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Curvature-driven foam coarsening on a sphere: A computer simulation
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The von Neumann-Mullins law for the area evolution of a cell in the plane describes how a dry foam coarsens in
time. Recent theory and experiment suggest that the dynamics are different on the surface of a three-dimensional
object such as a sphere. This work considers the dynamics of dry foams on the surface of a sphere. Starting from
first principles, we use computer simulation to show that curvature-driven motion of the cell boundaries leads to
exponential growth and decay of the areas of cells, in contrast to the planar case where the growth is linear. We
describe the evolution and distribution of cells to the final stationary state.
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I. INTRODUCTION

A foam is a gas-liquid mixture consisting of pockets of gas
separated by thin films of liquid. Foams abound in daily life,
from soap bubbles and waves breaking on a beach to whipped
cream and the chemical foam of a fire extinguisher. This
work focuses on the phenomenon of foam coarsening, where
the bubble size and shape change over time. Interest in this
phenomenon extends beyond conventional foams. The same
two- or three-dimensional polyhedral structures separated by
well-defined boundaries can be seen in many materials such as
polycrystalline alloys, ceramics, lipid monolayers, and garnet
films [1]. The study of these domains can extend beyond simple
materials to biology (e.g., cornea in an eye [2]) or cosmology
(e.g., voids in the universe [3]). For a general review of foams
see Ref. [4].

The von Neumann law describing foam coarsening has
been regarded as a historical touchstone at the interface of
mathematics and materials science [5]. In 1952 von Neumann
showed that, in the plane, the rate of change of the area of a
given cell is independent of the cell size amd depends solely
on the number of its edges [6]. In the original von Neumann
model, the evolution of the cell is due to gas transfer across cell
walls (cell edges in 2D) between neighboring cells. The rate
of gas transfer is assumed to be proportional to the pressure
difference �p across a cell edge. In equilibrium, according to
the Young-Laplace law,

�p = −γ κg, (1)

the pressure difference is proportional to curvature κg of the
edge and γ is the surface tension. The curvature κg is then
constant along each edge. Thus, the rate of change of area for
a given cell is

dA

dt
= −μ0γ

∫
∂A

κg ds = −μ0γ
∑

i

κg(i)Li, (2)

where μ0 is the permeability and Li are the lengths of the
edges around the boundary ∂A of the cell [7]. The integral on
the right-hand side can be computed as

∑
i

κg(i)Li = 2π −
n∑

i=1

(π − θi), (3)

where θi is the interior angle at the ith vertex. If the vertices are
triple junctions, then θi = 2π/3 according to Plateau’s Law.
From this we recover von Neumann’s result

dAn

dt
= K0(n − 6), (4)

where K0 = πμ0γ /3. Commonly referred to as the “n − 6”
rule this equation shows that cells with greater than six sides
grow linearly while cells with less than six sides decay in time.
A cell with six sides might change its shape, but the area would
remain constant. Cells with fewer than six sides disappear by
shrinking and the number of cells steadily decreases. Foams
where all the cells are hexagon can last, but they are metastable,
in the sense that any topological change would create at
least one cell with less than six sides, and coarsening would
start. There are five basic approaches that have been used
to model foam coarsening in 2D: direct simulation [7–11],
vertex models [12–16], mean-field theory [17,18], Potts model
[19–22], and the surface evolver [23–25]. A summary can be
found in Ref. [1].

The direct approach attempts to reproduce the equilibrium
configuration at each time step by including the essential
physics of gas diffusion and boundary motion [8,9,26].
There have been other direct numerical methods specifically
developed for foam coarsening including the surface evolver
[27–29]. Another type of direct simulation is the vertex
approach where the focus is on getting the vertices to
move correctly and assuming the cell boundaries will evolve
instantaneously fast to their equilibrium positions (e.g.,
Refs. [12–16]). In contrast to a direct approach, one can
also study the dynamics of a distribution function ρ =
ρ(n,A,t) using a PDE approach (e.g., Refs. [1,17,18]). The
final approach uses the Potts model [30–32], which takes a
microscopic perspective where “lattice sites” can move from
cell to cell, thereby changing its area, in order to minimize a
surface energy Hamiltonian [19–22].

