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Charged particle dynamics in turbulent current sheets
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We study dynamics of charged particle in current sheets with magnetic fluctuations. We use the adiabatic
theory to describe the nonperturbed charged particle motion and show that magnetic field fluctuations destroy the
adiabatic invariant. We demonstrate that the evolution of particle adiabatic invariant’s distribution is described
by a diffusion equation and derive analytical estimates of the rate of adiabatic invariant’s diffusion. This rate is
proportional to power density of magnetic field fluctuations. We compare analytical estimates with numerical
simulations. We show that adiabatic invariant diffusion results in transient particles trapping in the current sheet.
For magnetic field fluctuation amplitude a few times larger than a normal magnetic field component, more than
50% of transient particles become trapped. We discuss the possible consequences of destruction of adiabaticity
of the charged particle motion on the state of the current sheets.
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I. INTRODUCTION

In many space-plasma systems, electric currents of hot
charged particles produce the coherent plasma structures called
current sheets (CSs). Examples of CSs were observed in
planetary magnetospheres [1], solar corona [2], laboratory
devices [3], and distant astrophysical objects [4]. The modern
theory suggests that the principal role in the CS formation is
often played by a relatively small population of charged parti-
cles moving along specific orbits and carrying a strong electric
current [5,6]. The standard approach to describe the motion of
current-carrying particles in CS includes the applicability of
the theory of adiabatic invariants [7–9]. Within this approach,
the particle trajectories can be integrated analytically. Results
obtained with this approach are well tested and verified
both numerically and by comparison with in situ spacecraft
observations [10,11]. However, up to now, the adiabatic
theory was used to describe charged particles motion in CSs
only in laminar magnetic field configurations, without any
fluctuations of magnetic field. Recent spacecraft observations
demonstrate that CSs are often filled by electromagnetic
turbulence [12,13]. Thus, investigation of the influence of
magnetic field fluctuations on charged particle motion in CSs
is important.

The most intense and dynamical CSs are formed in the
vicinity of regions where the magnetic energy is released
during reconnections of magnetic field lines [14]. This process
plays a key role in transformation of the magnetic field energy
into the energy of plasma particles in many space-plasma
systems [2–4]. The corresponding CS configurations are
usually characterized by stretched magnetic field lines; see a
schematic view in Fig. 1. Significant difference in magnitudes
of spatial scales (across and along the CS) results in the
separation of timescales of the particle rotation around a strong
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Bx magnetic field and the motion along the field lines. This
separation allows the introduction of the adiabatic invariant [7]
and analytical integration of particle trajectories. However,
additional magnetic field fluctuations generated in the vicinity
of the z = 0 (where Bx = 0) plane by plasma flows from the
reconnection region [15] can significantly change the particle
trajectories. Moreover, CSs can be formed within turbulent
plasma flows, where magnetic field fluctuations are intrinsic
property of CSs [16,17]. In this paper, we describe particle
motion in a turbulent CS.

II. MAIN EQUATIONS AND CHARGED
PARTICLE TRAJECTORIES

We consider nonrelativistic motion of a particle with
the mass m and charge q in 2D CS magnetic field B =
Bzez + B0(z/L)ex with stationary fluctuations δBz(x,y) (note
that dynamics of 3D turbulent current sheets can be differ-
ent [18,19]). A CS thickness L is a characteristic system scale.
The corresponding vector potential has two components Ay =
Bzx − B0(z2/2L) + δAy(x,y) and Ax = δAx(x,y). We do not
consider a magnetic field component By , because charged
particle motion in CSs with By �= 0 is much more complicated
for analysis even without magnetic field fluctuations [20,21].
Magnetic field fluctuations are set as an ensemble of plane
waves with a power-law spectrum [22]:

δAy = δB̄zL
∑
k,θ

cos θ

1 + (kL)2
sin [k(x cos θ + y sin θ ) + φ0]

δAx = −δB̄zL
∑
k,θ

sin θ

1 + (kL)2
sin [k(x cos θ + y sin θ ) + φ0],

(1)

where δB̄z is the amplitude of magnetic field fluctuations.
We set 20 values of θ to be uniformly distributed over
θ ∈ [0,2π ] and took 100 values of kL ∈ [0.1,10] with a step
0.1. For each harmonic, a value of the phase φ0 was chosen
randomly. Magnetic fluctuation Eqs. (1) satisfy the Coulomb
gauge: ∂δAx/∂x + ∂δAy/∂y = 0. The corresponding single
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FIG. 1. Schematic view of the system. Gray region shows the
current sheet (i.e., localized electric current density). Magnetic field
Bx varies across this current sheet with the spatial scale L. Gray arrow
shows plasma flow coming from the deep tail region and bringing
electromagnetic fluctuations.

component of magnetic field fluctuations δBz = ∂δAy/∂x −
∂δAx/∂y has the form

δBz = δB̄z

∑
k,θ

kL

1 + (kL)2
cos [k(x cos θ + y sin θ ) + φ0].

