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This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields
directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result
in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We
find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial
shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the
hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB
flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not
restricted to plasma physics; it can also be applied in molecular physics.
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I. INTRODUCTION

Plasma is one of the four fundamental states of matter. It is
a gas, but not a usual kind of gas. This is because in a normal
gas, the atoms or molecules are electrically neutral, but in
a plasma at least some of these particles have either lost or
gained an electron, so a plasma consists of free electrons and
positively or negatively charged atoms and molecules known
as ions. Thus, we can describe a plasma as an ionized gas,
a gas in which sufficient energy is provided to free electrons
from atoms or molecules and to allow both species, i.e., ions
and electrons, to coexist. Moreover, to transform a normal gas
into plasma, a very high temperature is required.

The Debye-Hückel theory, as originally proposed [1],
gave a theoretical explanation for departures from ideality
in solutions of electrolytes and plasmas. The Debye-Hückel
model provides a modern treatment of nonideality in plasma
via the screening effect. This model is used to simulate
plasma screening effect of weakly coupled plasmas and it
is given by [2] V (r) = −(Ze2/r) exp(−r/λD), where λD

represents the Debye length or Debye screening parameter
and determines the interaction between electrons in Debye
plasma. This model generally accounts for pair correla-
tions. It can be observed from the model that the effect
of plasmas on a test charge is just a replacement of the
Coulomb potential by an effective screened potential. It was
shown in Ref. [3] that the effective screened potential of
a test charge of mass m in a dense quantum plasma can
be modeled using a modified Debye-Hückel potential also
known as the exponential-cosine-screened Coulomb potential
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V (r) = −(Ze2/r) exp(−r/λD) cos(r/λD). It was shown in
Ref. [2] that V (r) = −(Ze2/r) exp(−r/λD) cos(g r/λD) can
be used to model weakly coupled plasmas with g = 0 and
dense quantum plasmas with g = 1.

There has been ceaseless interest (see [4–7] and references
therein) in studying atomic and molecular processes in the
plasma environment due to their applications in distinguishing
various plasmas and also providing passable knowledge of
collision dynamics. The ionization processes and atomic
excitation play a crucial role in the conceptual understand-
ing of various phenomena related to hot plasma physics,
astrophysics, and experiments performed with charged ions.
It has been discerned that a long-range Coulomb field
plays a decidedly salient role in the electron-ion scattering
problem [4]. For instance, at small scattering angles, the total
cross section for elastic scattering of a charged particle in
a Coulomb field diverges and the impact excitation cross
sections for electron-positive ion collisions have finite values
at the reaction threshold.

Strictly speaking, there are many studies focusing on study-
ing the effects of several fields on the hydrogen atom embedded
in plasmas. For instance, Bahar and Soylu [8] studied the
confinement effect of a magnetic field on the two-dimensional
hydrogen atom in plasmas. The plasma screening effect of
dense quantum plasmas on the photodetachment cross section
of a hydrogen negative ion within the framework of the dipole
approximation was presented in [2]. It was found in Ref. [9]
that an anomalous resistance in plasma occurs when current
flows through a plasma in a strong magnetic field. Lumb
et al. [10] reported the effects of the shape of a laser pulse,
confinement radius, Debye screening length, and different
laser parameters on the dynamics of a spherically confined
hydrogen atom embedded in an exponential-cosine-screened
Coulomb potential using the Bernstein-polynomial method.
The screening and weak external electric field effects on the
hydrogen atom in plasmas were also reported in Ref. [11].
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The effect of plasma screening on various properties such as
transition energy and polarizability of hydrogenlike ions was
studied recently by Das [12].

Based on the information we have gathered, we have ade-
quate materials to proceed to study the hydrogen atom in dense
and weakly coupled quantum plasmas under the influence of
the Aharonov-Bohm (AB) flux field, an electric field, and a
uniform magnetic field directed along the z axis. The hydrogen
atom has a notable importance in quantum mechanics and
quantum field theory as a simple two-body problem that
has yielded an analytical solution in a closed form [13].
Comprehension of its simple structure is very important when
investigating quantum effects in more complex structures.
The influences of an external electric field and a magnetic
field on the hydrogen atom have been studied in numerous
papers [2,8–13]. Besides using electric and magnetic fields to
manipulate the energy levels or localization of the quantum
state of a hydrogen atom in quantum plasmas, we suggest that
the AB flux field could be used as well. In fact, as we show in
this paper, the dominance of the AB flux field on other external
fields justifies its superiority.

