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In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of
Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau,
New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and
thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized
to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The
corresponding transport coefficients are fitted by rational functions in order to make them suitable for use
in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory
and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV.
By contrast, classical transport theory begins to incur significant errors above kBT ∼ 10 keV, e.g., the parallel
thermal conductivity is suppressed by 15% at kBT = 20 keV due to relativistic effects.
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I. INTRODUCTION

Thermonuclear burn in inertial confinement fusion (ICF) is
predicted to involve the most extreme temperatures, densities,
and pressures ever produced in the laboratory [1]. It is hoped
that temperatures indicative of a relativistic electron distribu-
tion (kBT ∼ 10 keV and above) are reached in deuterium-
tritium targets on the National Ignition Facility [2,3]. The
development of other ICF schemes, such as fast ignition
[4] and shock ignition [5], is also predicated on achieving
such temperatures. Prospective tritium-poor or pure deuterium
inertial fusion schemes are expected to involve even higher
temperatures (kBT ∼ 100 keV) [6].

Transport processes, particularly electron thermal conduc-
tion, are important for the formation of the hot spot in
ICF and the dynamics of the subsequent propagating burn
wave [7]. Although these systems are conventionally un-
magnetized, recently both imposed [8] and self-generated [9]
electromagnetic fields have been studied in ICF-like plasmas,
and these are likely to have profound effects on electron
transport.

There is therefore a growing need for a complete transport
theory for plasmas, which fully accounts for the effects of
special relativity. In a previous paper [10], we derived the
dynamical friction and diffusion coefficients for a relativistic
plasma in the same form as those of Trubnikov [11]. In the
present work, we use these results to calculate the transport
coefficients of a plasma in which the electron distribution is
relativistic.

The subject of relativistic transport has been studied
in the past by various authors. McBride and Pytte [12]
first determined the electron conductivity of a magnetized
plasma using the collision operator of Beliaev and Budker
[13] to lowest order in the relativistic correction (v2/c2).
Dzhavakhishvili and Tsintsadze [14] soon after calculated the
transport coefficients of an ultrarelativistic plasma (kBTe �
mec

2) using a similar approach to that of Braginskii [15].
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Balescu et al. [16] determined the form of the thermal
conductivity, along with the shear and bulk viscosities, for
a relativistic plasma but did not provide numerical results.
With reference to the early universe, van Erkelens and van
Leeuwen [17] calculated the electrical conductivity of a pair
plasma, including the effects of the interaction with a radiation
field. (A similar analysis was performed later by Kremer
and Patsko [18].) Braams and Karney [19,20], using an
expansion of the relativistic Fokker-Planck collision operator
in spherical harmonics, derived the electrical conductivity of
a nonmagnetized plasma with arbitrary ionic charge. Mohanty
and Baral [21,22] used a modified Chapman-Enskog analysis
to calculate the cross-field transport coefficients, although
their expression for the thermal conductivity diverges in the
weak-field limit. Honda and Mima [23] derived the transport
coefficients via an expansion in spherical harmonics, though
they do not evaluate the cross-field terms explicitly and neglect
electron-electron collisions.

To our knowledge, the only previous work which attempts
to describe magnetized transport in a relativistic plasma,
while including the effects of both electron-ion and electron-
electron scattering, is that of Metens and Balescu [24].
Using an expansion in Hermite polynomials, they provide
expressions for all components of the thermal and electrical
conductivities. However, their results are inconsistent with
those derived here, as well as those of other authors (e.g.,
electrical conductivity with Braams and Karney [20] and
thermal conductivity with Honda and Mima [23]) and the
magnitude of their relativistic corrections cannot be reconciled
with the changes in the distribution function; significant
corrections are given at mild temperatures, for which the
classical and relativistic Maxwellian distributions are closely
aligned.

For the transport theory developed in this work, we adopt
the notation of Braginskii [15], whose relations are

enE = −∇p + j × B + α · j/ne − nkBβ · ∇T , (1)

q = −κ · ∇T − β ′ · jkBT /e, (2)
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where e is the elementary charge, n is the electron density,
p is the scalar pressure, kB is the Boltzmann constant,
T is the electron temperature, j is the electric current,
q is the total heat flow, E is the electric field strength,
and B is the magnetic flux density. α, β, and κ are the
electrical resistivity, thermoelectric, and thermal conductivity
tensors, respectively, whose relativistic forms this paper
seeks to calculate. Finally, in the case of a nonrelativistic
plasma,

β ′ = β + 5
2 I, (3)

where I is the unit diagonal second-order tensor.
This paper is structured as follows: Sec. II outlines the

derivation of the relativistic Ohm’s law and heat flow equation
and presents the transport coefficients for a Lorentzian plasma
in semianalytical form. This analysis is generalized to systems
with arbitrary atomic number in Sec. III, for which the
linearized Boltzmann equation is solved numerically. Such an
approach is equivalent to an infinite expansion of the collision
operator in Laguerre or Hermite polynomials, so long as the
numerical grid is sufficiently fine [25]. In Sec. IV we provide
rational function fits for the various transport coefficients,
such that they may readily be used in transport calculations.
Section V then follows with a discussion on these results,
including the size of the relativistic corrections, and, finally
in Sec. VI, we discuss the limits of applicability of this
work.

II. LORENTZIAN PLASMA: ANALYTICAL TREATMENT

We begin our analysis with the Boltzmann equation for the
electron population:

∂fe

∂t
+ v · ∂fe

∂r
− e(E + v × B) · ∂fe

∂u
=

∑
b

Ce/b, (4)

where u ≡ p/me is the momentum p per species mass me, v =
u/γ is the velocity (where γ = (1 + u2/c2)1/2 with u = |u|),
fe(r,u,t) is the electron distribution function as expressed in
terms of position r, momentum per unit mass u and time t ,
Ce/b is the collision term, and b represents all species present
in the plasma. Here we are interested solely in electrons and
ions; b ∈ (e,i).

In order to solve the Boltzmann equation, an expansion
of the distribution function and collision operator can be
made in Cartesian tensors [26]. Under the assumption that
the distribution is only weakly perturbed from equilibrium, the
first two terms of this expansion are sufficient for an accurate
description of transport:

f (r,u,t) = f0(r,u,t) + f1(r,u,t) · u
u

, (5)

as f1 describes the anisotropy in the system which leads to the
current and heat flow. Substituting this truncated expansion

into the Boltzmann equation [Eq. (4)] yields the f1 equation:

∂f1

∂t
+ v∇f0 − e

me

E
∂f0

∂u
− e

γme

B × f1 = C1, (6)

where C1 is the collision term and v = |v|. (We have dropped
the subscript e from the distribution function f for brevity.) It
is also possible to derive in a similar manner an equation for
the time evolution of f0. However, in this work this is taken to
be the relativistic Maxwellian, f0(r,u,t) = fJ (u), with

fJ (u) = ne−γ /�

4πc3�K2(1/�)
, (7)

and therefore invariant with respect to both r and t . Here
� ≡ kBT /mec

2 is the reduced electron temperature, and Kν

is the νth-order Bessel function of the second kind [27].
It is also possible to expand to higher orders and consider

the time evolution of, e.g., f2. However, in this analysis we set
all higher order terms to zero: this corresponds to ignoring the
effects of pressure anisotropy on the transport.

Our neglect of all higher order terms than l = 1 in the
expansion of the Boltzmann equation forms part of the
diffusive approximation. The remaining step is to disregard
the time derivative term, ∂f1/∂t , in Eq. (6); we do so now. This
allows us to find the steady-state solution of this equation.

