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from a single blurred trajectory

Christopher P. Calderon*

Ursa Analytics, Inc., Denver, Colorado 80212, USA
(Received 23 October 2015; revised manuscript received 3 March 2016; published 12 May 2016)

Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes.
However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by
inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical
temporal dependence inherent to the underlying molecule’s time correlated confined dynamics experienced in
the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion
blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure
time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured
SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop
a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically

treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting
diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids
complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the
established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series
estimation procedure. The result extends A. J. Berglund’s motion blur model [Phys. Rev. E 82, 011917 (2010)] to
handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization
uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement
and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate
analyzing nonstationary signals). Our estimator is demonstrated to be consistent over a wide range of exposure
times (5 to 100 ms), diffusion coefficients (1 × 10−3 to 1 μm2/s), and confinement widths (100 nm to 2 μm). We
demonstrate that neglecting motion blur or confinement can substantially bias estimation of kinetic parameters of
interest to researchers. The technique also permits one to check statistical model assumptions against measured
individual trajectories without “ground truth.” The ability to reliably and consistently extract motion parameters
in trajectories exhibiting confined and/or non-stationary dynamics, without exposure time artifacts corrupting
estimates, is expected to aid in directly comparing trajectories obtained from different experiments or imaging
modalities. A Python implementation is provided (open-source code will be maintained on GitHub; see also the
Supplemental Material with this paper).
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I. INTRODUCTION

The number of techniques available to accurately probe
molecules in their native, crowded, and time changing live
cell environment has increased dramatically in recent years
[1–27]. Research aimed at more efficiently extracting kinetic
information from live cell single particle tracking (SPT) exper-
iments has also experienced rapid growth [28–42]. However,
analysis methods have substantially lagged behind microscopy
developments. An important and ubiquitous problem in cell
biology [43,44] that has not received substantial statistical
attention is associated with how to address various technical
challenges inherent to analyzing confined motion [17,45,46] in
a collection of experimental trajectories exhibiting heteroge-
neous and/or nonstationary (i.e., transient kinetic phenomena)
responses [33,41,44,47–49]. High-resolution multicolor image
stacks can provide hints of molecular interactions when
analyzed via a spatial colocalization analysis [27]; however
reliably distinguishing between transient molecular binding
events (hence changing the underlying molecular diffusivity
of the biomolecule) vs coincidental colocalization can be
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aided by new quantitative time series methods. Measurement
apparatus noise further complicate the problem, since in
optical microscopy, position measurements are not “instan-
taneously” observed. Empirically measured data are time
averaged quantities [29,46,50]. For example, in fluorescence
based optical microscopy [7,16,51], position is inferred from
the observed point spread function (PSF) [16,51–53] obtained
by collecting a finite number of photons emitted as the tagged
molecule moves throughout the cell [16,29,38,46,50,54]. The
noise due solely to photon emissions from multiple positions
in a single image is what we refer to generically as “motion
blur.” The statistical correlation between thermal fluctuations,
confinement forces, and motion blur introduces new time series
challenges not addressed by current SPT data analysis routines.
References [29,37] address how to handle motion blur issues
under the assumption of simplified diffusion models, but fail
to address technical complications associated with confined
motion (a common occurrence in live cell SPT studies). The
classic Kalman filter (KF) algorithm can deal with simple
confined motion models, but fundamental assumptions behind
the KF are violated when motion blur is present [55,56].

We introduce a likelihood based estimation scheme that
explicitly models (i) the spatiotemporal statistical correlation
inherent to molecular position measurements undergoing
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confined diffusion [32,46], and (ii) the correlation between
various sources of measurement noise and the underlying
particle position time series in camera based measurements
(the approach treats “dynamic” and “static” measurement
errors commonly encountered in SPT [38]). The technique
is capable of reliably estimating local molecular diffusivity D

and instantaneous velocity and forces from a single noisily
measured position vs time SPT trajectory. Reliably estimating
the aforementioned kinetic quantities from SPT trajectory
measurements requires one to address statistical correlation
induced by confinement, localization, and motion blur [46].
Obtaining reliable estimates of instantaneous forces from
a single trajectory and respecting heterogeneity commonly
encountered in SPT data [33,41,44,47–49] requires an accurate
estimate of D that is free of measurement apparatus artifacts
(our approaches provides this information). Our approach also
enables researchers to use a single measured trajectory pro-
duced by an individual molecule (where localization quality
may vary over time) to systematically decouple “dynamic
measurement errors” from effective “static measurement
errors” [38,46,50]. This decomposition is described in detail
later since it is a key technical aspect of our algorithm.

As we demonstrate, failing to properly account for motion
blur and/or confinement can substantially affect quantities
required to estimate forces from SPT trajectories. The motion
blur filter (MBF) algorithm addresses the technical concerns
through a reformulation of the KF [55,56]. This time domain
likelihood based approach explicitly accounts for confinement
and motion blur. Likelihood-based approaches accounting for
the natural time ordering of measurements [33,57,58] are
advantageous since transient (but experimentally resolvable)
changes in molecular forces cannot be readily detected by
legacy approaches such as mean square displacement (MSD)
[46] or autocorrelation approaches [38,50] where implicit
assumptions about stationary statistics are made. The MBF
algorithm utilizes closed-form analytical expressions from
stochastic process theory and avoids ad hoc statistical ap-
proximations to the likelihood function. The ability of our
technique to consistently estimate diffusion coefficients rang-
ing from 1 × 10−3 to 1 μm2/s in the presence of molecular
confinement sampled using observations spaced “finely” (5
ms) to “coarsely” (100 ms) in time is demonstrated via
simulations.

Our approach does assume that some approximate
localization technique [16,51–53,59], e.g., centroid or PSF
shape based, can extract an unbiased estimate of the time
averaged position (where averaging occurs over the exposure
time of a single image) of the molecule of interest; note that
the “quality” of the localization is permitted to vary over time
within our framework. A data-driven technique, processing
“blurred” data, capable of decoupling various noise sources
over a wide range of exposure times is expected to aid in
identifying physically relevant motion experienced in vivo
in a variety of dynamic processes. The MBF provides an
algorithm enabling a more direct and reliable comparison
of parameters obtained from data with different temporal
and spatial resolution since biases affecting other methods at
different length and time scales are not experienced by the
MBF. This is expected to result in a more comprehensive
picture of dynamics occurring in the cell.

Note that when biomolecules are sampled with single-
molecule precision in vivo, they often experience transitions
from “standard diffusion” to “anomalous diffusion” as the
time scale of observation increases [43]. A longer term
aim of this work is to provide a statistically robust method
capable of accurately quantifying the motion parameters
associated with single-molecule data before events leading
to “anomalous diffusion” phenomena manifest and can be
statistically detected within individual trajectories. Our moti-
vation is to extract “finer scale” molecular kinetic information
from the high temporal and spatial resolution measurements
afforded by contemporary optical microscopy with the hope
of providing a tool which can accelerate detection of new
dynamic phenomena from these measurements [1–4,6–27].

This article is organized as follows: Section II introduces the
models, theoretical background, and MBF algorithm. Towards
the end of this section (in Sec. II F), we walk the reader through
two examples illustrating how to use the open-source Python
code and IPython Notebooks provided along with this article
(these examples reproduce Figs. 3 and 4). Section III presents
additional results on large scale simulations and Sec. IV
concludes. An appendix provides additional mathematical
details. The Supplemental Material [60] provides additional
results and algorithmic details.

II. MODEL AND METHODS

This subsection is organized as follows: The assumed con-
tinuous time dynamical model is introduced in Sec. II A. Prior
to discussing the finer technical time series and filtering details,
we expand on the assumptions made about the measurement
noise sources in Sec. II B, since these assumptions are key
to understanding the MBF. After a detailed description of the
measurement noise, we briefly discuss physical interpretations
of the model in Sec. II C (additional details can be found
in Refs. [33,41]). This discussion is followed by a review
of the classic KF in Sec. II D. After providing the required
background, in Sec. II E we introduce the MBF algorithm.
Subsequently, we provide two illustrative examples in Sec. II F
illustrating advantages of the MBF and how one can leverage
the approach on SPT data. This section concludes by contrast-
ing the MBF to existing approaches in SPT.

A. Continuous time model with discrete
“blurred” measurements

The MBF assumes the following stochastic differential
equation (SDE) and measurement model:

drt = (v − κrt )dt +
√

2DdBt, (1)

ψti = 1

tE

∫ ti

ti−tE

rsds + εloc
ti

. (2)

The true position of the tagged particle at time t is denoted
by rt [61] and the discretely sampled position measured by
the microscope is denoted by ψti . The stochastic term driving
the SDE above is a standard Brownian motion, denoted by Bt .
The effective “static” [38,52–54,59] localization measurement
noise at ti measured by a camera with exposure time tE is
denoted by εloc

ti
(this noise is modeled as a mean zero Gaussian

random variable independent of the particle position). The
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time integral in Eq. (2) models “motion blur” introduced by
the camera [16,29,62]. Additional assumptions and details
regarding the measurement noise sources are discussed later in
this section and in greater detail in Sec. II B. The model above
is specified by a parameter vector denoted by θ = (v,κ,D,σloc)
(this parameter vector contains physically interpretable param-
eters described in Secs. II B–II C).