(2)

The Hamiltonian of charged particles in this system is

H = 1

2m
p2

z + 1

2m

(
px − q

c
δAx

)2
+ 1

2m

(
py − q

c
Ay

)2
,

(3)

where (px,py,pz) are components of particle momentum. We
introduce dimensionless variables (x,y,z) → (x,y,z)/

√
Lρ0,

(px,py,pz) → (px,py,pz)/(ρ0m�0) and dimensionless time
t → t

√
ρ0/L�0, where �0 = qB0/mc, ρ0 = √

2H0/m/�0,
and H0 is a particle energy value (as ∂H/∂t = 0 the energy
H is conserved). We also use two dimensionless parameters
κ = (Bz/B0)

√
L/ρ0 and β = (δB̄z/B0)

√
L/ρ0. In the new

variables, Hamiltonian Eq. (3) takes the form (H is normalized
by 2H0)

H = 1
2p2

z + 1
2 (px − βgx)2 + 1

2

(
py − κx + 1

2z2 + βgy

)2
,

(4)

where (gx,gy) = (δAx,δAy)/(δB̄z

√
Lρ0). In the absence of

fluctuations (β = 0), Hamiltonian Eq. (4) does not depend
on y and, thus, py is conserved. For small values of κ � 1
(observed, e.g., in thin CSs with small Bz, see Ref. [11]),
dynamics of charged particles was described in details in
Refs. [7–9]. In the present paper, we consider the same regime,
κ � 1, taking into account magnetic field fluctuations with
β ∼ κ .

A. System without fluctuations

Conservation of py in Hamiltonian Eq. (4) with β = 0
allows us to apply change of variables κx → κx − py and
consider two pairs of conjugated variables (z,pz), (x,px). As
κ � 1, variables (z,pz) change much faster than variables
(κx,px): the value of κ defines the ratio of characteristic
periods in z and x motion. For frozen (κx,px), the oscillations

in the (z,pz) plane are described by the following Hamiltonian
of the fast motion:

hz = H − 1
2p2

x = 1
2p2

z + 1
2

(
κx − 1

2z2
)2

. (5)

The corresponding action Iz = (1/2π )
∮

pzdz is an adiabatic
invariant of the exact system, i.e., for slowly changing (κx,px)
(see, e.g., Ref. [9]). The equation Iz(κx,px) = const defines
trajectories in the (κx,px) plane for a given value of energy
H0:

Iz = (2hz)3/4

π

ζ+∫
ζ−

√
1 −

(
s − ζ 2

2

)2

dζ = (2hz)
3/4f (s),

s = κx/
√

2hz = κx/

√
1 − p2

x, (6)

where 2hz = 1 − p2
x , ζ = z/(2hz)1/4, ζ± are solutions of

equation 1 − (s − ζ 2/2)2 = 0 (if there are only two roots
ζ− = −ζ+, the integral from Eq. (6) should be divided to two;
see renormalization details in Ref. [7]). Note that H = 1/2. It
follows from Eq. (6), that 2hz = [Iz/f (s)]4/3. Variables s, Iz

determine the position of particle in the (κx,px) plane.
In the course of slow evolution of (κx,px), the particle

trajectory in the (z,pz) plane changes. There are two types
of these trajectories and the separatrix in the (z,pz) plane
demarcates regions filled by trajectories of different types [7].
When particles cross the separatrix (s = 1), the adiabatic
invariant, Iz, experiences a small jump. An example of particle
trajectory in the (κx,px) plane and the corresponding evolution
of Iz are shown in Fig. 2(a). The particle starts at large κx

(and large positive s), moves toward small κx and crosses the
separatrix (at this moment s = 1), then makes a turnaround in
the (κx,px) plane (at px = 0, where s reaches a minimal on
a given curve negative value and then starts growing again).
One can see weak variations of Iz along the trajectory, and
the enhanced oscillations at about time = 200 and 400 occur
near the separatrix crossings (there are two crossings for each
trajectory shown in Fig. 2), where the motion of a particle slows
down. Over a long time (many periods of particle motion in
the (κx,px) plane), the slow destruction of adiabatic invariant
can modify the particle trajectory and substantially change the
value of Iz [9]. However, for a single passage of a particle
along the trajectory shown in Fig. 2(a) we can neglect the
variations of Iz for small enough κ , as well as the jump of Iz

at the separatrix.

