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Multipole expansion in plasmas: Effective interaction potentials between compound particles
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In this paper, the multipole expansion method is used to determine effective interaction potentials between
particles in both classical dusty plasma and dense quantum plasma. In particular, formulas for interactions of
dipole-dipole and charge-dipole pairs in a classical nondegenerate plasma as well as in degenerate quantum
and semiclassical plasmas were derived. The potentials describe interactions between atoms, atoms and charged
particles, dust particles in the complex plasma, atoms and electrons in the degenerate plasma, and metals.
Correctness of the results obtained from the multipole expansion is confirmed by their agreement with the results
based on other methods of statistical physics and dielectric response function. It is shown that the method of
multipole expansion can be used to derive effective interaction potentials of compound particles, if the effect of
the medium on the potential of individual particles comprising compound particles is known.
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I. INTRODUCTION

Effective interaction potentials are widely used in many-
particle physics. In particular, effective interaction potentials
are used in analytical calculations and computer modeling in
such areas as condensed matter physics [1–3], plasma physics
[4–20], nuclear physics [21–23], physics of colloidal systems
[24,25], molecular biophysics [26], as well as nanotechnology
[27]. The use of effective potentials enables physicists to
significantly simplify the problem and to get a clearer picture
of the process, deepening its understanding [28–42]. The effec-
tive interaction potentials can be divided into two classes. The
first class includes effective potentials adjusted to account for
short-range effects at small distances such as quantum effects
of diffraction and symmetry [43–49], and the finite particle size
[24,50–52], without taking into account the collective effects.
The second class includes effective interaction potentials,
which also take into account many-particle collective effects
such as screening [54–56]. In this paper we consider the
effective interaction potentials belonging to the second class.
The interaction potentials, not taking into account many-
particle effects (the influence of the medium) are referred to as
micropotentials. Various methods are used to obtain effective
interaction potentials of the second class. It is necessary to
mention that there are methods based on the kinetic equations
[12,15,16,56] and the formalism of the dielectric response
function [4,5,17–20]. However, these methods, though well
substantiated and verified, require derivation of integrals and
it is difficult to use them to find effective interaction potentials
between compound particles such as dipoles, as the potentials
of the latter do not have spherical symmetry, which makes it
difficult, and often impossible, to find analytical formulas by
integrating. In this paper, we show that the method of multipole
expansion makes it easy to find effective interaction potentials
between compound particles, if we know the effect of the
medium on the potential of individual particles comprising
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compound particles. In this case, the problem of finding
effective interaction potentials is reduced to the problem of
finding derivatives of the function. This procedure will be
shown below.

One of the plasma components is often ideal or weakly
coupled, whereas the other component (consisting of relatively
inert particles) creates a strongly coupled subsystem on
the background of mobile weakly coupled particles. In the
case of a complex plasma, dust particles create a strongly
coupled subsystem where the interaction potential between
dust particles is screened by weakly coupled ions and electrons.
In the case of dense plasma or warm dense matter, ions can
create a strongly correlated subsystem on the background of
mobile weakly coupled electrons. In these cases, strongly
correlated inert particles can be investigated via effective
interparticle interaction potentials, where initially screening
provided by mobile weakly coupled particles (electrons),
whereas many-body effects due to strongly coupled species
included naturally in simulations such as molecular dynamics
or Monte Carlo. In the present work the screening effect
in a complex (dusty) plasma as well as in dense plasma
(warm dense matter) due to weakly coupled particles is
considered.

In Sec. II the way to derive screened interaction potential
between two compound particles using a multipole expansion
of the potential of single particle in polarizable media is
presented. First, in Sec. II A, the application of the multipole
expansion to the system of charges interacting by Coulomb
potential and review of known results are shortly given.
In Sec. II B the interaction potentials between compound
particles in the classical plasma taking into account screening
effects are considered and discussed in connection with the
application of these potentials for the study of a dusty plasma.
In Sec. II C the effective potentials of dipole-charge and atom-
charge interactions in the plasma with degenerate electrons
are derived and discussed in connection with their application
for the investigation of a partially ionized plasma and warm
dense matter. At the end of the second section an effective
long-ranged interaction potential between the electron and the
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dipole (atom) in a degenerate plasma and in metals, taking into
account so called Friedel oscillations, is derived.