The continuous time SDE in Eq. (1) is a linear model
whose solution is known precisely [63,64]. Using κ > 0 allows
confinement to be modeled (a common phenomenon in live
cell studies). However, the spatial and temporal dependence
introduced when κ �= 0 and motion blur corrupts observations
poses several new time series challenges not addressed
previously [29,33]. The MBF algorithm processes discrete
measurement samples taken from the continuous time SDE.
The linear and Gaussian nature of Eq. (1) enables an exact
discretization of Eq. (1), as well as a discrete representation
of the integral appearing in Eq. (2) that does not introduce any
statistical errors into the filtering framework (these features
are crucial to the MBF). The aforementioned discretization of
Eqs. (1) and (2) is given by

rti+1 = A + Frti + ηti , (3)

ψti = HA + HF rti−1 + εloc
ti

+ εmblur
ti

, (4)

εloc
ti

+εmblur
ti

∼ N (0,Ri), (5)

ηti ∼N (0,Q), (6)

εmblur
ti

∼N (0,Qmblur), (7)

C = cov
(
ηti ,ε

mblur
ti+1

)
, (8)

cov
(
ηti ,ε

mblur
tj

) = 0 ifj �= i + 1, (9)

cov
(
ηti ,ε

loc
tj

)
, cov

(
εloc
ti

,εmblur
tj

) = 0 ∀i,j, (10)

where N (μ,σ 2) denotes a Gaussian random vari-
able with mean μ and variance σ 2. The quantities
(A,C,F,HA,HF ,Q,Qmblur,Ri) listed in the discrete equations
above can be derived in closed form given δi := ti − ti−1,tE ,
and the continuous time parameter θ (expressions not explicitly
defined in this section are derived and provided in the Ap-
pendix). The term ηti represents a Gaussian mean zero “process
noise” [55,56] with variance Q; the term “process noise” is
used in control theory to describe a stochastic noise source
that affects the true underlying state of the system (the “state”
is a molecular position in the application considered here).
The term εmblur

ti
represents the difference between rti and the

conditional expectation of 1
tE

∫ ti
ti−tE

rsds (conditioned on rti−1 ).
An important technical aspect of the discretized

model above is the fact that the conditional expectation
E[ 1

tE

∫ ti
ti−tE

rsds|rti−1 ] is a Gaussian random variable with mean
HA + HF rti−1 and variance Qmblur. The parameters HA and HF

are used to compute the expected value of the measurement
at the next time instant (since there is motion blur, the mean
of the measurement does not coincide with the value of the
underlying position at the same time point). The parameters
A and F play a similar role, i.e., E[rti |rti−1 ] = A + Frti−1

(A and F type parameters are commonly encountered in KF
applications when a continuous time model is inferred from
discretely observed measurements [32]).

Equation (8) emphasizes that εmblur
ti+1

is statistically correlated
with the ηti (all other noise terms above are statistically

FIG. 1. Illustration of “dynamic” and effective “static” measure-
ment errors. The solid gray line represents the true (unobservable)
position trajectory of the molecule evolving in continuous time. The
trajectory measured without noise contains temporal autocorrelation
due to confinement forces [29,38,46,50]. The thick black horizontal
lines denote the time averaged position recorded during the camera’s
exposure time, tE . The motion blur filter (MBF) aims to infer the
position at time ti (denoted by red circles) from a sequence of
noisy measurements, {ψti }T

i=1 (denoted by purple triangles). Each
measurement, ψti , is assumed to come from a point spread function
(PSF) generated by a single molecule emitting a finite number of
photons at different positions during image acquisition (“image i” is
measured during the time interval [ti − tE,ti]). This induces what we
refer to as “motion blur” measurement error and this noise is denoted
by εmblur

ti
. The idealized effective static localization error (induced by

finite photon counts in PSF estimation) is denoted by εloc
ti

. See text
for additional details on the assumptions behind these measurement
noise sources.

independent). The net measurement noise variance obtained
by combining the static and dynamic error is Ri := Qmblur +
[σ Input

loc (ti) + σloc]2 (the term in parenthesis permits time de-
pendent effective static measurement noise; these terms are
described in detail in the next subsection and by illustrative ex-
ample 2 in Sec. II F). Figure 1 illustrates the motion blur mea-
surement noise and effective static measurement noise sources
graphically (these terms are further described in Sec. II B).

Under the assumed parametric model [see Eqs. (1) and (2)],
the variance of εmblur

ti
and its covariance with rti [covariance

quantified by C in Eq. (8)] can be obtained in closed form
in terms of the model parameters (derivation provided in
Appendix). The classic Kalman filter (KF) can account for
confinement forces and nonstationary statistics [33], but the
classic KF is not able to explicitly handle motion blur due to the
correlation between εmblur

ti
and ηti−1 . Both the practical utility

and main technical contribution of the MBF are associated
with how the MBF handles Eq. (2) and the correlation
in Eq. (8); hence a detailed qualitative description of the
physical phenomena underlying the assumptions behind the
“measurement error” terms is presented before proceeding.

B. Qualitative description of static and dynamic
measurement errors

In SPT analysis of fluorescence optical microscopy data,
the position measurements of a single molecule are typically
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obtained from localization techniques [38,52–54,59].
Throughout the remainder of this article, the term “PSF” is
used to represent the observed point spread function. The
inference of the PSF can be guided by optics principles, but
we use the term “PSF” to represent a data-driven quantity
extracted from an image measured by an optical light mi-
croscope. If the molecule being imaged by a microscope is
mobile, the observed PSF is contaminated by both “static” and
“dynamic” measurements errors [29,38,46,50]. The integral in
Eq. (2) models the “dynamic” motion blur measurement error,
εmblur
ti

, due to the tagged molecule emitting photons at different
spatial positions in the time interval producing a single image,
[ti − tE,ti]. The motion blur measurement error is highly
correlated with the underlying particle position of interest. The
effective “static” measurement error is intended to quantify the
error associated with inferring a PSF’s shape from observed
pixel intensities [38,52–54,59]. That is, the effective static
measurement error is an idealized quantity (estimated from
observational data) which aims at quantifying the error due to
estimating a PSF from a finite number of measured photons.
The dynamic or immobile nature of the emitters producing the
data used to calibrate the PSF is not relevant to the data-driven
effective static measurement noise used by the MBF. Note that
the observed PSF may not be radially symmetric even in the
“ideal infinite photon” limit due to the dynamic errors intro-
duced by molecular motion. However, as stated in the intro-
duction, the MBF does assume that the localization procedure
provides an unbiased point estimate of the the time averaged
position of the molecule of interest in the image measurement
[the mean zero assumption of εloc in Eq. (4) reflects this
assumption]. In an ideal “infinite photon collection” scenario,
the variance of εloc would be zero. However, even in the infinite
photon case, there would still be uncertainty in the molecular
position if the molecule moves and the exposure time is
nonzero. Both measurement errors are illustrated in Fig. 1.

The main assumptions underlying the MBF are that (i)
the dynamics are consistent with Eq. (1) and (ii) the error
introduced by finite photon count PSF estimation can be
approximated by a Gaussian random variable whose statistics
are determined by Eq. (2). The MBF framework recognizes
that within empirically observed measurements, static and
dynamic measurement noise sources are convolved in the
raw data. The MBF approach uses a data-driven model-based
approach to “decouple” static and dynamic errors. Although
the position measurement is blurred due to molecular motion
during image acquisition and finite camera exposure time
[29,38,46,50], the MBF aims at rigorously inferring the
instantaneous position of the molecule at ti as well as the
parameters characterizing its motion. The SDE model-based
framework outlined in Eqs. (3)–(10) is key to achieving the
noise decomposition described in this section. In most SPT
applications, the Gaussian assumption on the effective static
measurement noise cannot typically be statistically rejected if
10 or more photons underlie a PSF estimate (formal means for
detecting Poisson artifacts could be considered [65]). In this
article, goodness-of-fit tests are used to detect whether data are
consistent with various assumptions underlying the assumed
dynamical models (the tests used have been shown capable of
detecting artifacts of “low photon count” measurement error
in SPT data if they are present in the data [65]).

In the open-source software provided (discussed in Sec.
II F) with this article, we allow estimates of time dependent lo-
calization noise statistics through the optional input σ

Input
loc (ti).