B. System with fluctuations

Small-scale fluctuations of magnetic field (β �= 0) can
scatter particles and result in variations of Iz. We showed
two trajectories with β �= 0 [Figs. 2(b) and 2(c)]. One can see
that Iz strongly varies, while the corresponding trajectories are
deformed. Comparison of trajectories with β = 0 and β �= 0
shows that main variations of Iz occur in the same parts of
trajectories for both systems, near the separatrix crossings,
where the (z,pz) motion drastically slows down.
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FIG. 2. Three particle trajectories in the (x,px) plane and the corresponding time profiles of Iz: (a) β = 0, (b) β/κ = 1, (c) β/κ = 2.5.

For analytical estimates we expand Hamiltonian Eq. (4) for
small values of β:

H ≈ H0 + βH1 = 1
2p2

z + 1
2p2

x + 1
2

(
κx − 1

2z2
)2

+β
[(

κx − 1
2z2

)
gy − pxgx

]
, (7)

where we excluded term py because ṗy ∼ gx,gy � 1.
In what follows, we consider gx , gy to be random sta-

tistically independent functions that change their values at
each time-step τ . We assumed that the amplitude of magnetic
field fluctuations was defined by parameter β, with gx , gy

normalized in such a way that var(gx) = var(gy) = 1. For
analytical study we substituted the spatial dependence of gx , gy

with the time dependence. To choose a value of the time-step τ

for a fixed β, we compared the power density of magnetic field
fluctuations along particle trajectories for model Eq. (1) and
for our approximation. We assembled time series of magnetic
field fluctuations along trajectories of Hamiltonian system
Eq. (4) and calculated the power density of these fluctuations
using Fourier transformation. Then we chose the frequency
ω corresponding to maximum in spectrum and defined τ as
2π/ω. This approach gave us the same power density ∼δB̄2

z /ω

in model Eq. (1) and in approximation of functions gx , gy by
time series along trajectories. To reproduce a nonuniform dis-
tribution of magnetic field fluctuations along trajectories, we
use a multiplication factor for β → β exp[−(s − 1)2/0.25],
which defines that the maximum of fluctuations are observed
by particles near the separatrix s = 1.

III. DIFFUSION OF ADIABATIC INVARIANT

To compute the change of adiabatic invariant �Iz due to
magnetic field fluctuations for one time step τ , we use the

definition 2π/T = ∂H/∂Iz, where T = ∮
dz/pz is a period

of particle oscillations in the (z,pz) plane:

�Iz = T

2π
�H = −Tβ

2π
z�zgy = Tβ

2π
zpzτgy, (8)

where �H corresponds to variation of Hamiltonian Eq. (7)
due to magnetic field fluctuations. The right-hand side of
Eq. (8) should be calculated for a particular moment of time
ti ∈ [τ i,τ (i + 1)], where i is an integer number. As T is much
larger than τ and much smaller than 1/κ , variables κx, px , py

can be assumed to be constant during a time interval ∼τ . For
any time interval, the average value of �Iz is zero (as gy has
a zero mean), while the corresponding variance is

var(�Iz) =
(

T τβ

2π

)2

var(zpzgy) =
(

T τβ

2π

)2

var(zpz), (9)

where we assumed that gy and zpz were statistically indepen-
dent and used var(gy) = 1. The term var(zpz) in Eq. (9) should
be considered as a sum of many (zpz)2

i terms calculated at
ith moments of time. As z and pz oscillate regularly, we can
express var(zpz) as

var(zpz) = 1

T

∮
z2p2

z

dz

pz

= 1

T

∮
z2pzdz

= 2

T
(2hz)

5/4
∫ ζ+

ζ−
ζ 2

√
1 −

(
s − 1

2
ζ 2

)2

dζ

= 2

T
(2hz)

5/4fV (s), (10)

where hz, ζ , and s were defined in Eq. (6).
For the period T , we have

T = 2

(2hz)1/4

∫ ζ+

ζ−

dζ√
1 − (

s − ζ 2/2
)2

= 2fT (s)

(2hz)1/4 . (11)
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FIG. 3. Profile of function F (s).