The AB effect is a quantum mechanical phenomenon
in which an electrically charged particle is affected by an
electromagnetic field despite being confined to a region in
which both the magnetic field and electric field are zero.
Experimental confirmation of its existence was presented in
Ref. [14]. In this paper the influences of these three external
fields on the hydrogen atom within a dense and weakly coupled
quantum plasma are studied. Consequently, we feel this work
will be of interest in the areas of atomic structure and collisions
in plasmas.

II. THEORY AND CALCULATIONS

The model equation for the hydrogen atom under the
influences of AB flux and electric and uniform magnetic fields
directed along the z axis and surrounded by a quantum plasma
environment can be written in cylindrical coordinates as[

1

2μ

(
−i� �∇ + e

c
�A
)2

− Ze2

r
exp

(
− r

λD

)
cos

(
g

r

λD

)

−Fr cos(θ )

]
ψ(r,θ ) = Enmψ(r,θ ), (1)

where E denotes the energy levels, μ is the effective mass of the
electron, the vector potential �A can be written as a sum of two
terms �A = �A1 + �A2 having the azimuthal components [15]
�A1 = Br

2 φ̂ and �A2 = φAB

2πr
φ̂, �B = Bẑ is the applied external

magnetic field with �∇ × �A1 = �B, �A2 represents the additional
magnetic flux φAB created by a solenoid inserted inside the
antidot with �∇ · �A2 = 0, and Z denotes the atomic number that
is found useful in describing energy levels of light to heavy
neutral atoms. In the study of atomic structure, the motion
of the electron in a potential created by +Ze charged nuclei
has been found to be a very important problem. The results
obtained from such studies can be applied to the hydrogen
atom (with Z = 1), He+ (with Z = 2), and Li2+ (with Z =
3) [11]. Moreover, the characteristic properties of plasmas can
be represented by the coupling parameter � = (Ze)2/αkβT

(where α is the average distance between the particles). The

ranges of electron density ne and temperature T are known to
be 1018–1023 cm−3 and 102–105 K, respectively, in quantum
plasmas with � > 1. Furthermore, F represents an electric
field strength with an angle θ between F and r . With θ = 0,
Fr cos(θ ) becomes Fr [11]. The variation of the effective
potential energy as a function of various model parameters is
displayed in Fig. 1.

Now let us take a wave function in cylindrical coordinates
as ψ(r,φ) = 1√

2rπ
eimφHnm(r), where m = 0, ± 1, ± 2, . . .

denotes the magnetic quantum number. Inserting this wave
function into Eq. (1), we find a second-order differential equa-
tion1 d2Hnm(r)/dr2 + 2μ/�

2[Enm − Ueff]Hnm(r) = 0, where
the effective potential Ueff is

Ueff = −Ze2
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c
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r2 + �

2
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[
(m + ξ )2 − 1

4

r2

]
, (2)

where ξ = φAB/φ0 is an integer with the flux quantum
φ0 = hc/e and ωc = eB/μc denotes the cyclotron frequency.
In order to achieve our goal in this study, we need to solve
the radial Schrödinger equation with the effective model (2).
However, the equation does not admit an exact solution
with this model. Thus, we are constrained to utilize two
methods: numerical procedure or perturbation technique. In
this paper we employ a perturbative formalism [16] to solve
the problem. In this perturbation technique, it is mandatory
to split the effective model into two submodels. The main
part should correspond to a shape invariant potential in which
the superpotential is known analytically and the second part
will be considered as the perturbation. This approach has been
employed by Ikhdair and Sever to obtain the bound state energy
for the exponential-cosine-screened Coulomb potential [17].
Now, in view of the above information, let us rewrite the wave
functionHnm(r) to reflect the known normalized eigenfunction
of the unperturbed system Pnm(r) and moderating function
Qnm(r) corresponding to the perturbation potential in the form
Hnm(r) = Pnm(r)Qnm(r). Substitution of this expression into
the radial Schrödinger equation gives

�
2

2μ

[
1

Pnm(r)

d2Pnm(r)

dr2
+ 1

Qnm(r)

d2Qnm(r)

dr2

+ 2

Pnm(r)Qnm(r)

dPnm(r)

dr

dQnm(r)

dr

]
= Ueff(r) − Enm.