In general, the collision term includes contributions
from both electron-electron and electron-ion scattering,
C1 = Ce/e

1 + Ce/i

1 . However, in the Lorentz limit (Z → ∞),
electron-electron collisions may be neglected; electron-ion
collisions dominate for these systems as scattering scales
strongly with charge (∼Z2). Assuming the ions to be infinitely
massive, mi → ∞, and at rest, fi(r,u,t) = δ(u), the collision
term then reduces to the simple form

C1 = −νeif1, (8)

where

νei = �e/i

u2v
(9)

is the electron-ion collision frequency. The coefficient �e/i is
given by

�e/i = Zne4 ln 	e/i

4πε2
0m

2
e

,

where Z is the atomic number of the ionic species, ε0 is the
permittivity of free space, ln 	e/i is the electron-ion Coulomb
logarithm, n = ne, and we have assumed that the plasma is
quasineutral: Zni = ne. The f1 equation now reads

v∇f0 − e

γme

B × f1 − e

me

E
∂f0

∂u
= −νeif1. (10)

Letting B = (0,0,B) and introducing the classical electron
gyro-frequency ω = eB/me, the components of f1 are given
by

f1,x = u4fJ

u6ω2 + (�e/iγ 2)2

(
−�e/iγ 2

{
∂xp

p
+

[
γ

�
− K1(1/�)

�K2(1/�)
− 4

]
∂xT

T
+

(
e

kBT

)
Ex

}

+u3ω

{
∂yp

p
+

[
γ

�
− K1(1/�)

�K2(1/�)
− 4

]
∂yT

T
+

(
e

kBT

)
Ey

})
, (11a)
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f1,y = −u4fJ

u6ω2 + (�e/iγ 2)2

(
u3ω

{
∂xp

p
+

[
γ

�
− K1(1/�)

�K2(1/�)
− 4

]
∂xT

T
+

(
e

kBT

)
Ex

}

+�e/iγ 2

{
∂yp

p
+

[
γ

�
− K1(1/�)

�K2(1/�)
− 4

]
∂yT

T
+

(
e

kBT

)
Ey

})
, (11b)

where ∂x ≡ ∂/∂x, ∂y ≡ ∂/∂y and we have made use of the relations:

∂xfJ =
{

∂xn

n
+

[
γ

�
− K1(1/�)

�K2(1/�)
− 3

]
∂xT

T

}
fJ , (12)

∂fJ

∂u
= − u

γ�c2
fJ , (13)

as well as the equation of state for an ideal relativistic gas, p = nkBT [28]. Once the form of f1 is known, the electric current
and total heat flow are calculated via integrations over momentum space [26]:

j = −4πe

3

∫
f1vu2 du, (14)

q = 4πmec
2

3

∫
f1(γ − 1)vu2 du, (15)

which, in this case, yield

jx = −4πe

3

(
−�e/i〈u5,1〉

{
∂xp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂xT

T
+

(
e

kBT

)
Ex

}
− �e/i〈u5,2〉 1

�

∂xT

T

+ω〈u8,−1〉
{

∂yp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂yT

T
+

(
e

kBT

)
Ey

}
+ ω〈u8,0〉 1

�

∂yT

T

)
, (16a)

jy = 4πe

3

(
ω〈u8,−1〉

{
∂xp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂xT

T
+

(
e

kBT

)
Ex

}
+ ω〈u8,0〉 1

�

∂xT

T

+�e/i〈u5,1〉
{

∂yp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂yT

T
+

(
e

kBT

)
Ey

}
+ �e/i〈u5,2〉 1

�

∂yT

T

)
, (16b)

qx = 4πmec
2

3

(
−�e/i(〈u5,2〉 − 〈u5,1〉)

{
∂xp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂xT

T
+

(
e

kBT

)
Ex

}
− �e/i(〈u5,3〉 − 〈u5,2〉) 1

�

∂xT

T

+ω(〈u8,0〉 − 〈u8,−1〉)
{

∂yp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂yT

T
+

(
e

kBT

)
Ey

}
+ ω(〈u8,1〉 − 〈u8,0〉) 1

�

∂yT

T

)
, (17a)

qy = −4πmec
2

3

(
ω(〈u8,0〉 − 〈u8,−1〉)

{
∂xp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂xT

T
+

(
e

kBT

)
Ex

}
+ ω(〈u8,1〉 − 〈u8,0〉) 1

�

∂xT

T

+�e/i(〈u5,2〉 − 〈u5,1〉)
{

∂yp

p
−

[
K1(1/�)

�K2(1/�)
+ 4

]
∂yT

T
+

(
e

kBT

)
Ey

}
+ �e/i(〈u5,3〉 − 〈u5,2〉) 1

�

∂yT

T

)
, (17b)

where we have introduced the class of integral

〈ui,j 〉 =
∫ ∞

0

fJ

u6ω2 + (�e/iγ 2)2
ui+2γ j du.

Making E the subject of Eqs. (11), one may verify that the Braginskii formalism of Ohm’s law [Eq. (1)] is satisfied in the
relativistic case.

The corresponding transport coefficients ϕ may be expressed in terms of components relative to the magnetic field vector
b = B/|B| and driving force s by using

ϕ · s = ϕ‖b(b · s) + ϕ⊥b × (s × b) ± ϕ∧b × s, (18)

where ϕ ∈ {α,β,κ}, s ∈ {E,∇T } and the negative sign applies only in the case ϕ = α. This geometry is shown in Fig. 1.
In this notation, we find

α⊥ = 3n2kBT

4π�e/i〈u5,1〉�, (19)
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α∧ = ωmen

[
3nkBT

〈〈
u

8,−1
5,1

〉〉
4π (�e/i)2me〈u5,1〉� − 1

]
, (20)

β⊥ =
〈〈
u

5,2
5,1

〉〉 + 〈〈
u

8,0
8,−1

〉〉〈〈
u

8,−1
5,1

〉〉2
(ω/�e/i)2

��
−

[
K1(1/�)

�K2(1/�)
+ 4

]
, (21)

β∧ = ω
〈〈
u

8,−1
5,1

〉〉[〈〈
u

8,0
8,−1

〉〉 − 〈〈
u

5,2
5,1

〉〉]
�e/i��

, (22)

where 〈〈ui,j

i ′,j ′ 〉〉 ≡ 〈ui,j 〉/〈ui ′,j ′ 〉 and � = 1 + (ω〈〈u8,−1
5,1 〉〉/�e/i)2. The parallel components of the transport coefficients may be

found by taking the ω → 0 limit of the perpendicular components. [The component of the transport parallel to the magnetic
field is independent of the magnitude of B, as may be straightforwardly shown by taking the scalar product of the f1 equation
[Eq. (10)] with B.]
The relativistic heat transfer equation can be deduced by substituting Eqs. (11) into (17). This also takes the same form as in
classical theory [Eq. (2)], with the revised relation

β ′ = β +
[

K1(1/�)

�K2(1/�)
+ 4 − 1

�

]
I, (23)

[cf. Eq. (3)] and the following thermal conductivity coefficients:

κ⊥ = 4π�e/i

3�2

{
(〈u5,3〉 − 〈u5,2〉) − (〈u5,2〉 − 〈u5,1〉)

〈〈
u

5,2
5,1

〉〉 + 〈〈
u

8,0
8,−1

〉〉〈〈
u

8,−1
5,1

〉〉2
(ω/�e/i)2

�

+ (〈u8,0〉 − 〈u8,−1〉)
〈〈
u

8,−1
5,1

〉〉
(ω/�e/i)2

[〈〈
u

8,0
8,−1

〉〉 − 〈〈
u

5,2
5,1

〉〉]
�

}
, (24)

κ∧ = 4πω

3�2

{
(〈u8,1〉 − 〈u8,0〉) − (〈u8,0〉 − 〈u8,−1〉)

〈〈
u

5,2
5,1

〉〉 + 〈〈
u

8,0
8,−1

〉〉〈〈
u

8,−1
5,1

〉〉2
(ω/�e/i)2

�

− (〈u5,2〉 − 〈u5,1〉)
〈〈
u

8,−1
5,1

〉〉[〈〈
u

8,0
8,−1

〉〉 − 〈〈
u

5,2
5,1

〉〉]
�

}
. (25)

A. Limiting cases

Equations (19)–(25) are the relativistic forms of Bragin-
skii’s transport coefficients for a Lorentzian plasma and can
be shown to reduce to other known results in particular limits.
We consider two such cases.