Approximate conservation of Iz determines trajectories in
the (x,px) plane. Thus, for each given value of Iz, the function
s varies along the trajectory. To derive the expression for ṡ, we
use the definitions from Eq. (6):

pxṗx = 4

3

f ′

f
(Iz/f )4/3ṡ,

where f ′ = df/ds and

px = ±
√

1 − 2hz = ±
√

1 − (Iz/f )4/3,

ṗx = ∂Iz

∂κx
= − (2hz)1/4

π

∫ ζ+

ζ−

(s − ζ 2/2)dζ√
1 − (s − ζ 2/2)2

= −(2hz)
1/4f ′. (12)

Thus, for ṡ we have

ṡ = α
3

4

√
1 − (Iz/f )4/3f

(Iz/f )
, (13)

where α = sign(px).

Statistical behavior of Iz can be quantitatively described in
terms of the probability distribution function � = �(Iz,t):
�dIz is equal to the number of particles with values of
adiabatic invariant in (Iz − dIz/2,Iz + dIz/2) after time t .
Jump Eqs. (8) result in a random walk of Iz, which can be
described by the diffusion equation

∂�

∂t
= ∂

∂Iz

(
D

∂�

∂Iz

)
, (14)

where the diffusion coefficient D(Iz,s) = var(�Iz)/τ is

D = β2τ

π2

(
Iz

f

)4/3

fV (s)fT (s). (15)

Considering evolution in terms of s instead of t and using
Eq. (13), we get instead of Eq. (14),

∂�

∂s
= α

4

3

(Iz/f )√
1 − (Iz/f )4/3f

∂

∂Iz

(
D

∂�

∂Iz

)
. (16)

Introducing J = Iz/f (s) = (2hz)3/4 as a new variable, we can
write the diffusion equations as

αF (s)
∂�

∂s
= 4

3

β2τ

π2

J√
1 − J 4/3

∂

∂J

(
J 4/3 ∂�

∂J

)
, (17)

where F (s) = f 3(s)/fV (s)fT (s) (see Fig. 3), and α = −1 and
+1, for s decreasing and increasing, respectively.

Equation (17) was integrated from s = 2 (boundary of the
region filled by magnetic field fluctuations) to smin (defined by
the equation Iz/f (s) = 1) with α = 1 and then back from smin

to s = 2 with α = −1. For any given s, the distribution �(Iz)
can be converted into �(J ) by a simple scaling.

As the diffusion coefficient D depends on Iz, there are both
diffusive spreading of the distribution � around the initial
maximum (∼D∂2�/∂I 2

z ) and a drift (∼(∂D/∂Iz)∂�/∂Iz).
The direction of the drift is defined by the sign of ∂D/∂Iz. As
that quantity in the current setup is always positive, the drift is
always directed toward the smaller values of Iz. To check the
solutions of the diffusion equation, we integrated numerically
original Hamiltonian system Eq. (4) for a large ensemble of

FIG. 4. Initial distribution �(Iz), results of solution of Eq. (17) (dotted curves), and results of numerical integration of 106 trajectories
(solid curves) for two β values: (a) Iz,init = 0.1, (b) Iz,init = 0.5.
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trajectories for different values of β. Each trajectory was
integrated over the time interval corresponding to passage
through the central region of the system z ∼ 0 (see examples of
trajectories in Fig. 2). Examples of initial and final distributions
� are shown in Fig. 4. Distributions were obtained for initial
� peaked around Iz,init = 0.1 and Iz,init = 0.5. Numerically
obtained distributions are very close to analytical results.
The final distributions of both types have similar maximum
values and are shifted toward smaller Iz values. The main
discrepancies are at the wings of the distributions and can
be explained as follows. The minimum of s, smin = smin(Iz),
is defined based on the unperturbed value of Iz. However,
if, in the process of evolution, the value of Iz becomes
smaller than the original value, that particle penetrates into
the values of s smaller than smin. Those particles move for
a longer time than assumed in model Eq. (17). This creates
a shorter, more abrupt tail, compared with the one predicted
by Eq. (17). Similarly, the particles with larger values of Iz

spend less time than assumed in model Eq. (17). This creates
a shallower, longer tail, compared with the one predicted by
Eq. (17). This effect can be most clearly seen in Fig. 4 with
Iz,init = 0.5.