The first generalization of the von Neumann law to
nonplanar surfaces with Gaussian curvature κ was carried out
in Ref. [33]. Using the Gauss-Bonnet theorem (5),

∫
A

κdA +
∫

∂A

κg ds +
n∑

i=1

(π − θi) = 2π, (5)
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where κg is the geodesic curvature, constant along each edge,
Eq. (2) becomes

dA

dt
= K0

[
(n − 6) + 3

π

∫
A

κ dA

]
= K0

[
(n − 6) + 3A

π

]
.

(6)

The last equation holds only for the sphere of unit radius,
and K0 contains the relevant physical parameters [33,34]. The
dependence of the rate of change of the area of a cell on its
size, in addition to the number sides, fundamentally changes
the dynamics. Sufficiently large cells will continue to grow,
while a small cell with fewer than six sides can either grow
or shrink depending on its area. In fact, there is no stable
configuration other than for a single cell to enclose the entire
surface of the sphere. Recall that on a sphere there should be
a nonzero topological charge, so that it is impossible to have a
sphere only with hexagons [4].

Recently an experiment was carried out by Roth et al. [34]
to study the evolution of a dry foam between two hemispherical
domes. They observed that a cell with six sides was not stable,
unlike in the planar case, but instead grew at a rate depen-
dent on the cell size. Other experiments investigating foam
coarsening in 2D and quasi-2D can be found in Refs. [35,36].

The remainder of the paper is organized as follows. In
Sec. II, a mathematical model describing the curvature driven
dynamics of a foam on a smooth nonplanar surface is derived
from energy minimization, using a variational approach. Here
the curvature is allowed to vary along each edge. The resulting
equation of motion for the cell area is the same as in Ref. [33];
however, it is not restricted to uniform curvature along cell
edges. The model predicts exponential growth or decay of cells
in time for general smooth surfaces. In Sec. III a numerical
scheme is proposed to simulate the foam coarsening on
the surface of a sphere through curvature driven dynamics.
In Sec. IV, exponential growth of each individual cell is
demonstrated, and the longtime behavior is described via
computer simulations.

II. MODEL

The foam evolution process involves the continuous motion
of edges and vertices, interrupted by rare events of topological
changes, such as neighbor swapping (T1) or the disappearance
of cells (T2) [4,37], at discrete time instances elaborated
on in Sec. III. In this section, we focus on constructing
the mathematical model describing the continuous aspects
of the evolution. The dry foam considered is a region on a
surface or an entire bounded surface composed of disjoint
cells separated by piecewise smooth boundaries or cell edges,
which meet at triple junctions. The edges are assumed to have
zero thickness. We construct the dissipative dynamics of cells
using a generalized Lagrangian approach.

A cell edge at a time t can be described by its position vector
R(s,t) parametrized by arclength s, 0 < s < L(t), where L(t)
is the length of the edge. The total energy of the foam is taken
to be the sum of the interfacial energies of all edges, given by

E(t) =
∑

i

∫ Li

0
γ ds, (7)

where γ is the line tension (surface tension times the height
of the foam above the surface). We assume that inertial effects
are negligible, and the drag per length on a moving edge is
proportional to its velocity. The drag force on the vertex, which
has zero length, is zero. Without external forces, we assume
that the loss of energy is due only to the viscous dissipation,
then

dE

dt
= −

∑
i

∫ Li

0

1

2
ηṘ2 ds, (8)

where η is the viscosity. After a straightforward variational
calculation, the equation of motion of a point on an edge is

Ṙ = γ

η

∂2R
∂s2

(I − N̂N̂), (9)

where N̂ = ∇ψ/|∇ψ | is the unit normal to the surface, and
ψ(R) = 0 defines the surface. Thus each point on an edge
moves at a speed proportional to its local geodesic curvature, in
the direction of ∂2R

∂s2 projected onto the surface.1 The variational
calculation also obtains the Herring condition

γ

Kj∑
k=1

∂Rk

∂s
(v) = 0, (10)

where Kj is number of junctions at a vertex v. These are also
boundary conditions of Eq. (9); the line tensions from all edges
at a vertex add to zero, and hence the vertices are always in
mechanical equilibrium. In the typical triple junction case, this
implies that the angle between the two unit tangents is 2π/3.