II. INTERACTION POTENTIALS BETWEEN
COMPOUND PARTICLES

Two systems of charged particles are considered, each of
which consists of charges e

(α)
i , where i indicates the number

of the charge and the superscript α indicates that this charge
belongs to the first (α = 1) or second (α = 2) system. At
distances greater than the linear size of the system we expand
the potential of the first system of charged particles using the
following formula:

f (R − r) � f (R) − r · ∇f (R) + · · · , (1)

We denote the dipole moment dα = ∑
e

(α)
i r(α)

i and the total
charge Qα = ∑

e
(α)
i of the system. The potential energy of

interaction of the first system of charges with the second one,
located at a distance R from the first, has the following form:

�(R) = ψ1(R)Q2 + ∇ψ1(R) · d2 + · · · , (2)

where ψ1 is the potential of the first system of charges at a
distance R,

ψ1(R) =
∑

φi

(|R − r(α)
i |), (3)

and φi is the potential of the charge e
(1)
i .

Below we show that the potential of a compound particle
in a polarizable medium can be obtained from Eq. (2), starting
from the potential of the single charge in this medium and
using expansion Eq. (1) of the total potential ψ .

In a plasma the potential of an individual particle is
determined by the formula

φ(r) =
∫

dk
2π2

Qi

k2ε(k)
eik·r, (4)

where the screening is provided via a proper dielectric function
ε (a schematic explanation is given in Fig. 1).

A. Multipole expansion on the basis of Coulomb potential

To better understand further calculations using the multi-
pole expansion, let us first shortly consider their application
to the system of charges interacting by Coulomb potential and
rederive some well-known results. If we take φ as Coulomb
potential (ε = 1), Eq. (2) gives a well-known result:

�(R) = Q1Q2

R
+ (Q2d1 − Q1d2) · R

R3

+ (d1 · d2)R2 − 3(d1 · R)(d2 · R)

R5
. (5)

If Q2 = 0, d1 = 0, the charge-dipole interaction potential
is equal to

�d-ch(R) = −Q1(d2 · R)

R3
. (6)

Introducing the coefficient of atomic polarization ᾱ, from
Eq. (6) we get a well-known formula for the interaction of an

FIG. 1. A schematic explanation of calculations of the interaction
energy of two compound systems (particles). Each system has an
total charge Qα = ∑

e
(α)
i and dipole moment dα = ∑

e
(α)
i r(α)

i , where
α indicates that this charge belongs to the first (α = 1) or second
(α = 2) system. Interaction potential between these two systems is
considered on the basis of the multipole expansion taking the distance
R greater than the linear size of the systems R � max(r (α)

i ).

atom with a charged particle:

�a-ch(R) = − ᾱQ2
1

2R4
. (7)

Usually, in calculations the cutoff radius rc is used:

�a-ch(R) = − ᾱQ2
1

2
(
R2 + r2

c

)2 . (8)

for example, the cutoff radius for hydrogen is equal to rc =
(ᾱaB/2)1/4 (here aB is the first Bohr radius) [7,52].