IV. EVOLUTION OF TRANSIENT TRAJECTORIES

The CS structure (and stability) strongly depends on
properties of the so-called transient trajectories [9]. Particles
moving along such trajectories come from large |z| (which
corresponds to large values of x; see Fig. 1) with relatively
small Iz (maximum Iz value of transient particles depends
on magnetic field configuration outside the CS, |z| 
 L; see
Ref. [7]), make a turnaround in the (x,px) plane, and move
back to large |z| [see an example of such trajectory in Fig. 2(a)].
If Iz is conserved, particles stay on the transient trajectories,
whereas a destruction of Iz can lead to scattering of initially
transient particles (scattered particles escape from transient
trajectories and move along quasiclosed trajectories within
CS). Transient particles significantly participate in generation
of the current density [23,24] and, thus, play an important
role in CS formation [5,6]. Therefore, it is important to
describe the evolution of the amount of transient trajectories
in CSs with magnetic field fluctuations. We numerically
integrated 104 trajectories with Iz distributed on the [0.1,0.5]
interval with different values of β and plotted the number
of particles returning to the initial boundary |z| after passing
through the turbulent CS. Figure 5 shows that the number of

FIG. 5. Percentage of particles on transient trajectories after one
interaction with CS for κ = 0.01.

transient particles decreases significantly only for magnetic
field fluctuations stronger than background magnetic field in
the z = 0 plane (β/κ � 1 means δB̄z � Bz). For β/κ ∼ 1
the final number of transient particles is about 80% of
initial population, and only for β/κ ∼ 10 almost all transient
particles become scattered.

V. DISCUSSION AND CONCLUSIONS

High levels of magnetic field fluctuations are often observed
by spacecrafts in CSs in the distant Earth magnetotail [25,26].
We showed that these fluctuations may significantly influence
the particle dynamics and destroy the adiabatic invariant
Iz. Thus, CS configurations in the presence of fluctuations
should differ from the laminar CS structures. Indeed, in more
turbulent CSs spacecrafts detected weaker current density
amplitudes and such CSs had larger spatial scales [27].

We considered the role of magnetic field fluctuations in
scattering of transient particles and described this process as
a diffusion of invariant Iz. Figure 5 shows that fluctuations
reduce the percentage of transient trajectories in the system.
However, we should mention that this result was obtained for
a system where unperturbed (without fluctuations) state was
dominated by the transient trajectories and almost absence
of scattered trajectories. This is a typical condition for thin
intense CSs observed in the distant magnetotail [28]. However,
if a CS was initially filled by scattered particles, magnetic
field fluctuations can potentially scatter them to transient
trajectories. We did not consider this scenario because it is
less probable to observe intense magnetic field fluctuations in
weak large-scale CS filled by scattered particles [13].

Main mechanisms for generation of magnetic field fluc-
tuations in CS are various current-driven instabilities [29]
and gradient instabilities (e.g., ballooning [30] and double
gradient [31] instabilities inducing CS flapping oscillations).
In contrast to externally driven (e.g., by solar wind) CS
motion, amount of the free energy in these instabilities directly
depends on the intensity of the current density [32,33] and,
thus, depends on the population of transient particles [5,6].
The larger is the amplitude of magnetic field fluctuations,
the more transient particles leave the transient regime, thus
reducing the current density. But the reduction of the current
density decreases the intensity of the generation of magnetic
field fluctuations. Therefore, the system is characterized by
a negative feedback and, as a result, should have a stationary
solution in the presence of a source of transient particles. In this
case, incoming and scattered transient particles should provide
the necessary intensity of current density generating magnetic
field fluctuations with the level needed to scatter exactly
the population of transient particles equal to the incoming
population. This nonlinear system with external energy source
(external source of transient particles) can be described with
the same approach as one applied to the self-consistent CS
evolution induced by particle scattering due to the separatrix
crossings [9].

In the present paper, we studied the influence of magnetic
field fluctuations on charged particle dynamics in CS. We
demonstrated that fluctuations destroy the adiabatic invariant
Iz and result in particle scattering. This process can be
described in terms of diffusion of Iz. Such a diffusion decreases
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the number of transient particles in CS and, as a result,
can significantly change the CS configuration. However, if
amplitude of fluctuations is smaller than the magnetic field
amplitude in the neutral plane (β/κ < 1), the scattering does
not result in significant decrease of a population of transient
particles.
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