(3)

The logarithmic derivatives of the perturbed and unperturbed
wave functions can be written as

�Wnm = − �√
2μ

1

Qnm(r)

dQnm(r)

dr
,

Wnm = − �√
2μ

1

Pnm(r)

dPnm(r)

dr
,

(4)

1The detailed derivation of this for a general potential model is
given in the Appendix.
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FIG. 1. Effective potential energy to simulate dense quantum plasmas environment with rotational (m = 1) levels for (a) various values
of B with ξ = 5, F = 0.0001, and λD = 40. Increasing the intensity of the magnetic field and keeping other fields constant leads to a
corresponding increment in the effective potential function. Thus, the potential energy becomes more repulsive. (b) Various values of ξ with
B = 5, F = 0.0001, and λD = 40. (c) Various values of F with B = 5 and ξ = 5. Increasing the strength of the electric field increases
attractiveness of the effective potential. (d) Various values of λD with B = 5, ξ = 5, and F = 0.0001. Setting effects of all fields to be constant
and then varying the screening parameter up to, say, a factor of 1000 has little or no effect on the effective model, however it has a noticeable
effect on its series expansion, as will be shown in Fig. 2(a). Moreover, suppose we neglect the effects of the AB flux field and external magnetic
field as shown in Fig. 2(b). Then a significant effect of the screening parameter can be observed. This is an indication of how dominant the
effects of these external fields are on the screening parameter. All our computations are in atomic units.

respectively, which result in

�
2

2μPnm(r)

d2Pnm(r)

dr2
= W 2

nm − �√
2μ

dWnm

dr

=
(

V0(r) + �
2

2μ

[(
σ0m − 1

2

)2 − 1
4

r2

])

− εnm (5)

and

�
2

2μ

[
1

Qnm(r)

d2Qnm(r)

dr2
+ 2

Pnm(r)Qnm(r)

dPnm(r)

dr

dQnm(r)

dr

]

= �W 2
nm − �√

2μ

d�Wnm

dr
+ 2Wnm�Wnm

= �Ueff(r) − �εnm, (6)

where V0(r) denotes the unperturbed potential, εnm represents
the eigenvalues of the unperturbed system, and �εnm =
E(1)

nm + E(2)
nm + E(3)

nm + · · · are the energy eigenvalues of the
perturbed system, which provide correction term to the energy

such that the total eigenvalues become Enm = εnm + �εnm.
By comparing supersymmetric perturbation theory with the
logarithmic perturbation theory [18], Eq. (6) seems to be in
a closed analytical form. This makes the approach utilized
in this study more advantageous than those available in the
literature [18–20].

As we have mentioned earlier, it is necessary to split the
effective potential into two parts. Within this context, the
zeroth-order term corresponds to the Coulomb potential while
the higher-order terms constitute the perturbation expressions.
However, the perturbation equation (5) cannot be exactly
solved in its present form. It is therefore required to expand
the related functions to the perturbation in terms of the
perturbation parameter η (which we eventually set as unity):

�Ueff(r; η) =
∞∑
i=1

ηiUeff(r)(i), �Wnm(r; η) =
∞∑
i=1

ηiW
(i)
nm,

�E(i)
nm(η) =

∞∑
i=1

ηiE
(i)
nm, (7)
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FIG. 2. (a) Variation of the effective potential and its approximation with r . We have used the fitting parameters g = 1, ξ = 5, and
F = 0.001. The approximation is only valid for small λ−1

D . For this reason, we choose λD � 2 where necessary in our computation. However,
one may wonder why the series have been truncated at order 3. With respect to this, convergence is not an important property for series
approximations in physical problems. A slowly convergent approximation that requires many terms to achieve reasonable accuracy is much less
valuable than the divergent series, which gives accurate answers in a few terms [17]. This is the reason why we truncate the series expansion in
Eq. (9) at a lower-order term. (b) Effective potential energy to simulate the dense quantum plasma environment with rotational (m = 1) levels
for various values of λD with F = 0.0001. All our computations are in a.u.

where i represents the order of perturbation. We substitute Eq. (7) into Eq. (6) and then equate terms with the same power of η

on both sides to obtain the following expressions:

2Wnm(r)W (1)
nm(r) − �√

2μ

dW (1)
nm(r)

dr
= V1(r) − E(1)

nm, (8a)

W (1)2
nm (r) + 2Wnm(r)W (2)

nm(r) − �√
2μ

dW (2)
nm(r)

dr
= V2(r) − E(2)

nm, (8b)