From Eq. (5) for Q1 = 0,Q2 = 0 we can obtain the
interaction potential of two dipoles:

�(R) = (d1 · d2)R2 − 3(d1 · R) · (d2 · R)

R5
, (9)

To determine the interaction between two atoms it is
necessary to average over the angles, using the Boltzmann
factor. In this case three types of interactions are considered:
the interaction between permanent dipoles (Debye interaction
β = 2/3d4/(kBT ), where kBT is atomic thermal energy),
interaction of a permanent dipole with an induced dipole
(Keesom interaction β = ᾱd2), and interaction between in-
duced dipoles (London interaction β = 3/4ᾱ2I , where I is the
ionization potential of the atom). Using the potential Eq. (9),
we obtain, after averaging over the angles, the energy of
interaction between two atoms:

�a-a(R) = − β

R6
. (10)

The interaction Eq. (10) occurs between any types of atoms.
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B. Effective interaction potentials between compound particles
in a classical plasma

For a classical plasma, we take the dielectric function in the
following form:

ε(k) = 1 + k2
S

k2
, (11)

where kS is the inverse screening length.

According to Eq. (4), the dielectric function Eq. (11) gives
screened Yukawa (Debye) potential of a charged particle in
a classical plasma φi(r) = ei/r exp(−rkS). Using expansion
Eq. (1) of ψ1, we get

ψ1(R) = Q1

R
exp(−RkS) + d1 · R

R3
(1 + RkS) exp(−RkS).

(12)
Substituting Eq. (12) to Eq. (2), we obtain

�(R) = Q1Q2

R
exp(−RkS) + (Q2d1 − Q1d2) · R

R3
(1 + RkS) exp(−RkS)

+ [(d1 · d2)R2 − (d1 · R) · (d2 · R)(3 + RkS)](1 + RkS) + (d1 · R) · (d2 · R)RkS

R5
exp(−RkS). (13)

Of special interest is the case when two compound particles
have dipole moments parallel and equal to each other, d1 ↑↑
d2, and perpendicular to the radius vector R, d1 · R = d2 · R =
0. For such particles Eq. (13) gives

�(R) = Q2

R
exp(−RkS) + d2

R3
(1 + RkS) exp(−RkS), (14)

where d = d1 = d2 and Q = Q1 = Q2.
It has been shown that in a dusty plasma, due to the

directional flow of ions in the area behind the negatively
charged dust particle (with respect to the incident ion flux) a
region with an excess concentration of ions is formed [57–60].
A negatively charged dust particle and a cloud of positive
ions can be considered as a single-compound particle with a
nonzero dipole moment and a nonzero total charge [60,61].
In the case when the dust particles are located on the same
horizontal line perpendicular to the direction of the ion flow,
the effective potential Eq. (14) describes the interaction of dust
particles. As it can be seen, the effective potential Eq. (14)
gives a stronger repulsion between the dust particles than the
Yukawa potential. Recently, using Eq. (14) we have shown
that even weak additional dipole-dipole interaction can lead
to the dramatic changes in the static and dynamic properties
of the system of dust particles [42,62]. We note that we give
derivation of the potential Eq. (14) here for the first time.

There are systems with dominant Yukawa interaction and
systems, in contrast, with dominant dipole-dipole interaction.
Therefore, it is interesting to study dynamical and statical
properties in intermediate cases, creating a bridge between the
physics of strongly coupled Coulomb systems and the physics
of systems with dipole interaction [63].

In case the dust particles are arranged along the direction of
the ion flow, d1 · R = d2 · R = dR, from Eq. (13) we obtain

�(R) = Q2

R
exp(−RkS)

− 2d2

R3

(
1 + RkS + R2k2

S

2

)
exp(−RkS). (15)

In general, the charges of the dust particles can be different
due to different sizes or the places of location in a plasma.
In this case, interaction potential can be found from general
Eq. (13). The dipole moment of the compound dust particle

[charged dust particle + focused (or captured) ion cloud] can
be determined by solving the kinetic equation for ions [60]
or by comparison of the particles positions pair correlation
function and velocities autocorrelation function obtained from
the experiment with those obtained via molecular dynamics
simulation [42,64].