The rate of change of the area of a cell can now be computed;
since

dA

dt
=

M∑
i=1

∮
∂A

( Ri

|Ri | × Ṙi

)
· dRi , (11)

substituting Eq. (9) gives

dA

dt
= γ

η

M∑
i=1

∮
∂A

( Ri

|Ri | × ∂2Ri

∂s2
(I − N̂N̂)

)
· dRi . (12)

We note that the integrand in Eq. (12) is just the signed geodesic
curvature along the cell edges. Assuming that the angle at
each vertex is 2π/3, (i.e., triple junctions at the vertices), the
Gauss-Bonnet theorem gives at once

dA

dt
= γ

η

[
π

3
(n − 6) +

∫
A

κ dA

]
. (13)

This is more general than the result in Ref. [33], which requires
that the geodesic curvature κg be a constant along cell edges.
Equation (13) is valid up to a topological change when the
number of sides n of a cell changes. We note that if κ =
0, the growth or decay is linear in time, consistent with the
planar case. Our interest in this work is to study the nonlinear
dynamics where κ �= 0 as on the surface of a sphere.

In particular, for the case of a sphere with radius R0,
ψ(R) = R · R − R2

0, the Gaussian curvature of the surface

1A similar result has been obtained by Mullins [38] considering
local curvature driven motion of metal grains in the plane.
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is a constant, κ = 1/R2
0 , and the equation of motion for each

edge point becomes

Ṙ = γ

η

[
∂2R
∂s2

(
I − 1

R2
0

RR
)]

. (14)

The rate of change of area of each cell is then

dA

dt
= γ

η

[
π

3
(n − 6) + A

R2
0

]
. (15)

We nondimensionalize by scaling all lengths by the sphere
radius R0 and all times by the characteristic time ηR2

0/γ as in
Ref. [28]. Using these quantities, in dimensionless units,

dÃ

dt̃
= π

3
(n − 6) + Ã. (16)

For a cell with n sides, if n � 6, the area will increase until
a topological change occurs. If n < 6, the cell area remains
stationary only if Ã = π

3 (6 − n); any perturbation will make
it unstable. In the longtime limit, the only stable configuration
will be one where no edges remain, and one cell covers the
entire sphere. Given an initial area Ã0 of a cell, and its number
of sides n, solving Eq. (16) for Ã gives the explicit expression
for the area evolution:

Ã(t̃) =
[
Ã0 + π

3
(n − 6)

]
et̃ − π

3
(n − 6). (17)

We expect exponential growth or decay of cells on the sphere,
as opposed to planar case, where the growth is linear in
time. An indication of exponential growth may be seen in
the quotient Q := Ä/Ȧ. On a sphere, we expect Q = 1, while
on the plane we expect Q = 0.

III. NUMERICAL IMPLEMENTATION

In this section, we present in detail the steps by which the
simulations were carried out on the surface of the sphere: the
initialization, the discretization procedure for the cell edges,
the evolution of the edges and vertices, and the numerical
computation of cell area, and we end with a discussion of
the topological changes that occur in the long time. The
surface of the sphere differs from a planar surface in that the
whole surface is bounded, and there is no physical boundary,
thus there is no need to impose any boundary conditions. In
recent years many numerical methods have been developed
for simulating the motion of boundary curves on surfaces;
see Ref. [39] for an overview. Here we take a first principles
approach relying on kinetic equations of motion to evolve the
edges.

A. Initialization

It is convenient to consider an initial distribution of cells
generated from a Voronoi diagram on the unit sphere. The cells
are generated from N randomly placed nodes on the surface
using an analog of the plane sweep “Fortune” algorithm [40].
The cells in this Voronoi diagram are made up of vertices and a
set of edges connecting each vertex to three others (see Fig. 4).
The cell edge connecting vertex vi to vertex vj is made up of
a great circle of length �ij = arccos(vi · vj ). This edge is then

x
j−1j+1
j

x
x

j+2

j+1

x j j−1x
ds ds j−2

j

FIG. 1. Illustration of edge discretization. For t > 0, the spacing
of the edge points is nonuniform (ds

j+1
j �= ds

j

j−1).

discretized into Mij = ��ij /dx� edge points. The kth point on
an edge can be computed by

xk
ij = u cos(k dx) + w sin(k dx), (18)

for k = 1, . . . ,Mij − 1, where u = vi and w = [(vi × vj ) ×
vi]/‖vi × vj‖.

There are two types of points in the system: edge points {x}
that evolve via curvature driven motion and vertices {v} that
must satisfy the Herring condition. Once all the cell boundaries
are discretized we say a vertex v satisfies the Herring condition
if the great circles from v to each of its neighbors meet at an
angle θ = 2π/3. The dynamics of the foam is initiated by
vertex movement to satisfy Herring condition, followed by the
motion of edge points driven by a modified curvature caused
by the new vertex location. The dynamics proceeds by repeated
updates of the vertices and edge points.