2
[
Wnm(r)W (3)

nm(r) + W (1)
nm(r)W (2)

nm(r)
] − �√

2μ

dW (3)
nm(r)

dr
= V3(r) − E(3)

nm, (8c)

2
[
Wnm(r)W (4)

nm(r) + W (1)
nm(r)W (3)

nm(r)
] + W (2)

nm(r)W (2)
nm(r) − �√

2μ

dW (4)
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= V4(r) − E(4)

nm. (8d)

We now apply this background information to our problem. Thus, the effective potential in Eq. (2) can be expanded in a power
series of the Debye screening parameter λD as

Ueff(r) = −A

r
+ �

2
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[
(m + ξ )2 − 1

4
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]
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2
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)
+ μω2

c

8
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r2 −

[
A

λ4
D

(
1

24
− g2

4
+ g4

24

)]
r3 + O(r4), (9)
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where A = Ze2. The accuracy of this approximation is shown in Fig. 2(a). It is only valid for large values of the Debye screening
parameter λD . The first term in the series expansion (9) is the unperturbed term, which is the Coulomb potential with a well
known solution. Alternatively, it can be easily obtained using the recently proposed formula method [21]. The second term is the
centrifugal term and the remaining terms constitute the perturbation expression. Within this context, the unperturbed energy and
the corresponding normalized wave function can be written as

E(0)
nm = − μ

2�2

A2

σ 2
nm

, P (0)
nm(r) = N (0)

nmrσ0me−�rL2σ0m−1
n [2�r], (10)

respectively, with n = 0,1,2, . . .. The ground state superpotential and the normalization factor can be written as

W
(0)
n=0,m(r) = − �√

2μ

σ0m

r
+ 1

�

√
μ

2

A

σ0m

, N (0)
nm = (2�)σ0m

σnm

[
�

2(2σnm − 1 − n)!

μn!A

]−1/2

, (11)

where � = Aμ/�
2σnm. Now let us consider the expressions leading to the first-, second-, and third-order perturbations given

by Eqs. (8a)–(8d). Using superpotentials given in Eq. (4) and multiplying each term in Eqs. (8a)–(8d) by P (0)
nm

2
, we obtain the

first-order correction to the energy and its superpotential as follows:

E(1)
nm =

∫ ∞

−∞
P (0)
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2
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{
−

[
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}
dr, (12a)
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√
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y

}
dy. (12b)

Also, the second-order correction to the energy and its superpotential can be written as follows:
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W (2)
nm =

√
2μ

�

1

P (0)
nm

2
(r)

∫ r

P (0)
nm

2
(y)

{
E(2)

nm −
[

A

λ3
D

(
1

6
− g2

2

)
+ μω2

c

8

]
y2 + W (1)

nm

2
}
dy. (13b)

The third-order correction to the energy and its superpotential becomes
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dr, (14a)
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Using the expressions for E(1)
nm, E(2)

nm, and E(3)
nm, one can calculate superpotentials W (1)

nm, W (2)
nm, and W (3)

nm explicitly. Consequently, the
superpotentials can be used to calculate the moderating wave function Qnm(r) ≈ exp{−√

2μ/�
∫ r [W (1)

nm(r) + W (2)
nm(r)]}. Since

we now have all necessary formulas needed for our calculation, let us now focus our attention on how to utilize them to deduce
ground and exited state energies together with their moderating superpotentials. We start with the ground state such that from
Eqs. (12a)–(14b) we have
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0m −
(

σ0m − 1

2

)2

+ 1

4

}{
F

A
+ 1

λ2
D

(
1

2
− g2

2

)}
,

W
(1)
0m(r) = − �√

2μ

{
F

A
+ 1

λ2
D

(
1

2
− g2

2

)}
σ0mr; (15a)
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0m(r) = −
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�

2σ 2
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[
F
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1

2
− g2
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[

A

λ3
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2

)
+ μω2

c

8

]}
�rσ0m

μA2
√

2μ
[σ0mσ1�

2 + μAr]. (15c)

Consequently, the approximate expressions for the ground state energy and radial wave function of the hydrogen atom in
the AB flux and electric and uniform magnetic fields directed along the z axis and surrounded by quantum plasmas can be
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written as

E0m ≈ E
(0)
0m +

[
A

λD

+ ωc�

2
(m + ξ )

]
+ E

(1)
0m + E

(2)
0m, (16a)

ψ(r,φ) ≈ 1√
2rπ

eimφPnm(r) exp

(
−

√
2μ

�

∫ r (
W

(1)
0m + W

(2)
0m

))
. (16b)

It is worth mentioning that there is a corresponding relationship between two and three dimensions that can be obtained by
making a replacement m + ξ = � + 1/2. Therefore, the bound state energy levels for 1s in the absence of an external magnetic
and AB flux field in three dimensions can also be deduced from the above equations.