The time dependent input estimate of the localization uncer-
tainty at time ti can be biased (e.g., it may contain artifacts of
motion blur). When the optional sequence σ

Input
loc (ti) is input, the

MBF uses the full sequence of measurements to estimate the
parameter σloc which defines the net effective time dependent
static measurement noise variance: [σ Input

loc (ti) + σloc]2 for each
i. It is stressed that the net effective static measurement error is
estimated from the data and not assumed known a priori (the
parameter σloc adjusts for the fact that the input localization
estimates are likely corrupted by motion blur or other artifacts).
If σ

Input
loc (ti) is not provided as input, the estimated parameter

σloc denotes the constant effective static measurement noise
associated with the time series data.

C. Physical interpretation of continuous time SDE parameters

Recall that the SDE of interest [Eq. (1)] is characterized
by the parameter vector θ = (v,κ,D,σloc) where D denotes
the local effective diffusion coefficient; κ and v characterize
the instantaneous velocity [33,35,41]. The parameter σloc was
described in detail in the previous section. In live cell studies,
motion is often confined and confinement affects the temporal
correlation statistics [46] even if motion blur and measurement
artifacts are not present in the data. The SDE model considered
can use a single trajectory to compute “the instantaneous force”
from the estimated diffusion coefficient [41]. The ability to
use a single trajectory to estimate motion parameters permits
researchers to quantify heterogeneity and time changing forces
at different points in the cell [41]. For example, the effective
force at time t , denoted by F (t), is approximated by kBT

D̂
(v̂ −

κ̂rt ) where hats denote the maximum likelihood estimate
(MLE) extracted from the data. In the previous force equation,
we appealed to the classical Einstein relationship, i.e., D =
kBT
γ

, where kBT is Boltzmann’s constant multiplied by the
system temperature and γ is the effective molecular friction
[33,63]. Our technique for estimating forces assumes that
“cage hopping” or “crowding” events have not occurred within
the observed trajectory [38,43,48,66]. Note that we are not re-
stricting the term “cage hopping” to refer to kinetic phenomena
in membrane diffusion [45,46]. In the presence of SPT trajec-
tories spanning “long times,” we acknowledge that crowding
in the cell may result in cage hopping type phenomena. In
Sec. IV, we discuss techniques to preprocess trajectories by
segmenting the data into regimes where the MBF technique
can be used to extract reliable force from position vs time data
using the model above as a building block. If cage hopping
type phenomena occurs on time scales much faster than the
temporal resolution afforded by the measurement device (e.g.,
many “cage jumps” can occur during the exposure time), the
MBF can still be used to estimate effective SDE parameters
explicitly accounting for the statistical effects of motion blur.

In the remainder of this subsection, we illustrate how the
SDE above nests other popular SPT models [i.e., we outline
how directed and pure diffusion models are special cases of
the SDE model in Eq. (1)]. If both v and κ are set to zero, one
obtains the motion blur model considered by Berglund [29]
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(handling the v �= 0,κ = 0, is a simple extension of Berglund’s
result as we show in the code supplied). When κ �= 0, one has
an Ornstein-Uhlenbeck (OU) process [63]. If κ > 0 (κ � 0 is
assumed by the MBF), the OU process can model confined
diffusion. A popular SPT confinement parameter, L [45], is
closely connected to the so-called “corral radius.” The original
usage of the parameter L in SPT corresponded to a box width
(not a proper “radius”) of a hard wall potential [45]. However,
the “coral radius” term is often used in SPT to generically
describe the square root of the asymptotic limit of an MSD
curve of a confined particle [32,46,67]. L is related to the
parameters of the model considered here through the equality

L =
√

12D
κ

(see Ref. [32]).

D. Basics of Kalman filtering

In this subsection, we review the key assumptions underly-
ing the classic KF at a high level since the MBF makes several
modifications to this established algorithm [55,56]. The KF
assumes that a linear dynamical system can be used to describe
the evolution of the “state” (the “state” is the molecular
position rti in our application and is not directly observable
due to the measurement noise). The “process noise” [i.e., the
Brownian noise in Eq. (3)] and net measurement noise are all
assumed to be governed by Gaussian statistics in the classic
KF. The KF leverages the following mathematical principle.
Assume the random vector, [XY ] ∼ N ( �μ,
) where the mean,

�μ = [μX

μY
], and covariance, 
 = [
XX 
XY


XY 
YY
], specifying the

Gaussian are known; 
XX is the variance of X (similarly for

YY ) and 
XY := cov(X,Y ) is the covariance of X and Y .
Assume Y is directly observable, but X is not. In this case, the
linear minimum variance estimate of X given Y , denoted by
E∗[X|Y ], is given by [56]

E∗[X|Y ] = μX + 
XY 
−1
YY (Y − μY ). (11)

The above relationship is a general principle used by
multiple estimators, not just the KF [56]. A useful aspect of
the KF algorithm is associated with the fact that a time series
of measurements can be efficiently and sequentially processed
building off of the general relationship in Eq. (11). To illustrate
the sequential aspect and specialize to notation used in the
discretized version of our model [Eqs. (3) and (4)], we use
Fig. 2 and the following equation:

r̂i+1|i+1 = r̂i+1|i + cov(ri+1,ψ̃i+1)cov(ψ̃i+1,ψ̃i+1)−1ψ̃i+1,

(12)

where ψ̃i+1 := ψi+1 − ψ̂i+1|i ,ψ̂i+1|i is the “forecasted mea-
surement” (the expected value of ψi+1) conditioned on the
model parameters and all previously observed measurements
up to time ti (the “forecasted state,” r̂i+1|i , is analogously
defined, but is used to predict ri+1). r̂i+1|i+1 represents the
“filtered state” estimate (i.e., the linear minimum variance
estimate of ri+1 given all information available up to time ti+1).
The sequence {ψ̃i}Ti=1 is referred as the “innovation sequence.”
Equation (12) is the time sequential KF analog of Eq. (11). The
subscript t has been omitted from all quantities to simplify
notation when dealing with discrete equations and filter
algorithms (observing a subscript i is equivalent to ti). The
various boxes in Fig. 2 compute different quantities in Eq. (12).
For example, the “Forecast State” box is one step of the

FIG. 2. Graphical illustration of the Kalman filter (KF) and mo-
tion blur filter (MBF). Each filter requires the parameters governing
the process θ as well as the mean r̂0|0 and covariance matrix P0|0
of the initial state as input. Both filters sequentially process the
measurements, ψi+1, to generate r̂i+1|i+1, which are estimates of the
(unobservable) state ri+1 at time ti+1. Two by-products of each filter
are (i) a likelihood score of the observation for the input θ (the sum of
the logarithms of the likelihoods can be used to obtain the maximum
likelihood estimate, θ̂ [55]) and (ii) summary statistics of both ri+1 and
ψi+1; means are denoted by r̂i+1|i ,ψ̂i+1|i , respectively (the covariances
are also computed, but omitted from the flow diagram to aid figure
clarity). The top panel displays the classic discrete sequential KF
and the bottom shows the new MBF. The key algorithmic differences
between the KF and MBF are highlighted by red dashed lines (see
Sec. II E for mathematical details).

algorithm and provides r̂i+1|i . In the classic KF, the “Forecast
Measurement” box is an algorithmic step providing ψ̂i+1|i
given r̂i+1|i (the corresponding MBF module uses a different
input). The “Corrector” step of the algorithm combines the
aforementioned forecasts and the actual measurement ψi+1 to
produce, r̂i+1|i+1. At the top of the diagram, we show that
the forecasted measurements and observed measurement can
be used to compute a likelihood score. Beyond just providing
an estimate of the unobservable position r̂i+1|i+1, the KF can
provide the MLE. The MLE, θ̂ , is obtained by maximizing
the sum of log likelihood scores associated with the observed
{ψi}Ti=1 over θ [55].

Traditional KF measurement equations [55,56] often as-
sume that an a priori known linear transformation, H , which
maps the state at the target filter time of interest (ti+1) to the
measurement vector, is available; i.e., ψi+1 = Hri+1 + mea-
surement noise, and the aforementioned measurement noise
does not depend on past values of rs for s < ti+1 [55,56]. Both
conditions are violated for the motion blur model considered
here and elsewhere [29,38,46,50]. The time integral in Eq. (2)
is distributed as a Gaussian, but the mean of this measurement
is in terms of ri vs ri+1 for measurement ψi+1. Also, the
measurement noise in Eq. (4) is statistically dependent on rs

for s < ti+1. More advanced treatments of the KF show how to
account for “Kronecker delta” type time correlations, i.e., δij ,
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between measurement and process noise (e.g., [56]); however
the time index offset shown in Eq. (8) causes the KF technical
challenges [55,56]. The MBF overcomes these complications
by fundamentally changing how r̂i|i is processed (see Fig. 2)
as we outline in the next subsection.