B. Algorithm

A step-by-step procedure for the evolution of the system in
a given time step is outlined below:

Step 1: Each vertex is moved to the point satisfying the
Herring condition, Eq. (10), using a fixed point iteration [e.g.,
see Appendix and Eq. (A1)] for a given tolerance ε.

Step 2: Each of the points along the cell edge is evolved
via curvature motion on the surface of the sphere using a
standard Forward Euler scheme to solve the nondimensional
form of Eq. (14),

x(t + dt) = x + dt(κ0 − (κ0 · x)x), (19)

where κ0 = ∂2R
∂s2 |x.

A three-point stencil κ0 can be approximated as

κ0 = 2xj+1 ds
j

j−1 − 2xj

(
ds

j

j−1 + ds
j+1
j

) + 2xj−1 ds
j+1
j

ds
j+1
j ds

j

j−1

(
ds

j

j−1 + ds
j+1
j

) ,

(20)

where ds
j

j−1 = arccos(xj−1 · xj ) and ds
j+1
j = arccos(xj ·

xj+1). Observe that if the mesh is uniform (e.g., ds
j

j−1 =
ds

j+1
j ), then this reduces to the standard second order finite

difference scheme (see Fig. 1).
Step 3: Once the set of new points {xj (t + dt)} is

computed we project the result back onto the sphere, x̂j =
xj /‖xj‖.
Step 4: Check for any topological changes that need to be
resolved. Return to Step 1.

To evolve the edge points efficiently and accurately, we paid
special attention to the discretization as elaborated on below.
One example is the use of a temporal adaptive mesh. In order
for the system to evolve via curvature motion an edge must
have at least one additional point beyond the two vertices to
use the three-point stencil, Eq. (20). Thus, in systems with
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many cells initially, two of the vertices may be very close. The
global spatial discretization dx should be chosen so that the
geodesic distance between the two vertices arccos(v1 · v2) >

2.5 dx. The adverse effect of a small dx at the beginning of the
simulation is a small dt , which is O(dx2). Once cells start to
be removed this fine discretization is no longer needed so one
can coarsen the system by doubling dx, therefore quadrupling
dt . Specifically, we check, after a set time period, the condition
that the minimal number of discretized points along any edge
is 5. If this is the case we take the set of points along each edge
keeping every other point and each vertex. In the simulations
presented we restrict dxmax < 0.02 to ensure that we do not
sacrifice accuracy for speed. Therefore, early on, before the
small cells are removed, we have a fine mesh, and as the foam
coarsens, we speed up the simulation.

The other example is maintaining a roughly spatially
uniform mesh at each time step for better global accuracy
on approximating the curvature. Throughout the course of
evolution, the edge points get closer and further apart. To
resolve the curvature reasonably well we wish to stay near
a uniform mesh by imposing a condition on the edge points
using the global mesh size dx, 0.5 dx < ds

j+1
j < 1.5 dx. If

two points are closer than 0.5 dx, we remove both points and
replace them with a single point at the midpoint of the great
circle connecting them as in Ref. [7]. If two points are a greater
distance than 1.5 dx, then we add an additional point at the
midpoint along the great circle. This ensures that locally the
mesh remains nearly uniform.

To keep track of the area of each cell, we approximate the
area by considering each cell as a spherical N -gon, where N
is the total number of unique discretized edge points around its
boundary. The area of a spherical polygon is A = ∑N

i=1 αi −
(N − 2)π where αi are the interior angles of the polygon [41].

C. Topological changes

To study the longtime dynamics of cells, the model must
address critical events which occur throughout the course of
the evolution. When a cell boundary becomes very small one
of two events can occur: (i) boundary flipping (T1) or (ii) cell
removal (T2) as in Refs. [4,15,17,37].

The former is implemented in the simulation when an edge
has a length less than 1.5 dx. There are no longer enough edge
points to evolve the boundary via curvature motion, and this
small edge is composed of only two vertices. One can think
of two cells being forced together and pinching the space out
between them (see Fig. 2). To remedy the situation, the two
vertices are rotated about their midpoint by an angle of π/2
and connected to one former neighbor and one new neighbor.
In general, the rotation angle may differ from π/2, but here it
is assumed for simplicity. Immediately after the vertices will
begin to move apart due to the Herring condition. We note that
after a boundary flip two cells gain a side and two cells lose a
side.