First, in the limit � → 0, these results reduce to those in
the classical work of Epperlein [29]:

α⊥ = 3n2kBT

4π�e/i〈v5〉�, (26)

FIG. 1. The geometry used in our description of transport, as per
Eq. (18). The tensorial transport coefficients are described by their
components in the b (‖), b × (s × b) (⊥) and b × s (∧) directions.

α∧ = ωmen

[
3nkBT

〈〈
v8

5

〉〉
4π (�e/i)2me〈v5〉� − 1

]
, (27)

β⊥ =
〈〈
v7

5

〉〉 + 〈〈
v10

8

〉〉〈〈
v8

5

〉〉2
(ω/�e/i)2

��
− 5

2
, (28)

β∧ = ω
〈〈
v8

5

〉〉[〈〈
v10

8

〉〉 − 〈〈
v7

5

〉〉]
�e/i��

, (29)

κ⊥ = 4π�e/i

3�2

{
〈v9〉 − 〈v7〉

〈〈
v7

5

〉〉 + 〈〈
v10

5

〉〉〈〈
u8

5

〉〉2
(ω/�e/i)2

�

+ 〈v5〉
〈〈
v8

5

〉〉〈〈
v10

5

〉〉
(ω/�e/i)2

[〈〈
v10

8

〉〉 − 〈〈
v7

5

〉〉]
�

}
, (30)

κ∧ = 4πω

3�2

{
〈v12〉 + 〈v8〉

〈〈
v7

5

〉〉2 − 〈〈
v10

5

〉〉2
(ω/�e/i)2

�

− 2〈v5〉
〈〈
v10

5

〉〉〈〈
v7

5

〉〉
�

}
, (31)

where

〈vi〉 =
∫ ∞

0

fM

v6ω2 + (�e/i)2
vi+2 dv,

with the Maxwell-Boltzmann distribution, fM (v) =
n exp(−mv2/2kBT )/(2πmkBT )1/2, 〈〈vi

i ′ 〉〉 ≡ 〈vi〉/〈vi ′ 〉
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FIG. 2. The relativistic transport coefficients as a function of ω�τ � in the case of a Lorentzian plasma for � = 0 (black, solid), � = 0.01
(black, dash), � = 0.1 (black, dot-dash), � = 1 (blue, dot-dash), � = 10 (blue, dash), and � = ∞ (blue, solid).

and

lim
�→0

� = 1 + (
ω

〈〈
v8

5

〉〉/
�e/i

)2
.

The second limit of interest is that which charac-
terizes unmagnetized plasmas: ω → 0. In this case we

find

lim
ω→0

〈ui,j 〉 = 1

(�e/i)2

∫ ∞

0
fJ ui+2γ j−4 du,

lim
ω→0

� = 1
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and, using

〈u5,j 〉 = nξj (�)c5

4π (�e/i)2�2−jK2(1/�)
,

where

ξ1(�) = E1(1/�)/� − e−1/�(1 − � + 2�2

− 6�3 − 24�4 − 24�5),

ξ2(�) = −E1(1/�)/� + e−1/�(1 − � + 2�2

+ 42�3 + 120�4 + 120�5),

ξ3(�) = 48�2e−1/�(1 + 6� + 15�2 + 15�3),

and

E1(x) =
∫ ∞

x

e−u du

u

is the exponential integral function, we can write

α‖ = 3nme�
e/i�2K2(1/�)

ξ1(�)c3
, (32)

β‖ = ξ2(�)

ξ1(�)
−

[
K1(1/�)

�K2(1/�)
+ 4

]
, (33)

κ‖ = nc5

3�e/i�K2(1/�)

[
ξ3(�) − [ξ2(�)]2

ξ1(�)

]
. (34)

It is simple to check that this value of α‖ agrees with that
previously obtained by Braams and Karney [20], and the value
of κ‖ similarly agrees with that of Honda and Mima [23].

B. Dimensionless transport coefficients

By defining a relativistic mean gyro-frequency:

ω� = eB

〈γ 〉me

(35)

and, similarly, a relativistic mean electron-ion collision
time [14]:

τ � = 3c3〈γ 〉�e1/�K2(1/�)

�e/i(1 + 2� + 2�2)
(36)

[where 〈γ 〉 = 3� + K1(1/�)/K2(1/�) is the mean energy
per particle in a relativistic Maxwellian distribution], it
is possible to cast these coefficients into dimensionless
form (denoted by the superscript c), such that they are
functions of the atomic number Z, Hall parameter χ (=
ω�τ �), and reduced temperature � only, using the following

relations:

αc = α(τ �/〈γ 〉men), (37)

βc = β, (38)

κc = κ
(〈γ 〉me/nk2

BT τ�
)
. (39)

The dimensionless transport coefficients for a Lorentzian
plasma are plotted in Fig. 2 as functions of ω�τ �, for six
values of � between the classical (� = 0) and ultrarelativistic
(� = ∞) limits.

The way in which we have defined the Hall parameter,
that is, to use the relativistic electron gyro-frequency and
mean electron-ion collision time, rather than Braginskii’s
definitions [15], means that the dimensionless coefficients are
independent of temperature in both limits. (Other definitions
lead to nonfinite values for the coefficients in the limit
� → ∞.) We stress that, by parameterizing the coefficients
in this way, we have effectively split the relativistic correction
into two variables: the Hall parameter χ and the reduced
temperature �. The reason for this is that, in Sec. IV, we
shall find that it is significantly easier to provide fits for
these functions than for other parametrizations. It does mean,
however, that Fig. 2 (and later Fig. 3) does not on its own
illustrate the size of the relativistic correction at different
temperatures. For this reason, in Sec. V we shall examine
the magnitude of the correction, such that it is clear when it
is necessary to use these results in favor of those of classical
transport theory.

III. PLASMAS WITH ARBITRARY ATOMIC NUMBER:
NUMERICAL SOLUTION

In this section, we calculate the transport coefficients for a
relativistic plasma under the influence of arbitrary electromag-
netic fields, including the effects of both electron-electron and
electron-ion scattering. Our approach is analogous to that taken
in Sec. II, although the analytical work is dropped in favor
of the direct numerical solution of the linearized Boltzmann
equation.