Now, let us consider a charge-dipole interaction, Q2 =
0,d1 = 0. From Eq. (13) we obtain

�d-ch(R) = −Q1(d2 · R)

R3
(1 + RkS) exp(−RkS). (16)

Using the coefficient of polarizability of the atom ᾱ, we
obtain the following formula for the interaction of an atom
with a charged particle:

�a-ch(R) = − ᾱQ2
1

2R4
(1 + RkS)2 exp(−2RkS). (17)

Introducing the cutoff length rc, we can get the well-known
Buckingham screened potential [8,52,53]:

�a-ch(R) = − ᾱQ2
1

2
(
R2 + r2

c

)2 (1 + RkS)2 exp(−2RkS). (18)

This result confirms the correctness of using of multipole
expansion of potential Eq. (4).

Let us consider the interaction of two compound particles
with nonzero dipole moments, but with zero total charges
Q1 = Q2 = 0. From Eq. (13) we obtain

�(R) = 1

R5
[[(d1 · d2)R2 − (d1 · R) · (d2 · R)(3 + RkS)]

× (1 + RkS) + (d1 · R) · (d2 · R)RkS] exp(−RkS).

(19)

In order to define the interaction between two atoms it is
necessary to make averaging over the angles in Eq. (19). After
averaging over the angles with the Boltzmann factor, we get
the following formula for the effective interaction potential
between atoms:

�a-a(R) = − β

R6

(
1 + RkS + R2k2

S

2

)2

exp(−2RkS). (20)
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The screened potential Eq. (20) describes the attraction part
of interatomic interactions.

C. Effective interaction potentials between compound particles
in a quantum plasma

We start from the recently obtained expansion of the inverse
value of the Lindhard dielectric function of electrons in the
long wavelength limit [14]. The second-order result of this
expansion has the following form:

ε−1
2 (k,0) =

k2
(
1 + ã2

ã0
k2

)
k2 + κ2

Y + ã2
ã0

k4
. (21)

The result for ã2/ã0 is

ã2

ã0
= I−3/2(γ0)

12θk2
F I 2

−1/2(γ0)
. (22)

Here, kF = (3π2n)1/3, Iν is the Fermi integral of order ν,
γ0 = μ/kBT is the chemical potential of electrons, k2

Y =
k2
T F θ1/2I−1/2(γ0)/2 is the screening length, which interpolates

between Debye and Thomas-Fermi expansions, and θ =
kBT /EF is the degeneracy parameter, which defines whether
plasma is degenerate or classical. The electron density is
characterized by the density parameter rS = a/aB , where
a = (4/3πn)−1/3 and aB is the first Bohr radius. This dielectric
function takes into account the first-order gradient correction
to the noninteracting kinetic energy of electrons [14].

The dielectric function Eq. (21) was obtained by
expanding electrons’ polarization function 
e(k) and

neglecting contribution of ions to the dielectric function,

ion = 0. If we take into account the contribution of ions to
the dielectric function, the following equation for the inverse
value of the dielectric function can be obtained [4]:

ε2(k)−1 =
k2

(
1 + ã2

ã0
k2

)
k2

(
1 + ã2

ã0
k2
Di

) + k2
D + ã2

ã0
k4

, (23)

where k2
D = k2

Y + k2
Di and k2

Di = 4πnie
2/kBTi .

The dielectric function Eq. (23) was derived taking into
account a classical long-wavelength limit of the ions’ polar-
ization function in random phase approximation 
ion(k) =
−nion/(kBTion). Equation (23) turns into Eq. (21) if we take
kDi = 0.

Using the dielectric function Eq. (23), we find the potential
of the system of charged particles,

ψ1(R) = Q1

R
f1(R) + d1 · R

R3
f2(R), (24)

and the energy of interaction between two compound particles
in a quantum plasma,

�(R) = Q1Q2

R
f1(R) + (Q2d1 − Q1d2) · R

R3
f2(R)

+ (d1 · d2)R2 − 3(d1 · R) · (d2 · R)

R5
f3(R), (25)

where for convenience we introduced the following exponen-
tial functions and constant coefficients:

f1(R) = 1

γ 2
√

1 − (2kD/λγ 2)2

[(
1

λ2
− B2

)
exp(−RB) −

(
1

λ2
− A2

)
exp(−RA)