In the latter case, when a cell area becomes small (e.g., A <

5 dx2) the cell must be removed. As in Ref. [15] and consistent
with cell growth and decay in our system, only two-, three-,
and four-sided cells are removed while cells of five or more
sides execute a boundary flip to reduce the number of sides
before removal. If a cell has four sides, then the four vertices

(b)

(a)

FIG. 2. (a) A boundary flip occurs when one edge becomes very
short, it is rotated by π/2. (b) For three-sided cells the boundary flip
results in a diangle.

are removed and replaced by two triple junctions satisfying the
Herring condition. In this case, two cells lose a side and two
cells maintain the same number of sides. Next, if a cell has
three sides, it shrinks to a point. The three vertices composing
the cell are removed and one new vertex appears connected to
the remaining neighboring vertices. Each of the neighboring
cells has a net loss of one side. If a cell has two sides, when
the area becomes small, the two edges connecting the two
vertices are removed and these vertices become interior points
on the edge. Figure 3 illustrates each event. In simulation we
have observed the removal of two-, three-, and four-sided cells.
After each topological event, the number of sides change on
the cells involved, altering their dynamics in time according to
Eq. (13).

There are a few interesting cases to consider to clarify
the numerical implementation. One occurs when a three-sided
cell has only one short side requiring a boundary flip, yet its
area is not small enough to be removed. The boundary flip is
carried out resulting in a diangle (e.g., see Fig. 2), which has

(a)

(c)

(b)

FIG. 3. (a) For four-sided cells all vertices are removed and
replaced by two new vertices forming triple junctions. (b) For
three-sided cells all vertices are removed and replaced by one new
vertex. (c) For two-sided cells the edges are removed and the vertices
become interior edge points.
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FIG. 4. Evolution of one realization of the four-cell case at three
instances in time. The smallest cell in front shrinks exponentially fast.

been observed in our simulations. The edges of such a cell still
evolve via curvature motion and the evolution of the area obeys
Eq. (16). Another scenario is when two edges on the same cell
become small enough to flip within the same time step. In fact,
the first edge which meets the criterion for flipping is flipped.
All other flips that would involve one of the two vertices that
have just moved are suspended until the next time step, when
the conditions for flipping can be checked.

Our algorithm allows the use of GPUs for faster computa-
tions. We use a hybrid CPU or GPU scheme where the vertex
and edge evolution are carried out in parallel on the GPUs
while the topological changes and area computation are done
on the CPU. Each GPU core handles the dynamics of a vertex
and up to three adjoining edges (each edge is assigned to only
one GPU) and executes the computations in parallel. We find
the efficiency in using GPUs increases with the number of
vertices. In the case of a 20-cell simulation (36 vertices using
36 simultaneous GPU cores) the simulation time decreased
on average by a factor of four compared to the same code
run only on the CPU. For 100 cells, as in Fig. 6, the typical
simulation will run for around 4 hr on an Nvidia Tesla C2075
GPU with 512 cores. The overall efficiency decreases in time

due to the fact that cells are removed resulting in a decrease in
the number of vertices.

IV. RESULTS AND DISCUSSION

In this section the focus is verifying the effective von
Neumann law on the sphere [Eq. (16)] through numerical
simulation and study longtime dynamics.

To provide insight into our numerical algorithm, we
consider the test case of four cells on the sphere, each with
three sides, and study the evolution of these cells until the
first topological change. Figure 4 shows the evolution of one
realization of the four cells at three instances of time from two
different perspectives. The smallest cell on the front shrinks
the fastest.

In Fig. 5(a) we show the cell area from numerical simulation
using dx = 0.0125 together with the analytic solution from
Eq. (17) for the purpose of comparison; they are in close
agreement. Convergence study shows that the numerical
algorithm presented here, combining the curvature-driven edge
point evolution and fixed point iteration for vertex evolution, is
first order accurate in dx, due to the fact that the convergence
rate of the vertex calculation is first order as we vary dx.