As our previous results in Ref. [10] are expressed in spheri-
cal coordinates, we shall switch to the spherical harmonic form
of the expansion for the distribution function and collision
operator, e.g.,

f (r,u,t) =
∞∑
l=0

l∑
m=−l

f m
l (r,u,t)P |m|

l (cos θ )eimφ, (40)

where f −m
l = (f m

l )∗. This is formally equivalent to the
Cartesian tensor expansion used in the previous section [30].
Without loss of generality, the driving force s ∈ {E, ∇T } can
be specified to be in the x direction, with the magnetic field B
in the z direction, as before. The f1 equation [Eq. (10)] is then
given in spherical coordinates by [31]

∂f 0
1

∂t
= −v

∂f 0
0

∂x
+ eEx

me

∂f 0
0

∂u
− 2eBz

γme

f 1
1

+Ce/e
(
f 0

1

) + Ce/i
(
f 0

1

)
, (41a)

∂f 1
1

∂t
= eBz

2γme

f 0
1 + Ce/e

(
f 1

1

) + Ce/i
(
f 1

1

)
, (41b)
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FIG. 3. The relativistic transport coefficients as a function of ω�τ � in the case of a Z = 1 plasma for � = 0 (black, solid), � = 0.01 (black,
dash), � = 0.1 (black, dot-dash), � = 1 (blue, dot-dash), � = 10 (blue, dash), and � = ∞ (blue, solid).

where, in this case, I{f 1
1 } = 0, such that f 1

1 = f −1
1 . (Note

that, in contrast to the previous section, we now retain
the time-derivative terms ∂f m

1 /∂t .) For plasmas with finite

atomic number, electron-electron collisions must also be
accounted for in the collision operator. This term is given
by [20,32]

Ce/e(f m
1 ) = Ce/e[f m

1 P
|m|
1 (cos θ )eimφ,fJ ] + Ce/e[fJ ,f m

1 P
|m|
1 (cos θ )eimφ]

P
|m|
1 (cos θ )eimφ

, (42)
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where

Ce/e[f m
1 P

|m|
1 (cos θ )eimφ,fJ ]

P
|m|
1 (cos θ )eimφ

= − 1

u2

∂

∂u

(
u2F

e/e

u,0 f m
1 − u2D

e/e

uu,0

∂f m
1

∂u

)
− 2

u2
D

e/e

θθ,0f
m
1 , (43)

with Fe/e and De/e given by Eqs. (16) to (18) in Ref. [10]. The second term is [20]

Ce/e
[
fJ ,f m

1 P
|m|
1 (cos θ )eimφ

]
P

|m|
1 (cos θ )eimφ

= 4π�e/e

n

{
1

γ
f m

1 (u) +
∫ u

0

[
1

u2c2

(
2j ′

1[1]1 + j ′
1[1]2

�
− 10

j ′
1[2]02

�e

)
+ γ

u2c2

×
(

−2
j ′

1[1]1

�
+ 4

j ′
1[2]11

�
+ 6

j ′
1[2]02

�2
− 24

j ′
1[3]022

�2

)
+

(
j ′

1[1]0

c4�

)
+ γ

(
2
j ′

1[2]02

c4�2

)]
cu′2

γ γ ′ f
m
1 (u′)du′

+
∫ ∞

u

[
1

u′2c2

(
2j1[1]1 + j1[1]2

�
− 10

j1[2]02

�

)
+ γ ′

u′2c2

(
−2

j1[1]1

�
+ 4

j1[2]11

�

+ 6
j1[2]02

�2
− 24

j1[3]022

�2

)
+

(
j1[1]0

c4�

)
+ γ ′

(
2
j1[2]02

c4�2

)]
cu′2

γ γ ′ f
m
1 (u′)du′

}
. (44)

where �e/e = ne4 ln 	e/e/(4πε2
0m

2
e), ln 	e/e is the

electron-electron Coulomb logarithm, jl[k]∗ = jl[k]∗(u/c)
and j ′

l[k]∗ = jl[k]∗(u′/c); these functions are cataloged for
reference in Appendix. In using the form for the collision
operator given by Eq. (42), we have neglected the
self-interaction of the perturbation, i.e., assumed∑

k Ce/e [f m
1 P

|m|
1 (cos θ ) eimφ,f k

1 P
|k|
1 (cos θ )eikφ] = 0, and

made use of the fact that Ce/e[fJ ,fJ ] = 0 (the collision
operator vanishes in equilibrium). As we have neglected all
terms l > 1 in the expansion of the distribution function, we
also make the equivalent approximation in the expansion of
the collision operator.

Finally, the electron-ion collision term is given by

Ce/i
(
f m

1

) = −νeif
m
1 ; (45)

cf. Eq. (8).
A. Numerical scheme

As in classical transport theory, outside the Lorentz limit,
one must calculate the transport coefficients numerically. We
again need to find the steady-state solution f 0

1 ,f 1
1 (u,t → ∞),

as this allows us to determine the electric current j and heat
flow q using Eqs. (14) and (15), as well as the conversion
between notations,

f1 =

⎛
⎜⎝

f 0
1

2�(
f 1

1

)
−2�(

f 1
1

)
⎞
⎟⎠, (46)

where �(z) and �(z) refer to the real and imaginary parts of
z, respectively. From this we are then able to calculate the
transport coefficients as before.

In order to calculate f 0
1 ,f 1

1 (u,t → ∞), we transform the
differential equations [Eqs. (41)] into algebraic equations
using the finite difference method. The momentum of the
system is discretized on a uniform grid whose spacing �u =
umax/Nu, where umax is the maximum momentum considered
and Nu the number of computational grid points used. We
take Nu = 1000, and the maximum momentum is chosen such
that fJ (umax) = fJ (0) × 10−9; the contribution from momenta
above this is assumed to be negligible. (This can be checked
by varying umax.) The j th momentum point is given by
uj = j�u.

Similarly, time is quantized into discrete steps �t =
tmax/Nt , where, in this case, the number of time steps Nt

and therefore the total simulation time tmax are both adapted
in the simulation; ultimately they are determined by the time
tmax = Nt�t taken for a steady state to be reached.

The numerical scheme we use in this work is similar
to that which has been applied previously by Braams and
Karney [20] and Spitzer and Härm [25] to the calculation of
transport coefficients. The magnetic field terms in Eqs. (41)
and differential terms of the collision operator, Eqs. (43) and
(45), are all differenced fully implicitly. The integral term
[Eq. (44)] is treated explicitly: this is justified as this term
represents the stopping of the bulk of the distribution fJ on
the perturbation f1, an effect that is expected to be small (given
the condition on the validity of linear transport theory that the
system is close to equilibrium; see Sec. VI). The distribution is
then advanced in time using Euler differencing until a steady
state is reached. This is considered to have been achieved
once the fractional difference in the perturbation f m

1 between
successive time steps is less than 1 × 10−9.
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On substituting this representation into Eqs. (41), we arrive at the following band-diagonal series of equations:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + c1�t d1�t e1�t

b1�t 1 + c1�t d1�t e1�t

a2�t b2�t 1 + c2�t d2�t e2�t

a2�t b2�t 1 + c2�t d2�t e2�t

a3�t b3�t ... ... ...

a3�t ... ... ...

... ... ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
0,n+1
1,1

f
1,n+1
1,1

f 0n+1
1,2

f
1,n+1
1,2
...

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
0,n
1,1 + An

1�t

f
1,n
1,1 + Bn

1 �t

f
0,n
1,2 + An

2�t

f
1,n
1,2 + Bn

2 �t

...