]
,

f2(R) = 1

γ 2
√

1 − (2kD/λγ 2)2

[(
1

λ2
− B2

)
(1 + RB) exp(−RB) −

(
1

λ2
− A2

)
(1 + RA) exp(−RA)

]
,

f3(R) = 1

γ 2
√

1 − (2kD/λγ 2)2

[
3

(
1

λ2
− B2

)
(1 + RB) exp(−RB) +

(
1

λ2
− B2

)
B2R2 exp(−RB)

− 3

(
1

λ2
− A2

)
(1 + RA) exp(−RA) −

(
1

λ2
− A2

)
A2R2 exp(−RA)

]
. (26)

Here, λ2 = ã2/ã0, γ 2 = 1/λ2 + k2
Di , A2 =

γ 2

2 [1 +
√

1 − ( 2kD

λγ 2 )
2
], and B2 = γ 2

2 [1 −
√

1 − ( 2kD

λγ 2 )
2
].

Using the polarizability coefficient of the atom and the
cutoff length, we obtain the following formula for the
interaction of the atom with a charged particle in a plasma
with degenerate electrons:

�a-ch(R) = − ᾱQ2
1

2(R2 + r2
c )2

× [f2(R)]2. (27)

In Fig. 2 the comparison of the derived potential Eq. (27)
with the screened Buckingham potential Eq. (18) is given. As
it is seen, electron degeneracy leads to weakening of screening
of the atomic potential.

Weakening of screening is due to the inclusion of the
so-called quantum diffraction effect or, according to Dunn

and Broyles [45], it is a result of the quantum tunneling
effect, which allows particles to reach regions inaccessible
for classical particles. This effect is characterized by the
coefficient λ = √

ã2/ã0.
In order to demonstrate the importance of the quantum

diffraction effect for accurate calculations of transport and
thermodynamic properties of a dense plasma and warm dense
matter, in Fig. 3 we present the results of calculation of the
s-wave scattering phase shifts for electron-atom scattering.
The determination of the values of phase shifts at R → ∞
is a starting point for investigation of the plasma properties
[7,8,30,34]. As it is seen from Fig. 3, even at weak degeneracy
θ � 2 the quantum diffraction effect is important. For θ � 0.5,
this effect can increase the value of the phase shift up to 30%.
At large values of θ , as it is expected, the quantum diffraction
effect can be neglected.
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FIG. 2. Electron-atom interaction potentials for hydrogen plasma
at rS = 5, θ = 0.5: 1, micropotential (8); 2, screened Buckingham
potential Eq. (18) with kS = kY ; 3, screened potential Eq. (27).
The values of potentials are given in dimensionless units �∗ =
�/(ᾱe2/r4

c ). For hydrogen rc = (ᾱaB/2)1/4 and ᾱ = 4.5a3
B .

In Tables I–III, the values of the electron-hydrogen atom
scattering phase shifts (s-wave) obtained using the screened
Buckingham potential Eq. (18) with kS = kY and the potential
Eq. (27) for different values of the degeneracy parameter θ

at the wave number κ = 0.8a−1
B and the density parameters

rS = 5, rS = 3, and rS = 10 are presented. The phase shifts
were calculated solving the Calogero equation. The values
of relative difference in the phase shifts clearly indicate that
the quantum diffraction effect is important for high-density
rS = 3 as well as for low-density rS = 10 cases. As only the
impact of the quantum diffraction effect on the interparticle
interaction potential is investigated, the plasma temperature
and concentration are taken as independent parameters.

After averaging over the angles with the Boltzmann factor,
from Eq. (25) we obtain the attraction part of the effective

FIG. 3. Electron-hydrogen atom scattering phase shifts (s-wave)
obtained using the screened Buckingham potential Eq. (18) with
kS = kY (solid lines) and the potential Eq. (27) (dash lines) as a
function of distance for different values of the degeneracy parameter
θ at the wave number κ = 0.8a−1

B and the density parameter rS = 5.
The phase shifts were calculated solving the Calogero equation.