To provide evidence of exponential growth, we consider the
quotient Q := Ä/Ȧ. To avoid effects of numerical noise, we
consider the nonlocal version of this quotient, similar to the
approach in Ref. [15],

Q := 2[A(t + T ) − 2A(t) + A(t − T )]

T [A(t + T ) − A(t − T )]
, (21)

where T = M dt is a scaled time interval. As T → 0 Eq. (21)
recovers the pointwise definition of the quotient of derivatives.
Our simulations show that Q ≈ 1 for the case of four initial
cells, verifying exponential growth as shown in Fig. 5(b).
Similar behavior is observed for larger initial cell numbers
(e.g., N = 20, 50, 100, 200). Since the numerical results
capture the exponential growth as well as quantitatively match
the area evolution, our numerical scheme is apparently robust
for simulation of the longtime evolution of the foam on the
surface of the sphere.

FIG. 5. (a) Area evolution in the case of four cells. The curves correspond to the different cells. (b) The quotient Q := Ä/Ȧ averaged over
all the four cells. Exponential growth is seen in contrast to linear growth in the planar case. Each color represents a different time interval T in
the computation of the “nonlocal” quotient.
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FIG. 6. Foam coarsening over time starting from an initial distribution of 100 cells. Red and green cells each start with nine sides. Spheres
are made transparent to allow for viewing all cells at once. See Supplemental Material [42] for the corresponding movie.

Next, we investigate how the distribution of cells evolves
in time. Our simulations show foam coarsening, where the
number of cells decreases and the average area of the remaining
cells grows in time, as can be seen in Fig. 6, until only a single
cell remains enclosing the entire surface of the sphere.

There are several interesting aspects of the statistics of cell
evolution. One is the dependence of the cell distribution on the
number of sides or vertices as function of time. Figure 7 shows
the numbers of cells with a given number of vertices as function
of time. Initially, the most prevalent cells are those with six

FIG. 7. Numbers of cells 〈Ni〉 with given number i of vertices
averaged over 20 simulations as a function of time.

vertices; this gradually shifts to cells with fewer vertices.
Figure 8 shows that initially there are many small cells; the
peak of the histogram is centered around n = 6 consistent
with the planar case [7,15,16]. As the system evolves and cells
begin to disappear, the peak shifts towards cells with smaller
numbers of sides. In addition, one can consider the distribution
of cell areas (not shown). Initially this distribution is nearly
Gaussian, with mean area 4π/N . As the foam coarsens and
time evolves, this distribution broadens with the mean shifting
towards larger values of the average area.

The simulations also reveal that the cell which is most
likely to survive to the end is the cell is the one with the largest

FIG. 8. Probability distribution function for cells with a given
number of vertices at different times averaged over 20 simulations.
The peak shifts towards cells with smaller numbers of vertices with
increasing time.
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number of sides. As an example shown in Fig. 6, the two cells
colored in green and red, initially with nine vertices, persist
for a long time, while small cells in the vicinity with smaller
numbers vertices disappear quickly. In particular, if towards
the end of the simulation all the cells have the same numbers
of sides (e.g., four three-sided cells remain, as in Fig. 4), the
one with the largest area will survive longest. This continues
until the final stages of the simulation, where there are three
diangles remaining until one disappears. What remains then is
a closed curve on the sphere, corresponding to two cells, with
two cell faces, two vertices, and two edges. The edges continue
to evolve via curvature motion until the small cell shrinks to a
point, leaving one vertex, one cell face, and no edges.

Finally, we consider the total number of cells on the sphere
as a function of time. Assuming triple junctions everywhere
and making use of the Euler characteristic of the sphere, one
can simply obtain the expression

∞∑
n=1

Nn(t)

(
1 − n

6

)
= 2, (22)

involving the distribution Nn(t) of n-sided cells at time t .
From this, one can calculate the total number of cells NT (t) =∑

n Nn(t) at time t . The number of cells Nn(t) with n sides
can change in two distinct ways: (1) via a boundary flip, where
two cells each lose one side and two cells each gain one side,
and (2) via cell removal of twp-, three-, and four-sided cells.
In the former case Nn(t) changes, but the total number NT (t)
does not change, whereas in the latter, some of the Nn(t) values
change and the total number NT (t) decreases by one. We focus
therefore on cell removal, where

∂NT (t)

∂t
=

∑
n=2,3,4

∂Nr
n(t)

∂t
, (23)

where ∂Nr
n(t)/∂t is the rate of change of n-sided cells due

to cell removal. From Eq. (17) we can estimate the time tn0

it takes for the area of an n-sided cell to go to zero; tn0 =
− ln [1 + 3An0

π(n−6) ] ≈ − 3An0
π(n−6) , since the cell areas are small. A

crude estimate of the cell area on a unit sphere is An0 � 4π
NT (t) ,

and hence the rate of change of the number of n-sided cells is
approximately

∂Nr
n(t)