E. The MBF algorithm

In this section we provide the equations and pseudocode
outlining the MBF [recall the underlying discrete model
processed by the MBF was presented in Eqs. (3)–(10)]. The
“parallel” processing of r̂i|i by the Forecast Measurement and
Forecast State modules shown in Fig. 2 vs the sequential
processing used by the classic KF is one key aspect that
distinguishes MBF from the KF. The parallel processing of
r̂i|i is used because the time integral in Eq. (2) violates core
assumptions behind the KF [55,56] (discussed in previous
section). Since the measurement noise induced by motion
blur at ti+1 depends on the process noise experienced in the
interval [ti ,ti+1], the MBF measurement forecast depends on
linear transformations of r̂i|i and its covariance (vs r̂i+1|i and
its covariance as in the classic KF).

The parallel processing of r̂i|i mentioned above requires
some modifications to modules of the classic KF algorithm
shown in Fig. 2. The modified “Forecast Measurement”
equation reads

ψ̂i+1|i = HA + HF r̂i|i , (13)

S = HF Pi|iH�
F + Ri, (14)

and the modified “Corrector” (also known as the “Measure-
ment Update” [56]) equation reads

K := (C + FPi|iH�
F )(HF Pi|iH�

F + Ri)
−1, (15)

r̂i+1|i+1 = r̂i+1|i + K(ψi+1 − ψ̂i+1|i), (16)

Pi+1|i+1 = Pi+1|i − K(HF Pi|iH�
F + Ri)K

�, (17)

where the filtered state forecast (r̂i+1|i), the filtered state
(r̂i+1|i+1), and the measurement forecast (ψ̂i+1|i) described
in the previous section have covariances Pi+1|i ,Pi+1|i+1 and
S, respectively. We use S to denote the “innovation co-
variance” [56] (the notation Pi+1|i and Pi+1|i+1 is common
in the KF framework [55,56]). Recall that the parameters
A,C,F,HA,HF ,Q,Ri are associated with the statistically
precise discretized version of Eqs. (1) and (2) and assume tE =
ti+1 − ti for all i, (expressions for these parameters, depending
on tE , are provided in the previous section and Appendix).

Note that the altered measurement forecasts affect the
form of the classic “Corrector” or “Measurement Update”
equations [56]. The measurement noise induced by motion
blur is correlated to the process noise under the assumed model
and this changes the standard form of the “Corrector” update
[Eq. (12)], specifically under the MBF model:

cov(ri+1,ψi+1) := cov
(
rti+1 ,ψti+1

)
(18)

= cov
(
A + Frti + ηti ,HA + HF rti + εloc

ti+1
+ εmblur

ti+1

)
. (19)

As shown in the Appendix, C := cov(ηti ,ε
mblur
ti+1

) �= 0.
The correlation relationship in Eq. (19) is used to alter the
form of the standard “Corrector” or “Measurement Update”
and the end result was shown in Eq. (15) above (see pages
116–117 in Ref. [56] for complete theoretical background).

The remaining equations defining the classic KF are the
same in the MBF. For example, since cov(ηti+1 ,ε

mblur
ti+1

) = 0
within the model considered, the “Forecast State” updates,
r̂i+1|i = A + F r̂i|i and Pi+1|i = FPi|iF� + Q, associated
with the classic KF are still valid [55,56].

Pseudocode implementing the theoretical ideas above is
provided in Algorithm 1. Note that the program flow was set
up so that the classic KF could also be implemented within the
MBF algorithmic framework. Equation (15) has a fairly dif-
ferent form in the MBF compared to the KF. This change was
required due to the aforementioned parallel processing of r̂i|i
illustrated in Fig. 2 (changing other equations from the MBF to
the KF essentially requires changing Pi|i to Pi+1|i as shown in
the code provided on GitHub). One difference worth noting is
that HF and HA have different definitions when Algorithm 1 is
used to process the classic KF (the open-source code provided
illustrates this feature). It should also be noted that although we
focus on the 1D scalar case in this article, the MBF algorithm
presented above is described in terms of the multivariate case.

Algorithm 1. Pseudocode for evaluating the innovation
likelihood of common SPT models (pure, directed, and
confined diffusion) given time series of correlated observations
obscured by motion blur and localization measurement errors.
External functions appearing below are flagged via a different
font and are defined in the Supplemental Material [60]

1 function MotionBlurFilter

({ψi}T
i=1,{σ Input

loc (i)}T
i=1,θ )

2 % Inputs: Time series of noisy position measurements {ψi}T
i=1,

candidate parameter vector θ = (κ,D,σloc,v), and [optional:
time series of localization estimates,{σ Input

loc (i)}T
i=1]% Outputs:

log likelihood logL and filtered state series {rt |t }T
i=0

3 %Compute Discrete Filter Variables
4 P1|0,r1|0,r0|0,PInnov = InitializeFilterPars ({ψi}T

i=1,θ,δ)
5 F,Q,A,H,Qmblur,C,HF ,HA = ExactMapOfContinuousTo

Discrete(θ ) %Note: some auxiliary variables above are
solely to allow this routine to process the classical form of
the Kalman Filter.

6 filteredState=r0|0; logL= 0 % Initialize variables to be returned
7 for t = 1 : T

8 Rt = Qmblur + (σ Input
loc (t) + σloc)2 %Compute Net Measurement

Noise Covariance at t

9 % Begin computation of innovation likelihood
10 S = HPInnovH

� + Rt %Compute Innovation Covariance at t

11 z = √
S−1(ψt − HF rt−1|t−1 − HA) %Normalized Innovation

at t

12 logL = logL + 1/2 log(|(2πS)−1|) − z�z/2 %add to log
likelihood

13 % Update filter parameters for next iteration
14 K = ComputeGain(PInnov,C,H,Rt ,F )
15 rt |t = rt |t−1 + K(ψt − HF rt−1|t−1 − HA)
16 filteredState.append(rt |t ) %Store filter estimate
17 Pt |t = Pt |t−1 − K(HPInnovH

� + Rt )K� %Update filter
covariance

18 Pt+1|t = FPt |tF � + Q %Update state forecast covariance
19 rt+1|t = Frt |t + A %Forecast state
20 PInnov = ComputeInnovCov(Pt |t ,Pt+1|t )
21 % Call above allows Algorithm to also process classic KF
22 end
23 return logL,filteredState
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F. Illustrative results and introduction to software

To show the modeling ideas applied to practical SPT
problems, we illustrate how the MBF output can process
two types of trajectories commonly encountered in SPT
where other analysis methods encounter problems (these
trajectories exhibit some form of statistical nonstationarity).
In these simulations, we generate exact realizations from
the OU process shown in Eq. (1). The IPython Notebooks
supplementing this work have comments describing the input
parameters. We describe the basic simulation at a high-level in
the next paragraph and the relevance of the results afforded
by the algorithm and software tool introduced within this
paper in the remaining paragraphs. Section III presents larger
scale simulation results (studying multiple trajectories under
systematically varied parameter regimes).

Before proceeding, we need to introduce some simulation
parameters: Nsub is a parameter used to model the underlying
particle visiting multiple spatial locations while emitting
photons used to construct a PSF in one image. To model
the microscope’s measurement output ψti , the OU trajectory
was sampled at ti − (Nsub−1

Nsub
)tE,ti − (Nsub−2

Nsub
)tE, . . . ,ti and then

averaged over the Nsub samples to mimic “motion blur” in
one frame. The effective localization errors induced by finite
photon counts and background fluorescence on the motion
blurred trajectory are modeled by a mean zero Gaussian,
εloc
ti

, and this Gaussian random variable (independent of r)
is added to the discretely sampled and “blurred” trajectory.
This process for simulating measurements is repeated for each
of the uniformly spaced observation times. We subsequently
attempted to infer or extract the parameter θ given one
trajectory generated in this fashion with various estimators.
IPython (Jupyter) Notebooks generating the data and graphs
are provided to facilitate users implementing these techniques.
Additional simulation details are deferred to these notebooks
since we focus on illustrating new capabilities in this section.

The first example analyzes a trajectory where nonstationary
phenomena affect the dynamics of the observed measurement
sequence. In the trajectory shown in Fig. 3, the particle is
being “sucked into a harmonic well.” There are large attractive
forces at earlier times and as this particle relaxes into the
harmonic well, these forces reduce in magnitude (the forces
are precisely quantified in the bottom panel of Fig. 3). The
molecule’s mean position and “position increments” (the latter
are used in MSD) also change appreciably over time (i.e.,
neither the position or “confinement forces” have reached
their stationary distribution [63]). This relaxation induces the
primary source of statistical nonstationarity in this example.
The true instantaneous velocity in these simulations can be
obtained precisely via evaluating v(ti) = v − κrti . The force,
F (ti), is obtained by dividing the velocity by D

kBT
at each point.