Let us now proceed to excited state calculations. We calculate the energy shift and superpotentials of first and second order as
follows:

E
(1)
1m = − �

2

2μ

{
3σ 2

1m −
(

σ0m − 1

2

)2

+ 1

4

}{
F

A
+ 1

λ2
D

(
1

2
− g2

2

)}
,

W
(1)
1m(r) = − �√

2μ

{
F

A
+ 1

λ2
D

(
1

2
− g2

2

)}
σ1mr; (17a)

E
(2)
1m =

{[
A

λ3
D

(
1

6
− g2

2

)
+ μω2

c

8

]
− �

2σ 2
1m

2μ

[
F

A
+ 1

λ2
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(
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)]2}
�

4σ 2
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2μ2A2

{
5σ 2
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}
; (17b)

W
(2)
1m(r) = −

{
�

2σ 2
1m

2μ

[
F

A
+ 1

λ2
D

(
1

2
− g2

2

)]2

−
[

A

λ3
D

(
1

6
− g2

2

)
+ μω2

c

8

]}
�rσ1m

μA2
√

2μ
[σ1mσ2m�

2 + μAr]. (17c)

Therefore, the approximate energy eigenvalues of the hydrogen atom in the AB flux and electric and uniform magnetic fields
directed along the z axis and surrounded by quantum plasmas, corresponding to the first excited state (n = 1), are

E1m ≈ E
(0)
1m +

[
A

λD

+ ωc�

2
(m + ξ )

]
+ E

(1)
1m + E

(2)
1m. (18)

We can proceed further to obtain expression for states n = 2,3,4,5, . . .. However, we leave the calculations as exercises in
elementary integrals. From the supersymmetry, we can write the nth state energy shifts and the corresponding superpotentials as

E(1)
nm = − �

2

2μ

{
3σ 2

nm −
(

σ0m − 1

2

)2

+ 1

4

}{
F

A
+ 1

λ2
D

(
1

2
− g2

2

)}
,

W (1)
nm(r) = − �√

2μ

{
F

A
+ 1

λ2
D

(
1

2
− g2

2

)}
σnmr; (19a)

E(2)
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A
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(
1
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2

)
+ μω2

c

8

]
− �

2σ 2
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2μ

[
F

A
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(
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)]2}
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2μ2A2

{
5σ 2
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(
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}
; (19b)

W (2)
nm(r) = −

{
�

2σ 2
nm

2μ

[
F

A
+ 1

λ2
D

(
1

2
− g2

2

)]2

−
[

A

λ3
D

(
1

6
− g2

2

)
+ μω2

c

8

]}
�rσnm

μA2
√

2μ
[σnmσn+1,m�

2 + μAr]. (19c)

Consequently, we obtain the approximate energy eigenvalues
of the hydrogen atom in quantum plasmas environment under
the influences of AB flux and electric and uniform magnetic
fields, directed along the z axis, corresponding to the nth state
as

Enm ≈ E(0)
nm +

[
A

λD

+ ωc�

2
(m + ξ )

]
+ E(1)

nm + E(2)
nm. (20)

It is worth mentioning that in all our calculations for energy,
we have changed the lower limit of the integration from −∞
to 0 so as to accommodate the fact that r is never negative.
Tables I and II display eigenvalues for the hydrogen atom
in quantum plasmas under the influence and the absence of
external fields (the magnetic field, AB flux field, and electric

field) in a.u. and in low vibrational n and rotational m.
From the tables, in the absence of external fields (i.e., when
B = ξ = F = 0), the spacing between the energy levels of
the effective potential is narrow and decreases with increasing
n. We notice that there exists degeneracy among some
states (n,m) [for instance, (1,1) and (3, − 1), and (0,1) and
(2, − 1)] and quasidegeneracy of the energy levels among
some states [for instance, (2,0) and (1,1), and (2,1) and
(3,0)], but application of the magnetic field strength not only
increases the energy levels of the effective potential and
spacings between states but also transforms the degenera-
cies to quasidegeneracies. Moreover, the quasidegeneracies
among the states are also removed and the energy values
shift up.
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TABLE I. Energy values for the hydrogen atom in dense quantum plasma under the influence of AB flux and external magnetic and electric
fields with various values of magnetic quantum numbers. The following fitting parameters have been employed: A = 1, λD = 20, m = 1, and
g = 1. All values are in a.u.