∂t
≈ −Nn(t)

tn0
= NT (t)

Nn(t)(n − 6)

12
,

and ∂NT (t)
∂t

= NT (t)
∑

n=2,3,4
Nn(t)(n−6)

12 . As a last step, we take
Nn(t) � φnNT (t) where each φn is a constant. Then

∂Nt (t)

∂t
= −N2

T (t)

(
φ2

3
+ φ3

4
+ φ4

6

)
= −γN2

T (t). (24)

Solving Eq. (24) gives NT (t) = NT (0)
1+γNT (0)t . If we estimate γ =

0.1 and the initial number of cells NT (0) = 100, then NT (t) =
100

1+10t
. This function shows good quantitative agreement with

the simulation results shown in Fig. 9. The time evolution
of the total number of cells is approximately NT ∼ 1/t . At
early times, the fraction of cells with less than five sides is
approximately 10, but later the foam is mostly composed of
two- and three-sided cells, resulting in a larger γ as can be
seen in the inset in Fig. 9.

FIG. 9. Total number of cells averaged over 20 simulations as
function of time. The simulation data are presented in blue with
error bars representing the maximum and minimum number in the
simulations. Here γ = 0.1 and NT (0) = 100. Inset: The inverse of
〈N〉 as function of time (red).

V. CONCLUSIONS

In this work, we presented three contributions to the study
of foams on curved surfaces.

First, we derived a model for the evolution of the foam cell
boundaries on a general smooth surface. If the surface is a
sphere, then the cell area grows exponentially in time for all
times. This differs from the linear growth in the plane. Such
exponential growth has been implicitly predicted in Ref. [33];
however, the argument used there relied on the assumption of
each cell wall having constant geodesic curvature. In fact, cell
walls with nonuniform curvature can be observed in both our
simulations, e.g., Fig. 6, and experiments [34].

While experimental work in [34] shows that the growth
rate differs from linear, our numerical experiments show that
the domain growth on the sphere is exponential in time. To
test our theoretical predictions we implemented numerical
experiments and addressed critical topological events as edges
are diminished. The simulations clearly show exponential
growth. In addition, we show that the only stable configuration
is the one where a single cell encloses the entire surface of the
sphere. Our simulations also suggest that the cell in the initial
distribution with the most sides has the highest probability of
surviving until the end.

Third, we also provide new results unique to foam coarsen-
ing on the sphere: (1) the probability distribution of the number
of cells with a given number of vertices as a function of time
and (2) the prediction and confirmation that the number of
cells in the longtime goes as 1/t .

These observations highlight the insights that our model
and simulations provide foam coarsening on the sphere.
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APPENDIX: VERTEX EVOLUTION

To evolve a vertex v, we solve an alternate problem of
finding a point on the sphere which minimizes the sum of
the distances to each vertex of the triangle {x1,x2,x3} where
the points x1,x2,x3 are the nearest neighbors of v along the
discretized edges. If all angles are less than 2π/3, then the
solution of this problem satisfies the Herring condition [43]. A
fixed point iteration scheme was proposed to find such a point
in Ref. [44] as

xk+1 =
∑3

j=1

{‖xk − xj‖−1
[
1 − ( ‖xk−xj ‖

2

)2]−1/2}
xj∥∥ ∑3

j=1

{‖xk − xj‖−1
[
1 − ( ‖xk−xj ‖

2

)2]−1/2}
xj

∥∥ .

(A1)

The initial guess x0 is taken to be the average of
the three neighbors projected back onto the sphere,
x0 = (x1+x2+x3)/‖x1+x2+x3‖. The iterations stop if
‖xk+1−xk‖ < ε where the tolerance is set to be ε = 10−16

in our simulation. With this stopping criterion we achieve
convergence within 20–30 iterations per vertex per time
step. After the vertex is computed, we calculate the three
angles formed by the new vertex and the nearest edge
points and observe numerically that |θ − 2π/3| � 10−14, thus
satisfying the Herring condition. If the triangle formed by the
three neighbors has an angle greater than 2π/3, the vertex
approaches one of its neighbors upon iteration. In this case,
the Herring condition would not be satisfied. To overcome
this effect, we simply remove the nearest neighbor xi when
its angle is greater than 2π/3. This allows the iterations to
converge to a point interior to the nearest edge points.
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