We used the noisy position vs time data, {ψti }Ti=1, to infer the
time dependent force by using {ψti }Ti=1 and the MLE computed
by the MBF algorithm.

Note that a stationarity assumption is often implicit in
MSD or autocorrelation (including Fourier transform) based
approaches [38,46,50]. The MSD (computed with the 400
samples) is shown in Fig. 3 and illustrates artifacts induced
by the fact that the position increment distribution changes
over time. The MBF’s estimate of the instantaneous velocity

FIG. 3. Illustration of issues encountered by established SPT
methods. The top panel displays the measured position of a simulated
nonstationary confined trajectory. The middle panel displays the
corresponding mean squared displacement (MSD) vs time lag. The
bottom panel displays the true instantaneous force of the simulated
particle as well as two estimates of the time dependent force:
(i) that of a “directed diffusion” model accounting for motion blur,
but assuming a constant velocity over time, and (ii) that of the motion
blur filter (MBF) introduced here (see text for details). Recall that
position and force are quantities defined instantaneously in time for a
single trajectory. This is in contrast to the information contained at a
single “time lag” value (denoted by τ ) in the MSD vs time lag curve.
MSD curves empirically average the square of position differences
[r(t + τ ) − r(t)]2 over multiple time windows where t represents
absolute time (the MSD curve is obtained by varying τ ). IPython
Notebooks used to generate these figures are provided with this work
to provide additional simulation and parameter estimation details.

is v̂ − κ̂ ˆri|i (force is estimated by dividing this by D̂
kBT

).
Recall that data-driven MLE parameters are denoted by hats
and r̂i|i denotes the MBF’s estimate (using the MLE) at the
underlying position given the measurements up to time ti
(the true position is not observable due to static and dynamic
errors). It is emphasized that we do not use a finite difference
(FD) scheme to estimate velocity (i.e., a FD scheme takes
differences of measurements and divides by the time between
observations) since realized SDE paths are not mathematically
differentiable [64]. However the “drift function” (terms in front
of dt) of the model can provide a mathematically well-defined
“instantaneous velocity” [64]. The Supplemental Material [60]
provides an illustration of the output of a simple FD scheme
applied to this trajectory to highlight this problem. Figure 3
also displays a modified Berglund [29] algorithm (accounting
for constant velocity) estimate of average force. With data
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sampled at 25 ms for T = 400 observations, one can obtain an
accurate trajectory of both velocity and force. Note that in the
parametrization shown in Eq. (1), the drift function provides a
model of the instantaneous velocity (the velocity plot is shown
in Fig. 5 of the Supplemental Material [60]). Extracting the
instantaneous force from the drift function requires appealing
to a fluctuation dissipation relationship as well as an accurate
estimation of the diffusion coefficient. It is envisioned that
there are many situations where one might not want a time
averaged force or velocity (e.g., one would miss the “relaxation
event” at earlier times of this trajectory). Furthermore, as
we show in Fig. 5, the MBF allows unbiased estimation of
the diffusion coefficient D over a wide range of molecular
diffusivities and exposure times, whereas other state-of-the-art
methods introduce biases in D (and hence biases in estimated
force).

The second example focuses on how our approach can
utilize statistics characterizing localization uncertainty infor-
mation computed in individual images. The top panel of
Fig. 4 displays a confined trajectory. In this trajectory, the
effective localization noise is simulated to increase over time
due to photobleaching effects (introducing nonstationarity in
measurement statistics). Time dependent localization noise
is commonly encountered when multiple green fluorescent
protein dyes are used to tag a molecule and/or background;
e.g., [20,33]. The nominal localization noise in the input
sequence {σ Input

loc (ti)}Ti=1 is intended to come from a typical
SPT localization method applied to a PSF (e.g., [52,53]);
however it is acknowledged that the PSF measured not only
contains contributions from static and dynamic errors, but the
uncertainty estimate is likely an idealized limit (hence the
data-driven effective static measurement noise magnitude will
differ from the input sequence). The version of the sample
software provided permits estimation of a constant offset, σloc,
from the input {σ Input

loc (ti)}Ti=1 (the code can be easily modified
to account for more complex models). If no input sequence
is provided, the code estimates a constant time independent
effective static measurement noise.

The (known) true static localization error magnitude of
the noise added to the trajectory is shown in the bottom
panel of Fig. 4. Parametric or nonparametric estimates of
this type of noise trend from the time series data alone can
be difficult if trajectories are not long [33] and/or if the
exposure times associated with the measurements are large.
Fortunately, various theoretical approximations for the lower
bound of the uncertainty associated with each localization
at ti can be obtained with established methods [52,53,59].
However, these uncertainty estimates often appeal to large
sample Cramer-Rao bounds (CRBs) [20,53,59] which are not
reflective of the true “static error” observed in practice. Finite
sample error and real-world features (including motion blur)
not accurately modeled often make the empirical data exhibit
errors differently than the CRBs. The bottom panel of Fig. 4
displays a time varying CRB type localization estimate. Even
though the CRB estimates are overly optimistic, this type
of time dependent localization information (i.e., uncertainty
estimates provided by a third party piece of software) can be
used to aid kinetic analysis.

Both the classic KF and the MBF are able to utilize
the noisily measured data and the (possibly biased) time

FIG. 4. Empirically estimating a nonstationary effective static
noise. The top panel displays the measured position of a simulated
confined trajectory experiencing a localization noise variance chang-
ing over time. The middle panel displays the corresponding mean
square displacement (MSD) curve. Note the top and bottom plots
have “absolute time” for the x axis and the MSD plot uses “time lag”
for the x axis (see caption of Fig. 3 for additional details regarding
the MSD curve). The bottom panel displays (i) the magnitude of the
true time varying localization noise added to this trajectory, (ii) a
nominal “Cramer-Rao” type lower bound proxy of the localization
noise provided to the time series estimator (labeled as “Input Loc.
Est.”), (iii) two data driven estimates of the true localization noise.
One estimate uses the classic Kalman filter (KF) and the other uses
the motion blur filter (MBF) to estimate the effective localization
noise (note that motion blur in the measurements causes the KF to
be misspecified). IPython Notebooks used to generate these figures
are provided with this work to provide additional simulation and
parameter estimation details.

dependent localization information afforded by image analysis
[20,53,59] to jointly infer the kinetic parameters. Recall that
the MBF code provided estimates a constant offset adjustment
σloc to the input localization noise standard deviation (an
estimated zero offset of the localization noise implies perfect
agreement with the input static noise standard deviation).
The MBF can use the observations and blur information
encoded in Eqs. (1) and (2) to consistently estimate both the
empirical effective static measurement noise and the kinetic
parameters governing motion despite slightly biased time
varying localization input. The KF assumes the measurements
are reflective of the instantaneous position of the particle
at the time of the measurement and underestimates the net
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static noise magnitude (this effect is expected from the results
reported originally in Ref. [29] for a “pure” diffusion case).

It is emphasized throughout that accurately modeling
fluctuations and measurement noise enables one to extract
higher quality information from individual trajectories. For
example, L2/6 (the long time MSD limit assuming the SDE
parameters are fixed and κ > 0 [32,45,67]) is accurately
estimated via the MBF. An MLE estimate of 0.22 was obtained
from the data using a single trajectory (400 observations spaced
by 25 ms) without requiring the selection of tunable parameters
(the true value of L2/6 was 0.20). In MSD computations
processing a single trajectory, the “time lag” is often denoted
by τ and a single point in an MSD curve fixes τ and computes
the average of [r(t + τ ) − r(t)]2 over time. However, many
estimates relying on the MSD include biases induced by “time
lag truncation.” In practice, the full trajectory is rarely used for
MSD computations [20,25] since there are fewer data available
for larger values of τ . Using a subset of the available τ values
is what we refer to as “time lag truncation” error. Time lag
truncation is usually carried out heuristically and the decision
of where to truncate can affect parameter estimates based on
MSD [20,29]. For example, if one averages over the last 1/4
of the MSD displayed in Fig. 4, an estimate of L2/6 = 0.17
is obtained for the plateau value. If one ignores the first and
last quarters of the data, an estimate of 0.28 is obtained (such
heuristic truncations are commonly used in MSD and this is
a well-known problem with MSD [20,29]). Note that MSD
curves also inherently include unnecessary additional noise
source (e.g., noise due to aggregating position increments over
disparate times). Our approach, using the full sequence of data
(without tunable parameters), is close to the truth despite the
high degree of noise observed in the MSD. The ability to sys-
tematically leverage time dependent localization information
(afforded by physics based models [16,51–53,59]) into the
MBF and carry out likelihood inference is a practical benefit
of the MBF approach. Hence, we have provided examples of
how to achieve this in our associated IPython Notebooks.