TABLE I. Electron-hydrogen atom scattering phase shifts (s-
wave) at rS = 5. Here δ′

0 is the phase shift obtained using the screened
Buckingham potential Eq. (18) with kS = kY , and δ′′

0 is the phase shift
obtained using the potential Eq. (27).

θ 0.5 1.0 2.0 4.0 8.0

δ′
0 0.094 0.164 0.35 0.7 1.091

δ′′
0 0.122 0.198 0.38 0.72 1.098

δ′′
0 −δ′

0
δ′

0
× 100 30% 21% 8.6% 2% 0.6%

interaction potential between atoms:

�a-a(R) = − β

γ 4(1 − (2kD/λγ 2)2)R6

×
[(

1+RB + R2B2

2

)2( 1

λ2
−B2

)2

exp(−2BR)

−
(

1+RA + R2A2

2

)2( 1

λ2
−A2

)2

exp(−2AR)

]
.

(28)

In Fig. 4 the comparison of the derived potential Eq. (28)
with the screened potential Eq. (20) is given. As in the case
of charge-atom interaction considered above, the electron
degeneracy leads to a weakening of screening in comparison
with the case when the quantum diffraction effect is neglected
(λ = 0).

At λ = 0, the effective potential Eq. (28) turns into the
effective potential Eq. (20), which does not take into account
the wave nature of plasma electrons. Hence, at λ = 0 the
effective potential Eqs. (27) and (25) turn into Eqs. (18) and
(13), respectively. In Eq. (4) the Fourier transform of the charge
potential is defined as the ratio of the Fourier transform of
the Coulomb potential to the static dielectric function. If we
define this potential as the ratio of the Fourier transform of the
quantum Deutsch potential [46] to the static dielectric function
Eq. (23), but without ion contribution and with semiclassical
electrons (λ = �/

√
πmekBT ), and make multipole expansion,

we obtain an expression for the effective interaction potential
between an atom and a charge, which exactly corresponds to
the result obtained in Ref. [18] by the methods of statistical
physics [65]. This, again, confirms the validity of the method
used in this work.

D. Friedel oscillations generated by a dipole or atom

In a fully degenerate plasma, electrons obey Fermi-Dirac
statistics. In such a plasma the potential around the charge
in addition to the exponentially decreasing term (considered
above) has a long-range oscillating term. The latter term is

TABLE II. The same as in Table I but at rS = 3.

θ 0.5 1.0 2.0 4.0 8.0

δ′
0 0.089 0.154 0.319 0.634 0.994

δ′′
0 0.117 0.186 0.349 0.654 1.002

δ′′
0 −δ′

0
δ′

0
× 100 31% 21% 9.4% 3% 0.8%
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TABLE III. The same as in Table I but at rS = 10.

θ 0.5 1.0 2.0 4.0 8.0

δ′
0 0.096 0.170 0.365 0.738 1.142

δ′′
0 0.124 0.203 0.398 0.759 1.149

δ′′
0 −δ′

0
δ′

0
× 100 29% 19.4% 9% 2.8% 0.6%

known as Friedel oscillations. At long distances from the
charged particle the potential oscillations have the following
form [66]:

φi(r) = − eiλ
2
TF36γ 4

0(
2 + 3γ 2

0

)2

cos(2kF r)

r3
, (29)

where λTF is the Thomas-Fermi radius, γ0 = �ωp/EF is the
coupling parameter in the quantum plasma, ωp is the plasma
frequency, and EF is the Fermi energy. The potential Eq. (29)
can be obtained from Eq. (4) using the Lindhard dielectric
function. Now, starting from Eq. (3) with account for Eq. (29),
and expanding it using Eq. (1) in accordance with Eq. (2)
for the electron-dipole interaction, we obtain the following
expression:

�e-d(R) = − λ2
T F 36γ 4

0 e(
2 + 3γ 2

0

)2

× d · R
R4

[
2kF sin(2kF R) − 3 cos(2kF R)

R

]
, (30)

where e is the electron charge.
From Eq. (30) we get the following formula for the atom-

electron interaction:

�e-a(R) = −
[

λ2
TF36γ 4

0(
2 + 3γ 2

0

)2

]2

× e2ᾱ

R6

[
2kF sin(2kF R) − 3 cos(2kF R)

R

]2

. (31)

FIG. 4. The attraction part of atom-atom interaction potentials at
rS = 5,θ = 1. 1, micro-potential Eq. (10); 2, screened Buckingham
potential Eq. (20); 3, screened potential Eq. (28). The values of the
potentials are given in dimensionless units �∗ = �/(β/a6).

FIG. 5. The dipole potential in quantum plasma Eq. (30).
The solid curve corresponds to d R

R
= 1, the dashed-dotted curve

corresponds to d R
R

= 0.5, and the dashed curve corresponds to
potential Eq. (29). For illustration purposes, the dimensionless
potential value multiplied by cubic distance is given, �∗ = � ×
R3(eiλ

2
TF36γ 4

0 /(2 + 3γ 2
0 )2)

−1
.

If the second term in brackets in Eq. (30) at large distances
is neglected, the dipole potential in the quantum system of de-
generate electrons has the asymptotic form ∼ sin(2kF R)/R3.
Thus, the potential of the dipole surrounded by degenerate
electrons has the same asymptotic behavior as the potential
of the charge; i.e., ∼ cos(2kF R)/R3. This is clearly seen
from Fig. 5. However, the dipole potential has a cylindrical
symmetry but not a spherical one. The dipole potential has its
maximum along the direction of the dipole moment, as it is
illustrated in Fig. 6(a).

In the case when the atom does not have permanent dipole
moment, its potential decreases much faster than the potential
Eq. (29). If we ignore the second term in the brackets of
Eq. (31), we obtain the asymptotic behavior of the potential
of the atom ∼ sin(2kF R)/R6. The effective potential Eq. (29)
has spherical symmetry and is always negative [see Fig. 6(b)].

At large enough distances, where interaction due to atom
polarization or permanent dipole moment is totally screened,
the interaction potential Eqs. (31) and (30) are dominant. In
contrast, in plasma, at small interparticle distances, the Friedel
oscillations can be neglected [14].

At finite temperature, Friedel oscillations have the form
cos(2kF r)/r2 exp(−wr), where w = √

2mπkBT/
√

μ� [67]
and can be neglected at θ > 1 [14].

III. SUMMARY AND OUTLOOK

In the present study, the multipole expansion method was
applied for the cases when the potential of a single charged
particle in the studied medium is known. On the basis of
this method, the effective interaction potentials of compound
particles were obtained. Taking into account the screening of
potentials of charges and wave nature of electrons, the effective
interaction potentials for dipole-charge, dipole-dipole, charge-
atom, and atom-atom pairs were derived.

The resulting effective interaction potentials describe the
interaction of particles in a dusty plasma, in a partially ionized
plasma, and in warm dense matter. In the case of a plasma with
partially or fully degenerate electrons, from the viewpoint of
the density functional theory, the dielectric function Eqs. (21)
and (23) and the effective interaction potential Eqs. (24)–(28)
take into account the contribution of the first-order gradient
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FIG. 6. (a) The contours of the dipole potential in quantum
plasma Eq. (30), �∗ = � × R3[eiλ

2
TF36γ 4

0 /(2 + 3γ 2
0 )2]

−1
. The solid

curve corresponds to �∗ = 0, the dashed-dotted curve corresponds to
�∗ = 0.1, and the dotted curve corresponds to zero values of potential
Eq. (29); (b) The contours of the atom potential in quantum plasma
Eq. (31), �∗ = � × R6/(e2ᾱ)[eiλ

2
TF36γ 4

0 /(2 + 3γ 2
0 )2]

−2
. The solid

curve corresponds to �∗ = −0.35 and the dotted curve corresponds
to zero values of potential Eq. (29). The atom (dipole) located at
(x = 0,y = 0).

correction of the noninteracting electrons kinetic energy to the
free energy [14].