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (47)

where

aj = − Duu,j

(�u)2
+ 1

2�u

(
2Duu,j

uj

+ ∂Duu,j

∂u
+ Fu,j

)
, bj = − eBz

2γjme

, cj = 2Duu,j

(�u)2
+ 2Dθθ,j

u2
j

+ �e/i

u2
j vj

,

dj = 2eBz

γjme

, ej = − Duu,j

(�u)2
− 1

2�u

(
2Duu,j

uj

+ ∂Duu,j

∂u
+ Fu,j

)
,

An
j = Ce/e

[
fJ ,f

0,n
1,j P

|m|
1 (cos θ )eimφ

]
P

|m|
1 (cos θ )eimφ

+ vj

T

∂T

∂x

[
γj

�
− K1(1/�)

�K2(1/�)
− 4

]
+ eExvj

kBT
, Bn

j = Ce/e
[
fJ ,f

1,n
1,j P

|m|
1 (cos θ )eimφ

]
P

|m|
1 (cos θ )eimφ

with γj = (1 + u2
j /c

2)1/2 and vj = uj/γj .
Finally, we are required to specify the initial and boundary

conditions of the system: for these we take f 0
1 ,f 1

1 (u,t =0) =0
(though this can be chosen arbitrarily), and f 0

1 ,f 1
1 (u = 0,t)

and f 0
1 ,f 1

1 (u = umax,t) = 0 are enforced throughout the sim-
ulation. The implicit differencing scheme allows a steady state
to be reached in O(1) time steps. However, it has been verified
that the the same answers are obtained for a time step that is a
small fraction of the relevant timescale: the mean electron-ion
collision time τ � for weakly magnetized plasmas and the
reciprocal of the gyro-frequency 1/ω� for strongly magnetized
plasmas.

We note that this approach is markedly different to that of
the previous section, due to the retention of the term ∂f m

1 /∂t ,
which enables us to model the evolution of a plasma with
time. However, as we are interested in steady-state quantities,
this is not strictly necessary; for example, Epperlein and
Haines have successfully determined the transport coefficients
of a classical plasma while neglecting the time derivative of
the perturbation [33].

Once the steady-state solutions of Eqs. (41) have been
found, the transport coefficients can be calculated by an
integration over momentum space and the use of the relativistic
Braginskii transport relations (analogous to the previous sec-
tion). As an example, the dimensionless transport coefficients
for a Z = 1 plasma are plotted in Fig. 3 in a similar form to
those for a Lorentzian plasma.

As a means of benchmarking these numerical results,
we have verified that they are consistent with others in
three separate limits. First, in the limit � → 0, the transport
coefficients of both Spitzer [34] and Braginskii [15] can be
reproduced for all values of Z. Second, in the ω�τ � → 0 limit,
the electrical conductivity αc

‖ is consistent with the results of
Braams and Karney [20], again for arbitrary Z. Finally, in

the Z → ∞ limit, the transport coefficients reduce to those
derived in the previous section.

IV. RATIONAL FITS TO THE TRANSPORT
COEFFICIENTS

To enable the coefficients derived in this work to be used
in transport calculations, rational functions have been fitted to
the numerical data. These take the general form

ϕc
⊥,∧ = g(χ ) + �(1 + �)h(χ )

G(χ ) + �(1 + �)H (χ,�)
, (48)

where χ = ω�τ �, g(χ ),G(χ ), and h(χ ) are polynomials and
H = H (χ ), other than in the case of αc

∧ and βc
⊥, for which

H = H (χ,θ ). In the classical limit, the fits reduce to

lim
�→0

ϕc
⊥,∧ = g(χ )

G(χ )
(49)

and in the ultrarelativistic limit,

lim
�→∞

ϕc
⊥,∧ = h(χ )

H (χ )
. (50)

The parameters of the functions g(χ ), G(χ ), h(χ ), and
H (χ,�) are dependent only on the atomic number Z. These
have been optimized via the use of a nonlinear least squares
method, such that the fits accurately reproduce numerically
calculated values for each coefficient. In our analysis, the
numerical data were spaced at equal logarithmic intervals
in the range 10−3 � ω�τ � � 103 and 10−4 � � � 102. The
fits are constructed in such a way, by constraining various
parameters, that they reproduce the numerical data exactly in
the four limits (χ,�) → (0,0),(0,∞),(∞,0),(∞,∞). The full
forms of the transport coefficients are given by

αc
⊥ = 1 − a1 + a2χ + �(1 + �)a3

(a4 + a5χ + χ2) + �(1 + �)(a6 + a7χ + χ2)
, (51)
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TABLE I. The constant coefficients of the rational functions of χ and � used to fit αc
⊥ and αc

∧, as per Eqs. (51) and (52), respectively.

Z 1 2 3 4 5 6 7 8 10 12 14 20 30 60 ∞
a1 316 159 112 89.5 76.6 68.2 62.3 58.0 51.9 48.0 45.2 40.1 36.3 32.4 28.5
a2 12.0 10.2 9.36 8.88 8.57 8.35 8.18 8.04 7.85 7.71 7.61 7.42 7.25 7.08 6.89
a3 109 66.3 51.7 44.3 39.9 36.9 34.7 33.0 30.7 29.2 28.0 26.0 24.4 22.7 21.0
a4 639 279 185 143 120 105 95.2 87.8 77.7 71.2 66.6 58.6 52.4 46.4 40.4
a5 142 86.4 67.7 58.2 52.5 48.7 45.9 43.9 40.9 38.9 37.5 34.9 32.8 30.7 28.4
a6 1390 573 373 287 240 210 190 175 156 143 134 118 107 95.3 83.9
a7 229 146 117 102 93.3 87.3 82.9 79.6 75.0 71.9 69.7 65.6 62.4 59.1 55.6

A1 17.9 16.3 12.7 10.3 8.75 7.72 7.00 6.47 5.77 5.32 5.03 4.55 4.24 4.00 3.88
A2 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53
A3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
A4 6.72 8.85 8.33 7.69 7.18 6.80 6.50 6.28 5.95 5.73 5.58 5.31 5.12 4.95 4.83
A5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
A6 89.8 49.8 30.5 21.5 16.6 13.6 11.7 10.3 8.63 7.61 6.94 5.87 5.17 4.59 4.16
A7 86.8 77.0 60.2 49.6 42.9 38.4 35.3 33.0 30.0 28.2 26.9 25.0 23.7 22.9 22.6
A8 20.6 18.1 16.5 15.5 14.9 14.4 14.1 13.9 13.6 13.4 13.2 13.0 12.8 12.6 12.4
A9 440 247 154 111 87.1 72.5 62.8 56.0 47.0 41.5 37.8 31.6 27.1 23.1 19.3

αc
∧ = χ [A1 + A2χ + A3�(1 + �)(A4 + A5χ )]

(A6 + A7χ + A8χ2 + χ8/3) + A3�(1 + �)(A9 + A7χ + A8χ2 + χ8/3+�/3(�+1))
, (52)

βc
⊥ = b1 + b2χ + �(1 + �)(b3 + b4χ )

(b5 + b6χ + b7χ2 + χ8/3) + �(1 + �)(b8 + b9χ + b10χ2 + χ8/3+b11�/3(b11�+1))
, (53)

βc
∧ = χ [B1 + B2χ + B3�(1 + �)(B4 + χ )]

(B5 + B6χ + B7χ2 + χ3) + B3�(1 + �)(B8 + B6χ + B7χ2 + χ3)
, (54)

κc
⊥ = c1 + c2χ + c3�(1 + �)(c4 + c5χ )

(c6 + c7χ + c8χ2 + χ5/2 + χ3) + c3�(1 + �)(c9 + c10χ + c11χ2 + χ3)
, (55)

κc
∧ = χ [C1 + C2χ + C3�(1 + �)(C4 + C5χ )]

(C6 + C7χ + C8χ2 + χ3) + C3�(1 + �)(C9 + C7χ + C8χ2 + χ3)
, (56)

with

αc
‖ = lim

χ→0
αc

⊥ = 1 − a1 + a3�(1 + �)

a4 + a6�(1 + �)
, (57)

βc
‖ = lim

χ→0
βc

⊥ = b1 + b3�(1 + �)

b5 + b8�(1 + �)
, (58)

κc
‖ = lim

χ→0
κc

⊥ = c1 + c3c5�(1 + �)

c6 + c5c9�(1 + �)
. (59)

The parameters of these fits are tabulated for a range of values
of Z in Tables I to III.