G. Comparison to other approaches

A variety of techniques have attempted to utilize MSD
approaches to quantify both static and dynamic error statistics
[38,46,50]. However, as we illustrated in the previous subsec-
tion, MSD approaches ignore useful time-ordered information.
Specifically MSD methods aggregate increments from poten-
tially disparate times. This aggregation can degrade dynamic
information and complicate analyzing the MSD. Likelihood
based techniques have been applied to SPT tracking problems
previously [28,34,39,68], although the aforementioned works
ignore the time correlation effects induced by purely static
error in addition to making unnecessary approximations of
the likelihood function. One approximation used is the so-
called Euler (sometimes referred to as the Euler-Maruyama
[64]) approximation. The Euler approximation is a numer-
ical integration technique which simulates a generic SDE,
drt = μ(rt )dt + σ (rt )dBt , via rti+1 = μ(rti )
ti + σ (rti )
Bti

where 
ti := ti+1 − ti and 
Bti := Bti+1 − Bti (this Brownian
increment can be simulated precisely, but the other numerical
approximation errors can be large [64,69]). We remind
the reader that Eqs. (3) and (4) solve the assumed SDE

and measurement equation precisely without any numerical
integration or Euler type approximation [hence temporal and
spatial statistics are consistent with the SDE model in Eqs.
(1) and (2)]. Time series methods appealing to the Euler
approximation can cause a high degree of parameter estimation
bias even in the measurement noise free cases [69,70]. Ignoring
statistical time correlation induced by localization and motion
blur further degrades estimates of parameters. Inaccurate
likelihood approximations (like those induced by the Euler
approximation) also prevent researchers from applying reliable
consistency tests to fitted models since the likelihood does not
correspond to the assumed model [70].

In addition to the aforementioned issues, implicit spatial
or temporal stationarity assumptions are made in many SPT
approaches [34,37,39,68]. The first work (to this author’s
knowledge) treating static and dynamic error induced by
motion blur in SPT using a likelihood based approach was
Berglund’s pioneering work [29]. Berglund [29] considered
a constant diffusion model contaminated by static and dy-
namic error (extending to a “directed” or constant velocity
model, where velocity is time and space independent, is
straightforward due to the measurement difference formulation
used as shown by the Python companion code). However,
measurement difference [29,38,46,50] based schemes typ-
ically make a time stationarity assumption. That is, they
assume that moments and time correlations of increments of
measurements, ψt+τ − ψt , are independent of t . Stationary as-
sumptions are also commonly made in power spectral methods
[37] and “nonparametric” approaches [34]. In Refs. [39,68], an
approximate Bayesian approach was used to approximate tem-
porally and spatially dependent velocity and force (an Euler
approximation of the likelihood was utilized), but the approach
did not account for the time correlation effects of static or
dynamic measurement noise (i.e., established KF ideas were
not used and the likelihood was inexact). Maximum likelihood
time series estimation of parameters determining spatially
dependent velocity and force using the standard KF likelihood
have been studied in single-molecule manipulation studies
[57,58,71,72] and in SPT [33,65]. Reference [41] extended the
KF to allow “switching linear dynamical systems” and used a
nonparametric Bayesian approach to systematically determine
regime switching with an exact likelihood. However, in Refs.
[33,41,65], effects of motion blur were lumped into the effec-
tive measurement error since both D and δ were small and the
“exact” KF likelihood was computed corresponding to a model
only technically accounting for static measurement errors.

III. RESULTS AND DISCUSSION

In the results that follow, we focus on analyzing N

time series containing T observations with a uniform time
spacing, δ, between observations. The data are modeled as
being collected in uniform continuous illumination, a common
situation in cell biology [16,29,51]. For all simulations
reported in this section, we study a constant localization noise,
σloc = 30 nm,v = 0,κ > 0, and initial conditions drawn from
the stationary distribution in order to focus on the effects of
motion blur on confined trajectories. To facilitate comparison
and reduce noise due simply to random number generation, we
analyze the same batch of trajectories with three estimators:
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FIG. 5. Demonstration of MBF advantages when estimating
diffusion coefficients. Diffusion coefficient estimation results for
κ = 1 s−1,σloc = 30 nm, v = 0. Recall δ determines the temporal
resolution of the measurement (as δ increases, both motion blur
and confinement effects become pronounced). The upper left panel
plots the median (symbols) and the 10th and 90th percentiles (dashed
lines) of the motion blur filter MLE parameter distribution computed
using N = 400 trajectories of length T = 400 trajectories (each
trajectory produced an MLE estimate) on log scale for various D

and δ values (each value of D and δ corresponds to a summary of
N simulations of length T ). The remaining panels zoom in on the
larger D cases and show results obtained by applying other estimators
to the same collection of trajectories. The other likelihood based
estimators fail for different reasons. Berglund’s blur model [29] fails
due to confinement effects becoming more pronounced as δ increases.
The Kalman filter handles confinement when motion blur effects
are low (e.g., see bottom left panel), but fails when motion blur is
amplified (motion blur effects increase with both δ and D). This
result demonstrates that the MBF is robust to a variety of regimes of
relevance to SPT data modeling.

the modified Berglund directed diffusion model with motion
blur, the classic KF (without motion blur), and the new MBF.
To illustrate that our derived variance and mean formulas are
valid, we simulate Nsub = 100 points spaced by δ

Nsub
using the

exact known solution to the OU process and average these
quantities to approximate the integral in the Eq. (2). The
Nsub parameter determines the accuracy of approximating the
integral in Eq. (1). We did not simulate the discrete realizations
from the analytically derived motion blur results (derived in
Appendix) to illustrate that our equations are correct and per-
form reasonably even if the uniform continuous illumination
model contains discretization errors. In practice, pixelation and
other factors [59] often introduce discrete sampling errors not
completely captured by the motion blur model in Eq. (2). Each
parameter estimate reported in this section used N = T = 400
and a separate MLE was obtained for each of the N trajectories
(i.e., trajectories were not combined to find a single parameter
vector). The Supplemental Material [60] reports results with
shorter trajectories corresponding to the main plots shown
(T = 100,N = 400).

In Fig. 5, we fix κ = 1 s−1,v = 0, and analyze various dif-
fusion coefficients D = 1 × 10−3,1 × 10−2,1 × 10−1,0.9 ×
10−1 μm2/s (the latter two values were inspired by the lattice
light sheet MSD results reported in Ref. [25]) and δ values

ranging from 5 ms to 100 ms. In the upper left panel, we
plot the median (solid symbol) and 10th and 90th percentiles
(dashed lines) of the empirical parameter distribution obtained
by analyzing the N trajectories and obtaining the MLE of the
MBF on a logarithmic scale. The other panels zoom in on
the diffusion coefficient estimates and also show the modified
Berglund estimator (this estimator models motion blur and
constant velocity, but ignores spatial variation in velocity) and
the classic KF estimates (the KF estimator ignores motion
blur, but models spatial variations in velocity). Note that the
MBF consistently estimates the diffusion coefficient over the
wide range of D and δ values considered. The other two
estimators fail for different reasons. For large D and/or large
δ (where large is relative to typical SPT studies), the effects of
motion blur become pronounced and bias the KF’s diffusion
coefficient estimation. Note that for smaller D (consistent
with large macromolecular complexes), δ must be quite large
before unmodeled motion blur affects diffusion estimation.
In the Berglund estimator, the effects of nonzero κ inducing
confinement become more pronounced at larger δ and this
adversely affects D estimation regardless of the magnitude of
D (despite motion blur being modeled in this model). The
ability of the MBF algorithm to reliably model D relevant to
SPT in the presence of varying degrees of confinement and
exposure times is expected to aid researchers in SPT.

Next we fix D = 0.1 μm2/s and δ = 25 ms and vary κ

in Fig. 6 (the Supplemental Material [60] reports δ = 10 ms
results). This value of D was selected since the classic KF and
MBF were shown to be similar for this range of values. The
interest is in determining the accuracy of the estimated D and
κ as the latter varies in the presence of motion blur. A large
positive value for κ corresponds to high confinement or a small

“corral radius.” Recall that the “corral radius” :=
√

L2

6 =
√

2D
κ

and the parameter L quantifies the length of the region the
particle can explore under confinement (see Sec. II C). At small
δ, estimates of D are consistent with one another for both the
classic KF and the new MBF; however the Berglund motion
blur MLEs only begin to converge to the other two as the corral
radius is increased (i.e., as confinement decreases). We point
out that the rate of convergence of the Berglund D estimate
to that of the MBF (the MBF nests the Berglund estimator
considered) is primarily dictated by δ for a fixed κ .