The effective screened dipole-electron and atom-electron
interaction potentials were obtained. It was established that in
quantum plasmas the asymptotic form of the dipole potential
is the same as the form of the potential of a charged particle.

Effective interaction potentials between compound par-
ticles derived using the multipole expansion need extra
information about the properties of considered compound
particles. This information is incorporated in the dipole
moment (permanent or induced). Once this dipole moment
of the compound particle under consideration is obtained, the
derived interaction potentials give a simple way to describe
interaction between particles.

In the case of a charged dust particle in a plasma, the dipole
moment can appear as a result of the dust particle polarization
in the external field or as a result of the ion stream. The dipole
moment of the dust grain can be obtained by solving the kinetic
equation for ions and electrons near the dust particle surface
[60,68] or by comparison of the experimentally obtained
correlation functions for the dust particles system with those
obtained from molecular dynamics simulation [42,64].

In the case of interaction of an atom with a charged particle
or with another atom, the atom polarization coefficients (ᾱ, β)
can be obtained from quantum transition matrix elements of
the given atom [69].

In polarizable medium such as plasma, the screening effect
can significantly affect on the microscopic processes such
as scattering, coagulation, etc. [70–74]. It was shown that
the modification of the charge screening due to quantum
diffraction effect should be taken into account for accurate
calculations of the plasma properties. For generality, we
included screening due to ions, but in a dense plasma (warm
dense matter) the polarization function of ions in RPA can be
inapplicable, because of strong nonideality of ions subsystem.
In this case, one should put ki = 0 in Eqs. (24)–(28), keeping
screening due to electrons ke �= 0. Many-body correlation
effects due to a nonideal subsystem of ions can be included
using hypernetted chain approximation or molecular dynamics
simulation. It is worth noting that in the case of moderate
coupling between ions, the many-body effects due to ions can
be included by an appropriate choice of the inverse screening
length ki , as it was recently shown by Stanton and Murillo [75].

Here we have proved that for interaction between com-
pound particles the screening effect can be taken into account
by, first, obtaining the potential of a single charge in the
medium then further expanding this potential. In the case
when higher-order terms of the multipole expansion are
important, they can be obtained analytically for both classical
and quantum plasmas from Eq. (2).

Derived potentials are relevant to (i) the complex (dusty)
plasmas, where ions and electrons have number density of
the order of 1010 cm−3 and temperatures ∼300 K and ∼103

K, respectively, and (ii) dense plasmas (warm dense matter),
where plasma density n > 1021 cm−3 and temperature T >

103 K. In both cases the species that provides screening has to
be weakly coupled.

In the case of stationary flowing plasma with a low
streaming velocity the effect of dynamic screening can be
included by modifying the screening length kS as it was
suggested by Kremp et al. [76] and Zwicknagel et al. [77]
for an ideal plasma. Incorporation of the finite velocity effect
leads to the weakening of the screening at higher velocities, as
the screening background is unable to respond fast enough. As
shown by Grabowski et al. [78], the following modification
of the inverse screening length yields surprisingly good
agreement when predicting dynamical properties kS(v) =
kS/(1 + (v/vth)2)

1/2
, where vth = (2kBT /m)1/2 is the thermal

velocity. However, in the case of highly nonequilibrium plasma
with a high streaming velocity this procedure cannot be used.
For such systems the effective dynamic potential has strong
oscillations with deep minima and maximums, which can lead
to attraction between like charged particles [5]. For a more
detailed comparison of the nonrelativistic and ultrarelativistic
cases, see Ref. [13]. The dynamic screening effect can have a
strong influence on both structure properties [57] and dynamic
properties [59,79] of the strongly coupled plasma.
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