The χ dependence of all transport coefficients in the weak-
field limit (χ → 0) is not a function of temperature. This is also
the case for αc

⊥, βc
∧, κc

⊥, and κc
∧ in the strong-field limit (χ →

∞). However, the χ dependence of αc
∧ and βc

⊥ in the strong-
field limit does vary with temperature: at � = 0, αc

∧ ∼ χ−2/3

and βc
⊥ ∼ χ−5/3, whereas, at � = ∞, αc

∧ ∼ χ−1 and βc
⊥ ∼

χ−2. (The former limit was found by Epperlein and Haines
[33]; the latter may be obtained by following their analysis in
the limit γ → u/c.) For these two coefficients, at intermediate
temperatures (� ∼ 1), errors may increase with χ in the strong

field limit. However, transport is strongly suppressed for such
cases and maximum errors of 20% are observed for values up
to χ = 103. This is shown for the example of a Lorentzian
plasma in Fig. 4, along with the fractional percentage errors
of the other fits provided. Outside these two special cases, the
maximum error is approximately 15% for all temperatures and
field strengths.

V. DISCUSSION OF RESULTS

As this work has so far been largely mathematical, in this
section we provide some physical interpretation of the previous
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TABLE II. The constant coefficients of the rational functions of χ and � used to fit βc
⊥ and βc

∧, as per Eqs. (53) and (54), respectively.

Z 1 2 3 4 5 6 7 8 10 12 14 20 30 60 ∞
b1 2.07 0.905 0.646 0.525 0.453 0.405 0.371 0.345 0.311 0.286 0.269 0.237 0.212 0.185 0.158
b2 4.82 4.85 4.86 4.86 4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.88 4.88 4.88 4.88
b3 2.39 1.35 1.13 1.04 0.979 0.943 0.920 0.904 0.887 0.877 0.871 0.868 0.874 0.894 0.943
b4 5 3.5 3 2.76 2.61 2.51 2.44 2.38 2.31 2.26 2.22 2.16 2.11 2.06 2
b5 2.95 1 0.635 0.481 0.395 0.342 0.305 0.278 0.242 0.218 0.202 0.172 0.150 0.127 0.105
b6 7.04 5.45 4.91 4.61 4.42 4.28 4.18 4.11 3.99 3.91 3.86 3.74 3.65 3.55 3.44
b7 7.93 8.70 9.27 9.65 9.93 10.2 10.3 10.5 10.7 10.8 11.0 11.2 11.4 11.7 12.0
b8 10.4 3.77 2.54 2.03 1.75 1.58 1.46 1.37 1.26 1.19 1.14 1.06 1.01 0.965 0.943
b9 18.9 8.87 6.18 4.97 4.30 3.88 3.59 3.37 3.09 2.91 2.78 2.57 2.43 2.31 2.25
b10 2.14 1.92 2.03 2.14 2.23 2.31 2.38 2.44 2.54 2.62 2.68 2.81 2.94 3.08 3.25
b11 2.5 1.75 1.5 1.25 1.25 1.25 1.25 1.25 1 1 1 1 1 1 1

B1 4.86 2.83 2.34 2.11 1.96 1.86 2.10 2.07 2.01 1.97 1.93 1.89 2.09 2.14 2.48
B2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
B3 0.5 0.5 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.75 0.75 1 1 1.25
B4 6.45 4.85 4.53 4.35 4.22 4.10 4.19 4.19 4.15 4.11 4.07 3.99 4.17 4.20 4.55
B5 5.51 1.56 0.907 0.653 0.520 0.438 0.453 0.416 0.362 0.328 0.304 0.265 0.266 0.245 0.252
B6 6.15 3.21 2.57 2.28 2.10 1.99 2.21 2.18 2.13 2.09 2.07 2.05 2.26 2.37 2.81
B7 9.81 7.46 6.87 6.57 6.38 6.24 6.51 6.48 6.42 6.36 6.32 6.26 6.55 6.60 7.06
B8 115 33.7 19.7 14.0 11.0 9.17 8.28 7.49 6.36 5.61 5.09 4.19 3.75 3.14 2.73

results. Of initial note is that transport in weakly magnetized
plasmas (χ � 1) is dominated by collisions, whereas in
strongly magnetized plasmas (χ � 1) it is dominated by the
magnetic field. In the classical theory [15], this can be thought
of in terms of the collisional mean free path λei = vthτ and the
Larmor radius rL = vth/ω (where vth is the thermal electron
speed); whichever is smaller determines the characteristic step
size for transport. Here τ is Braginskii’s mean electron-ion
collision time [15]:

τ = 3
√

π�3/2c3

√
2�e/i

, (60)

which should not be mistaken for its relativistic counterpart
seen earlier in this work [Eq. (36)].

At χ ∼ 1, these two length scales are of the same order, and
transport is both collisional and magnetized. (This is why the
∧ coefficients are maximized at this point [15].) We will see
that a similar physical picture applies in the relativistic case.

First, note that we have parameterized the coefficients
in terms of ω�τ �, which is the product of the relativistic
gyro-frequency ω� and the relativistically mean electron-ion
collision time τ �. The reason for doing this can be seen
by considering αc

⊥: electron-ion collisions set up a frictional

TABLE III. The constant coefficients of the rational functions of χ and � used to fit κc
⊥ and κc

∧, as per Eqs. (55) and (56), respectively.

Z 1 2 3 4 5 6 7 8 10 12 14 20 30 60 ∞
c1 9.89 2.37 0.973 0.774 0.686 0.769 0.837 0.702 0.539 0.445 0.386 0.293 0.281 0.213 0.178
c2 4.58 3.87 3.63 3.51 3.44 3.40 3.36 3.34 3.30 3.28 3.26 3.23 3.21 3.19 3.16
c3 1.25 1.5 1.5 1.75 2 2.5 3 3 3 3 3 3 3.5 3.5 4
c4 12.5 2.81 1.25 0.903 0.732 0.674 0.627 0.543 0.440 0.380 0.342 0.282 0.249 0.212 0.181
c5 16 10 8 7 6.4 6 5.71 5.5 5.2 5 4.86 4.6 4.4 4.2 4
c6 3.09 0.482 0.159 0.111 0.0894 0.0934 0.0965 0.0775 0.0557 0.0440 0.0368 0.0261 0.0237 0.0168 0.0131
c7 2.74 1.08 0.688 0.579 0.521 0.512 0.510 0.467 0.412 0.378 0.355 0.317 0.301 0.270 0.247
c8 5.84 3.32 2.56 2.61 2.69 3.00 3.26 3.14 2.99 2.91 2.85 2.77 2.88 2.81 2.85
c9 12.2 1.64 0.565 0.345 0.249 0.210 0.182 0.149 0.111 0.0897 0.0768 0.0575 0.0466 0.0359 0.0272
c10 12.0 4.85 3.10 2.31 1.88 1.60 1.41 1.29 1.13 1.02 0.951 0.824 0.724 0.632 0.541
c11 1.84 0.937 0.707 0.696 0.705 0.750 0.783 0.774 0.766 0.766 0.769 0.783 0.824 0.855 0.915