In Fig. 6, it is shown that estimates of κ obtained using
the KF and MBF likelihoods are relatively close to one
another for the corral radius values studied (κ is not reported
for the Berglund estimator since it is not included in this
model). However, the median of the KF and MBF’s MLE are
biased from the known truth due to the discretely sampled
finite length trajectories producing the MLE vector (the
MLE mean and median converge to the truth as T → ∞
for a correctly specified OU model). This finite time series
sample size bias effect is known and well understood for
stationary OU models sampled without measurement error
[73]. If both the time series data and innovation covariance
are effectively stationary and mean zero, the bias correction
technique introduced in [32] for the KF (applicable to data
observed with measurement error) can be heuristically applied
to the MBF estimates [74]. After applying the correction
outlined in Ref. [32], the bias corrected parameters of the MBF
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FIG. 6. Stability of the MBF in estimating kinetic parameters
under various degrees of confinement. Estimation of various κ for
fixed D = 0.1 μ2m/s, σloc = 30 nm, δ = 25 ms, v = 0. Similar to
Fig. 5 in terms of N and T , except different kinetic parameters were
varied. In all panels, the x axis displays the so-called “corral radius”

:=
√

L2

6 (see Sec. II C). In the top panel, the y axis displays the
median κ̂ (symbols) and the 10th and 90th percentiles (dashed lines)
of the estimated maximum likelihood estimate (MLE) parameter
distribution for the corral radii explored. The bottom left panel zooms
in on the “less confined” cases. κ estimated with the Kalman filter
(KF) and motion blur filter (MBF) were similar. The results of a finite
T bias correction [32] are also displayed (this correction is fairly
close to the known true value). The bottom right panel shows the
corresponding estimates of D for the same trajectories and estimators
considered.

estimates are shown to coincide more closely with the true
data generating process’s κ . We stress that, in this example,
we started in the stationary distribution (having mean zero)
and the measurement noise did not vary over time. When the
technical conditions hold for bias correction, the expectation
of the parameter improves on average. Also note that the bias
correction is derived for the expected value obtained when
averaging over multiple trajectories of length T . The bias
correction improves performance on average [32,73], but it has
a probability of degrading estimates even when all technical
conditions required to apply the correction hold. If the data are
confined (or are “mean reverting” [32]) around a nonzero mean
at steady state, subtracting the empirical mean is a pragmatic
way of “enforcing” the v = 0 condition analyzed in Ref. [32].
Inherently nonstationary finite trajectory length bias correction
requires additional research [75].

In Fig. 7, we use the innovation sequence computed at the
MLE to test the quality of the model via goodness-of-fit tests
[33,65,76]. When analyzing experimental live cell data, one
rarely has the luxury of “ground truth,” so checking modeling
assumptions against data is an important step. Here, we attempt
to see if the correlation induced by the (simulated) motion blur
can be detected when the classic KF is applied to blurred data.

FIG. 7. Statistically testing model assumptions without ground
truth. Empirical cumulative distribution function (ECDF) obtained by
evaluating the M(1,1) test statistic [77] at the MLE obtained N using
length T simulations obtained with κ = 1 s−1, D = 0.1 μ2/s, σloc =
30 nm, δ = 25 ms, v = 0. Data were generated using motion blurred
measurements. The MLE and the corresponding M(1,1) statistic of
the MBF (correctly modeling motion blur, hence the “null model”)
and the KF (not modeling motion blur, hence representing “model
misspecification”) were computed for each of the N trajectories
analyzed. The length of the trajectories T was increased to show
the increase in power one can obtain in this regime. Two critical
values corresponding to type I error rates α of the large T test statistic
distribution are shown as vertical lines (see text for additional details).

For this purpose, we reanalyzed the δ = 50 ms case shown
in Fig. 5 and computed the M(1,1) test statistic [33,77]. The
M(1,1) test statistic aims to check whether the conditional
mean and correlation structure of the generalized residual
series is consistent with that of a correctly specified model [77]
(ignoring effects of motion blur primarily affects correlation
in the generalized residual series).

We plugged in the MLE for the KF and MBF (recall that
the same trajectory was fitted with multiple estimators) and
used the data to compute the M(1,1) statistic for the N =
400 trajectories of length T = 400. The empirical cumulative
distribution function (ECDF) of the N = 400 test statistics
is displayed for the two estimators. The vertical dashed lines
plot the critical values corresponding to the limit normal null
distribution of the M(1,1) statistic [77]. The fraction of test
statistics greater than these critical values can be rejected at
a nominal type I error rate [78] indicated by the graph. By
inspecting the intersection of the vertical lines with the ECDF,
the fraction of the N trajectories rejected for a nominal α

can be determined. We simply picked a “conservative” and
“liberal” rejection threshold to plot; however researchers can
use the information encoded in the ECDF to carry out a test
at any nominal type I error level. For example, if one selected
αnominal = 0.20, ≈40% of the KF fits are rejected when motion
blurred data are fitted with a model not accounting for the
effects of motion blur. As T increases, the statistical power
(ability to reject if the observed data are inconsistent with the
assumed model) increases whereas the test statistics computed
using the MBF innovation likelihood exhibit rejection rates
just below the expected type I error rates. To illustrate how
power increases with T , we show results obtained using the

053303-11



CHRISTOPHER P. CALDERON PHYSICAL REVIEW E 93, 053303 (2016)

same parameters, but increasing trajectory length to T = 1000.
Using αnominal = 0.20, ≈70% of the KF fits are rejected with
the increased T value.

Before concluding, we make some technical notes. For
likelihood based time series analysis, it is recommended that
a “reasonable” number of observations are used to estimate
parameters (accuracy depends on a variety of factors including
δ,θ, and T). Some guidance about parameter accuracy and
variability in the measurement noise free case can be obtained
from probability and statistical theory [73], but much theory
is asymptotic in nature. Using simulations in the parameter
regime of interest to quantify the bias and MLE parameter
variability is recommended. The interested reader can tweak
these parameters in the supplied IPython Notebooks to explore
different regimes. At one extreme, if the product of κ and δ is
“large” relative to the spatial and temporal resolution afforded
by the measurement device, then detecting the temporal
correlations in the time series data will be problematic with
finite T under the model assumed in Eq. (1). In this setting,
using the parametrization used here, an MLE algorithm will
typically estimate the stationary variance correctly, D̂

κ̂
, but the

individual components may not be reflective of the underlying
truth. At the other extreme, when the true κ is near zero, other
well-known technical problems occur due to so-called “unit
root” technical complications arise [55]. In SPT terms, this
effectively means no appreciable confinement can be detected
and the particle may be exhibiting simple “free” or “directed”
diffusion. Hence if the MBF analysis predicts κ � 0 within
statistical uncertainty, appropriate caution should be taken.

In live cell data, it is not expected that simple pure “free” or
“directed” diffusion exist. Some degree of confinement (due
to the inherent crowded nature of the cell) is almost always
expected to be experimentally detectable in mobile particles
tracked in vivo with the resolution afforded by modern optical
microscopes. Despite the technical caveats stated above, we
have demonstrated that high accuracy parameter estimates can
be obtained for a fairly wide range of κ , δ, and D values
relevant to SPT with reasonably “small” T using the MBF.

IV. CONCLUSIONS

The motion blur filter (MBF) algorithm was shown to be
capable of consistently estimating parameters required for
extracting forces and diffusion coefficients given a single
trajectory contaminated by static and dynamic measurement
errors. The approach can handle the three most popular
SPT models (confined, directed, and “pure” diffusion). The
approach can consistently estimate molecular motion param-
eters from individual trajectories (enabling quantification of
heterogeneity) in situations where the diffusion coefficients,
D, span four orders of magnitude and the camera exposure
times range from 5–100 ms in the presence of confinement. As
discussed in Sec. II C and elsewhere [32,34,39,41,68], accurate
and unbiased estimation of D is important in obtaining
spatially dependent effective molecular forces from position
vs time SPT data.

It was demonstrated that state-of-the-art estimators
cannot consistently estimate motion parameters due to
either neglected motion blur or confinement effects. Using
state-of-the-art estimators which do not explicitly model

confinement and motion blur results in substantial biases
of D (hence affecting estimates of molecular forces).
Other pragmatic issues arising when analyzing individual
trajectories, e.g., how to account for time varying localization
accuracy, how to correct for parameter bias encountered when
trajectories are discretely sampled with finite length samples
(finite sample size bias is prevalent in time series estimation
[32]), and how to test fitted models against data with the MBF,
were discussed and demonstrated. To facilitate implementation
and promote reproducible research, we have provided Python
scripts and IPython Notebooks on GitHub (this code both
demonstrates general use and can also reproduce Figs. 3 and 4).

