approach, it is possible to show that the
detrending capability of forward DMA is the same as that of
backward DMA.
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