C1 18.0 7.71 5.88 4.99 3.82 3.50 3.29 3.13 2.92 2.80 2.73 2.07 1.76 1.66 1.65
C2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
C3 0.5 0.75 0.75 0.75 1 1 1 1 1 1 1 1.5 2 2 2
C4 22.0 7.30 5.97 5.34 3.28 3.11 3.01 2.94 2.87 2.85 2.86 1.60 1.11 1.16 1.33
C5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
C6 2.99 0.492 0.230 0.143 0.0882 0.0688 0.0568 0.0488 0.0391 0.0335 0.0299 0.0192 0.0142 0.0115 0.00957
C7 3.41 1.11 0.725 0.560 0.407 0.355 0.321 0.297 0.265 0.246 0.234 0.172 0.142 0.128 0.122
C8 7.97 3.78 3.03 2.67 2.14 2.01 1.92 1.85 1.77 1.72 1.69 1.36 1.21 1.17 1.17
C9 82.2 9.66 4.60 2.91 1.39 1.09 0.908 0.785 0.632 0.544 0.488 0.219 0.124 0.101 0.0857
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FIG. 4. Plot of fractional error in fits to (a) α⊥, (b) α∧, (c) β⊥, (d) β∧, (e) κ⊥, (f) κ∧ as a function of ω�τ � in the case of a Lorentzian
plasma (Z → ∞) for � = 0 (black, solid), � = 0.01 (black, dash), � = 0.1 (black, dot-dash), � = 1 (blue, dot-dash), � = 10 (blue, dash),
and � = ∞ (blue, solid).

force that resists the flow of current, Rei ∼ αc
⊥men〈γ 〉〈v〉/τ �

(where the current is given by −en〈v〉) [14]. The use of
τ � in our parametrization ensures αc

⊥ tends to unity in the
strong-field limit, corresponding to the case in which the
electron distribution is a drifting Maxwellian. For lower values
of the Hall parameter, the resistivity αc

⊥ decreases, because
collisions distort the distribution function and the electrons
that contribute primarily to the current are those that are less

collisional. This difference between the weak- and strong-field
resistivity is reduced relativistically (compared to that seen
classically) because the electron-ion collision frequency scales
with 1/u2v rather than 1/v3 [Eq. (9)], with the former tending
to 1/u2 in the ultrarelativistic case.

This ω�τ � parametrization also ensures that the functional
form of the coefficients is broadly independent of temperature
(see, e.g., Fig. 3), and the physical reasoning outlined above
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can be updated as follows: for ω�τ � � 1, the collisional mean
free path, λei = vthτ

�, is the characteristic length scale for
transport, and, conversely, for ω�τ � � 1, the Larmor radius
rL ∼ vth/ω

� is the appropriate length scale. At ω�τ � ∼ 1, these
two lengths are of the same order, which is why, for all values
of �, the switch between collisional and magnetized transport
occurs at or near to this point.

We are now in a position to compare these results with those
given by the classical theory, so as to analyze the magnitude of
relativistic effects at various temperatures and field strengths.
For this, it is useful to use the classical form of the Hall
parameter, ψ = ωτ , as this enables us to confine the relativistic
correction to the � variable alone. In the classical theory, for
a given ωτ , the dimensionless coefficients are independent of
temperature. However, in the relativistic theory, this no longer
remains the case. Plotting the ratio of the coefficients (given in
terms of ωτ ) at arbitrary � to that at � ≈ 0 therefore provides
the size of the relativistic correction. This is done in Fig. 5
for the case of a Z = 1 plasma. (Corrections for plasmas with
different atomic numbers are of the same order.)

Figure 5 shows that the relativistic electrical resistivity
α⊥ increases from its classical value as the temperature
is increased. This can be understood by again considering
the frictional force Rei , which balances the electromagnetic
fields and pressure gradient in a steady state. As we have
seen, Rei ∼ αc

⊥men〈γ 〉〈v〉/τ �, with 〈γ 〉/τ � → 1/τ ∼ �−3/2

(nonrelativistic) and 〈γ 〉/τ � ∼ �−1 (ultrarelativistic). In the
ultrarelativistic limit, the correction to the classical result there-
fore scales as �1/2. Physically this represents the increased
collisionality of high-temperature plasmas when relativistic
effects are accounted for, or, alternatively, the reduction of the
current j and heat flow q generated in the plasma as particles
are limited to c.

Similarly, at low field strengths, the thermal conductivity
κ⊥ decreases from its classical value as the temperature
is increased. The correction in this case scales as �−1/2

in the ultrarelativistic limit. This is because the thermal
conductivity is effectively a diffusion coefficient of the form
(�x)2/�t , where �x is the characteristic step length of
transport and �t the step time [15]. Classically, this can
be expressed λ2

ei/τ = (vthτ )2/τ , whose temperature depen-
dence is given by (�1/2�3/2)2/�3/2 ∼ �5/2. In the ultrarel-
ativistic limit, this switches to (vthτ

�)2/τ �, which scales as
(�2)2/�2 ∼ �2. The corresponding �−1/2 correction can be
attributed to the same physical considerations as the resistivity
above.

By contrast, at low field strengths, the thermoelectric coef-
ficient β⊥ does not change indefinitely at high temperatures.
In fact, in the ultrarelativistic limit, βc

‖ → 0.2297, which is of
the same order as the classical value, βc

‖ ≈ 0.7029 (Z = 1).
Again this can be justified by simple physical arguments [15];
consider, for example, the thermoelectric term nkBβ · ∇T in
Eq. (1). This term arises due to the fact that, when a temperature
gradient is imposed, the electrons higher up the gradient are
less collisional, which produces a net frictional force down the
gradient. An estimate for this force can be given by considering
an electrons with extra energy ∼λeikB∂T /∂x as they travel a
mean free path λei down the temperature gradient. Thus the
force is of order (λei/T )∂T /∂x(〈γ 〉menvth/τ

�) ∼ n∂T /∂x,
which is clearly independent of temperature.

The corrections at high field strengths, and to the α∧,
β∧, and κ∧, coefficients, are slightly more subtle. First, the
temperature scaling of ωτ (the nonrelativistic Hall parameter)
is �3/2, whereas that of ω�τ � (the relativistic Hall parameter)
is � in the ultrarelativistic limit. In other words, relativistic
effects mean it is more difficult to magnetize a plasma than
would be expected classically (again because of increased
collisionality); the effect of the magnetic field is decreased
by ∼�−1/2 at very high temperatures. With the exception of
α⊥, this is manifested in an increase in all coefficients in the
high field limit. This can be seen as all these decrease rapidly
with an increasing magnetic field, and a relativistic treatment
acts to reduce the effects of this.

The corrections seen in the low field limit of α∧, β∧, and
κ∧ are due to the combination of effects discussed above.
For α∧, an ∼�1/2 increase as per α⊥ is exactly balanced
by the ∼�−1/2 decrease due to the reduced magnetization
(as the coefficient scales ∼χ in this limit). Therefore, in the
classical limit, αc

∧ = 0.1988ωτ , whereas in the ultrarelativistic
limit, αc

∧ = 0.01528ωτ . In the case of β⊥, a simple �−1/2

correction is required due to magnetization effects. Last, the
combination of two �−1/2 scalings for κ∧ results in a net �−1

correction [35].
Finally, we note that the relativistic corrections to α‖ and

κ‖ can be fairly significant, even at mild temperatures. For
example, at kBT = 30 keV (� ≈ 0.06), κ‖ is reduced to 80%
of its classical value. Note that this is somewhat larger than
the correction to α‖, as the thermal conductivity is a higher
moment of the distribution and thus more sensitive to the
change in the shape of the tail due to relativistic effects than
the electrical resistivity. However, the greatest corrections are
those to the coefficients in the (b × s) direction in the weak-
field limit. We find that, even at kBT = 5 keV (� ≈ 0.01), β∧
and κ∧ are reduced by 10%. By kBT = 20 keV (� ≈ 0.04),
κ∧ has decreased to approximately 60% of its classical value.
Although transport is strongly suppressed in this direction for
weak field strengths, we find these corrections remain to ωτ ∼
0.1; at this point the thermal conductivity κ∧ is a large fraction
of its maximum value (see the � = 0 case in Fig. 3, for which
τ = τ �).