The approach, as presented, processed individual
trajectories since a variety of microscopy techniques are now
capable of producing long, high time resolution data from
different imaging modalities [1,4,8,19,20,22,24–27,79]. Both
the localization quality and temporal resolution can deviate
substantially from theory [50,52,53,59] (or even vary over
time) and depend on the modality (e.g., the fluorescence
channel in multicolor experiments can have different quality).
Our algorithm can handle these practical complications faced
by SPT researchers and produce output from different experi-
ments which aims at removing experimental measurement and
sampling artifacts to produce motion parameters representative
of the true underlying tagged particle. As we demonstrated in
this work, a large source of bias introduced by the experimental
apparatus is “motion blur.” The software provided can be
used to empirically explore different regimes of interest and
the accuracy afforded by the MBF approach. If a researcher
desires to estimate one of the three popular SPT motion models
(confined, directed, “pure” diffusion, or some combination of
these), it is recommended to use the MBF since the algorithm
has demonstrated accuracy in many regimes of relevance to
SPT (whereas other estimators are biased in some regimes).

If it is discovered or believed that the parameters charac-
terizing the dynamics driving the motion of the molecule(s)
of interest at a given spatial location in a cell are independent
of time [4,34,39], one can modify our algorithm to aggregate
multiple time series even if they have vastly different local-
ization precisions or exposure times. For example, one could
use each trajectory to produce a likelihood function (given
trajectory specific localization information) and then develop
a cost function which aims to find the single parameter vector
minimizing the net sum of the log likelihoods. However, this
trajectory aggregation requires a strong assumption regarding
spatial and temporal stationarity and we believe that potentially
interesting transient molecular events will be missed by this
type of approach [33,41]; hence we advise researchers to
start by analyzing data on a trajectory-wise basis [58,71].
In addition to parameter estimation, the likelihood based
scheme provides diagnostic statistics which can be used to
check statistical modeling assumptions directly against data
via goodness-of-fit tests without “ground truth” (checking
both shape and/or statistical dependence assumptions implicit
in the model [33,65,76]). We demonstrated the ability of
these tests to detect unmodeled correlations in the classic KF
induced by motion blur effects. However, the same hypothesis
testing procedure can also be used to determine whether the
assumptions required to carry out the “trajectory aggregation”
mentioned above (e.g., use many different trajectories to
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estimate a parameter vector characterizing the dynamics at
a fixed spatial location) are justified by the empirical data.

The MBF estimator leveraged signal processing and
stochastic process ideas to synthesize an algorithm capable
of addressing many open practical issues facing SPT data
analysis. The dynamical model underlying the MBF is a
continuous time linear SDE driven by “standard Brownian
diffusion” [64]. As stated in the Introduction, “anomalous
diffusion” can result when one averages over many types
of dynamical states [43,44]; however resolution afforded by
contemporary microscopes permits temporal resolution where
standard diffusion models are useful. A primary aim of this
work is to provide a computational tool which can be leveraged
when the molecular events of interest occur within the
spatial and temporal resolution of optical microscopes before
signatures of “anomalous diffusion” manifest themselves in
the data. Under these conditions, backing out “effective forces”
from the local molecular diffusivity is reasonable [33,41,66].
For longer trajectories, this may require one to segment
trajectories into distinct kinetic states [41] and then apply the
analysis to the segments. We did not present segmentation
results, but the likelihood based MBF algorithm can be used
to modify the cost function of existing state-of-the-art time
series segmentation algorithms [41,80] and remove artifacts
induced by motion blur and unknown localization noise (these
noise sources are ubiquitous in SPT data analysis).

Explicitly accounting for motion blur is also expected to
facilitate segmenting data where multiple imaging modalities
(where data are acquired with different temporal resolutions
and/or exposure times) are combined to describe the dynamics
of individual molecules in living cells. We presented 1D
(scalar) illustrative examples, but the MBF algorithm can
process multivariate signals. However, obtaining closed-form
expressions for the filter quantities is slightly complicated
by matrix exponentials. The computational challenges with
multivariate extensions is left to future work.
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APPENDIX

The well-known solution to the Ornstein-Uhlenbeck (OU)
SDE [Eq. (1)] can be written explicitly as

rδ =A + Fr0 +
∫ δ

0
exp[κ(s − δ)]

√
2DdBs, (A1)

where A ≡ [1 − exp(−δκ)] v
κ

and F ≡ exp(−δκ) [64]. The
solution above can be written in terms of simple Gaussian
random variables since the OU process is one of the rare cases
where a SDE can be solved in closed form by appealing to
integration factor techniques used in standard ordinary differ-
ential equations. “Solved” means the process can be written
explicitly in terms of time and a Brownian motion path. When
an SDE is “solved,” realizations can be constructed without

numerical integration approximations of any deterministic or
stochastic integrals [64]. The expression above can be used to
compute closed-form expressions for

E[rδ|r0] = A + Fr0, (A2)

E

[
1

δ

∫ δ

0
rδ|r0

]
= HA + HF r0, (A3)

HF =1

δ

∫ δ

0
exp(−sκ)ds = 1

κδ
[1 − exp(−δκ)], (A4)

HA = 1

δ

∫ δ

0
[1 − exp(−sκ)]μds (A5)

= μ − μ

δκ
+ μ exp(−δκ)

δκ
, (A6)

μ :=v

κ
, (A7)

where δ > 0 (note all discrete parameters defined in this
Appendix depend implicitly on δ).

Since the OU process considered is linear and driven by
standard Brownian motion, it is characterized by the first two
moments and covariances of the process. The means have been
defined above. The second moments and covariances can also
be computed as an explicit function of time and θ for the
model considered. Recall that the KF and MBF uncertainty
estimates both are centered around using covariances of mean
zero estimates to make various linear projections [56]. In what
follows, without loss of generality, we assume r0 is statistically
independent of Bt ∀t > 0 and that r0 = 0,v = 0 (so the relation
cov(rt ,rs) = E[rt rs] holds for s � t), and κ � 0. Under these
nonrestrictive conditions and using the well-known quadratic
variation properties of Brownian motion [64], one has the fol-
lowing closed-form relationship for the state covariance [64]:

cov(rt ,rs) := E

[ ∫ t

0
exp[κ(u − t)]

√
2DdBu

∫ s

0

× exp[κ(v − s)]
√

2DdBv

]

= 2D

∫ s

0
exp[κ(v − t)] exp[κ(v − s)]dv

= D

κ
[exp(2κs) − 1] exp[−κ(s + t)]. (A8)

The above expression is valid for s � t . The state covariance
above can be used to solve for the variance and covariance of
other quantities required by the MBF. Specifically one needs
to compute both E[ rδ

δ

∫ δ

0 rtdt] and E[ 1
δ

∫ δ

0 rtdt × 1
δ

∫ δ

0 rsds] to
solve the “Corrector” update (see Fig. 2). The former expecta-
tion provides cov(ri,ψ̃i) and the latter provides the contribution
of motion blur, cov(εmblur

ti
,εmblur

ti
), to the net measurement

covariance cov(ψ̃i ,ψ̃i) stated in Eq. (12). Note that in the MBF
where uniform illumination is assumed, we use both δ and tE to
represent the exposure time. The order of time integration and
expectation can be exchanged for δ > 0 for the process con-
sidered, e.g.,E[ rδ

δ

∫ δ

0 rtdt] = 1
δ

∫ δ

0 E[rδrt ]dt [64]. This reduces
the problem to solving standard time integrals, since E[rt rs] =
cov(rt ,rs) (recall our nonrestrictive assumptions on the process
mean) has already been solved in terms of θ,t , and s as shown
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above. With this background, it can also be shown that

δ = ti − ti−1 = tE ∀i, (A9)

Qmblur : = cov
(
εmblur
ti

,εmblur
ti

)
(A10)

= D

κδ2

(
2δ

κ
− 3

κ2
+ 4

κ2eδκ
− 1

κ2e2δκ

)
, (A11)

C = cov
(
ηti−1 ,ε

mblur
ti

)
(A12)

= D

κδ

(
1

κ
− 2 exp(−κδ)

κ
+ exp(−2κδ)

κ

)
. (A13)

The first line in the set of equations above is to remind the
reader that it is assumed no “missing frames” exist in the

uniform illumination measurement model stated in Eq. (2).
Missing frames may occur in time lapse experiments or if quan-
tum dots blink (both missing frames and more exotic shutter
functions could be considered within the MBF framework, but
these cases require a more complicated notation which we have
elected not to explore in this article which introduces the basic
MBF). Combining the expressions for (Qmblur,C) above with
the expressions for (A,F ) reported previously [see below Eq.
(A1)], Q = cov(rδ,rδ) [see Eq. (A8)] and the expressions for
(HF ,HA) [see Eq. (A3)] provide the closed-form expressions
required to precisely discretize the model reported in Eqs. (1)
and (2) without any statistical approximations in the filtering
framework. We remind the reader that all the quantities derived
depend implicitly on both δ and θ .
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