VI. LIMITS OF VALIDITY

First, the results of this work are restricted in their validity to
an ideal plasma; that is one which is fully ionized and weakly
coupled. The former condition requires the presence of neutral
particles to be negligible; otherwise the transport coefficients
assume more complex forms [26]. The latter corresponds to
ln 	a/b � 1, such that small-angle scattering dominates and
the Fokker-Planck approach can be accurately used to describe
transport [11].

The limits of applicability of linear transport theory have
been discussed by numerous authors [36–38]. For a relativistic
plasma, it is required that the thermal-averaged momentum,

uth = 4π

n

∫
fJ u3 du = 2(1 + 3� + 3�2)

e1/�K2(1/�)
c, (61)
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FIG. 5. Relativistic correction factors in the case of (a) α⊥, (b) α∧, (c) β⊥, (d) β∧, (e) κ⊥, (f) κ∧ as a function of the nonrelativistic Hall
parameter ψ = ωτ and reduced temperature � for a Z = 1 plasma.

is much greater than the magnitude of the drift momentum,

udr = 4π

3n

∫
f1u

3 du; (62)

otherwise f1 can no longer be considered to be a small
perturbation and the time evolution of f0, f2, etc., must be
considered. This places constraints on the magnitude of the
electric fields E and temperature gradients ∇T that may be
studied using this approach.

The assumption that the ions are infinitely massive is fairly
robust for Ti ∼ Te and �i � 1, given mi � me. We note that
in the presence of a strong magnetic field the ion contribution

to transport may be greater than the electron contribution in
the direction normal to the magnetic field [39]. However,
the higher mass of the ions means that, for temperatures as
high as kBTi ∼ 0.1 GeV (�e ∼ 100), their motion remains
nonrelativistic. For this, the reader is referred to earlier works
on classical ion transport [15,26].

In the present work, our analysis has been confined to
the inertial frame in which the ions are at rest. Allowing
for relativistic flow is complicated: Dzhavakhishvili and
Tsintsadze [14] showed that the relativistic MHD equations
contained terms (∼1/c2) completely absent from their clas-
sical counterparts [15]. However, in the case of a mildly
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relativistic plasma, in which the mean velocity of the ions Vi

is finite but much smaller than the speed of light, |Vi |2/c2 ≈ 0,
we may approximate the effects of this by substituting E′ =
E + Vi × B in place of the electric field in Ohm’s law. This
is the transformation used in the classical theory [26]. For our
purposes, this approximation should suffice, given ionic flow
in ICF is distinctly nonrelativistic (e.g., the implosion velocity
on the NIF point design is around 370 km˜s−1 ∼ c/1000 [3]).

The results here are valid for an electron-ion plasma, under
the assumption of quasi-neutrality; that is, Zni = ne. Clearly,
as the temperature is increased, the effect of pair production
will alter this relation to Zni + ne+ = ne− , where the positron
density ne+ is a function of the optical depth of the plasma.
However, in the case of the highest temperature ICF plasmas of
interest (of order 100 keV), the positron density ne+ is expected
to be less than 1% of that of the electrons ne− [40], such that
these results will still accurately describe electron transport.
In the more general case, for which ne+ � ne− , the kinetics of
both electron and positron populations need to be considered
for an accurate description of transport. This is left for further
work.

Finally, our work has neglected the effect of radiative
processes on the electron transport. Again this corresponds
to the assumption that the plasma is optically thin; otherwise
processes such as Compton scattering are likely to be signif-
icant. Irrespective of optical depth, however, bremsstrahlung
may be an important consideration in collisional systems and
synchrotron radiation similarly in magnetized systems. To or-
der of magnitude, the former can be shown to be non-negligible
only for temperatures � � 10 [10]. In order to determine
the circumstances under which the latter becomes significant,
consider the power radiated by an isotropic distribution of
electrons in a magnetic field [41]:

P = e4

9πε0m2
ec

3
v2γ 2B2. (63)

(We neglect here the effect of the electric field and pressure
gradients on the electron and consider solely its v × B
rotation.)

For simplicity we confine ourselves to the ultrarelativistic
limit, in which τ � → 9�2c3/�e/i , 〈γ 〉 → 3�, and we can
take v ≈ c in Eq. (63). For synchrotron processes to be
negligible, we require the fractional energy loss per collision
time Pτ�/〈γ 〉mec

2 � 1 (for χ � 1) or that per v × B rotation
Pτ�/χ〈γ 〉mec

2 � 1 (for χ � 1). Substituting the relevant
parameters into the latter of these and rearranging yields

�Zn ln 	e/iχ � 3

16πr3
0

, (64)

where r0 = e2/4πε0mec
2 is the classical electron radius.

Taking representative values of laboratory high-energy density
plasmas for the parameters on the left-hand side of this
equation, e.g., Z = 1, n = 1 × 1032 m−3, ln 	e/i = 5, and
χ = 1, we find a temperature condition of � � 5 × 109.
Clearly this is easily satisfied, and, even though this condition
is sensitive to the Hall parameter χ , we find � � 5 × 107 for
values as high as χ = 100. Beyond this, transport is no longer
collisional and, as such, the process of synchrotron radiation
can be safely neglected for all systems of interest.

VII. CONCLUSIONS

In this work, a self-consistent transport theory for a rela-
tivistic plasma has been presented. It was first verified that Bra-
ginskii’s transport relations [15] remain valid relativistically, in
the frame in which the ions are at rest. The main system of inter-
est, a burning ICF target, does not involve relativistic flow, and
so this description should be sufficient. Transport coefficients
were derived in a semianalytical form for a Lorentzian plasma
(Z → ∞), which reduce to Epperlein’s classical results [29] in
the nonrelativistic limit. The relativistic results of other authors
can also be reproduced in various limits [20,23].

For plasmas with arbitrary atomic number, the linearized
Boltzmann equation was solved numerically as a means
to calculate the relativistic transport coefficients. The main
result of this paper is the rational fits to these, which were
expressed as simple functions of the Hall parameter χ and
reduced temperature �, and reproduce the numerical results
within a maximum percentage error of 20%. (In most cases,
particularly in the weak field limit, the error is considerably
smaller than this.) To the best of our knowledge, this is the
first work to provide transport coefficients for a relativistic
plasma in this form. Accounting for relativistic effects results
in non-negligible corrections to these coefficients, even at
reasonably mild temperatures, e.g., the thermal conductivity
κ‖ is reduced to 85% of its classical value at kBT = 20 keV.
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APPENDIX: THE jl[k]∗ FUNCTIONS

We catalog the jl[k]∗ functions as given by Braams
and Karney [20] for l = 0,1, where the argument z = u/c,
the Lorentz factor γ = (1 + z2)1/2, and the rapidity σ =
sinh−1 z = cosh−1 γ :

j0[1]0 = σ/z,

j0[1]1 = 1,

j0[1]2 = γ,

j0[2]02 = (zγ − σ )/4z,

j0[2]11 = (γ σ − z)/2z,

j0[2]22 = [−zγ + σ (1 + 2z2)]/8z,

j0[3]022 = [−3zγ + σ (3 + 2z2)]/32z,

j1[1]0 = (γ σ − z)/z2,

j1[1]1 = (zγ − σ )/2z2,

j1[1]2 = z/3

j1[2]02 = [−3γ σ + 3z + z3]/12z2,

j1[2]11 = [−3zγ + σ (3 + 2z2)]/8z2,

j1[2]22 = [−σγ (3 − 6z2) + 3z − 5z3]/72z2,

j1[3]022 = [σγ (15 + 6z2) − 15z − 11z3]/288z2.
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