m n F = 0,ξ = 0,B = 0 F = 0,ξ = 0,B = 5 F = 0,ξ = 5,B = 0 F = 5,ξ = 0,B = 0 F = 5,ξ = 5,B = 5

0 0 −1.95001560 −0.7781406 −0.0156852 −5.6218906 −442558.77
1 −0.17283160 45.530293 −0.0833031 −429.00096 −1530748.8
2 −0.03429688 322.23133 −0.2026389 −8104.1749 −4095347.7
3 −0.00689445 1205.8525 −0.3904204 −59179.616 −9364067.9

1 0 −0.17269097 37.483559 −0.0542562 −331.57894 −1164728.2
1 −0.03390625 295.43484 −0.1639670 −7369.2527 −3445630.2
2 −0.00612883 1150.9314 −0.3407485 −56363.444 −8291125.3
3 −0.01687886 3166.5456 −0.6042120 −256439.08 −17514714

−1 0 −1.95000000 −4.4500000 0.0021055 −1.9500000 −139321.25
1 −1.95000000 −4.4500000 −0.0327008 −1.9500000 −595724.41
2 −0.17269097 32.483559 −0.1070687 −331.57894 −1830220.7
3 −0.03390625 290.43484 −0.2342795 −7369.2527 −4626935.2

By subjecting the hydrogen atom in quantum plasmas to
only the AB flux field, the energy values are reduced and de-
generacies are removed, whereas the quasidegeneracies among
the states are not affected. The energy levels become more
negative and the system becomes strongly attractive as the
quantum number n increases for fixed m. When only an electric
field is applied, the degeneracies and the quasidegeneracies
are not affected and the attractiveness of the total interaction
potential increases. The overall effects indicate that the system
is strongly attractive while the localizations of quantum levels
change and the eigenvalues decrease. Also, the combined
effect of the fields is stronger than the individual effects and
consequently, there is a considerably shift in the bound state
energy of the system.

In Fig. 3 we show the combined effect of the AB flux
and magnetic and electric fields on the energy values of
the hydrogen atom in the quantum plasma environment. The
confinement effect of the AB flux field on the hydrogen atom
in quantum plasmas is stronger than that of the magnetic field.
This can be seen in Fig. 3(a) by comparing the energy values
when B is 1.7 and when ξ is 1, 2, and 4. For instance, when
the AB flux field is small, say, ξ = 1, and the intensity of the

magnetic field increases, it can be seen that the energy shift is
approximately 5. However, within the same range of magnetic
field intensity, a little distortion, say, ξ = 2, leads to a huge shift
in the energy level. Figure 3(b) also shows similar properties.
However, in Fig. 3(c), we show the effect of high electric field
intensity on the hydrogen atom in quantum plasmas. As can
be seen, a low intensity of the AB flux field, say, ξ = 1, and a
high electric field (F = 1.2) cannot affect the hydrogen atom
in quantum plasmas, even while increasing the magnetic field
intensity gradually. However, if we adjust the intensity of the
AB flux field (say, ξ = 3), a very low energy can be obtained
provided the magnetic field is low. However, as the intensity of
the magnetic field increase so does the energy. This indicates
that the energy values of the hydrogen atom in the quantum
plasma environment or localization of quantum states can be
changed or adjusted to a maximum level by applying a strong
magnetic field and electric field intensity. A weak magnetic
field and strong electric field intensity will reduce the energy
of the hydrogen atom to a minimum level. In either way, the
AB flux field can act as a catalyst to boost the process.

Figure 4 displays the dominance of the AB flux field on
external electric and magnetic fields. This can be seen via a

TABLE II. Energy values for the hydrogen atom in a weakly coupled plasma under the influence of AB flux and external magnetic and
electric fields with various values of magnetic quantum numbers. The following fitting parameters have been employed: A = 1, λD = 20,
m = 1, and g = 0. All values are in a.u.

m n F = 0,ξ = 0,B = 0 F = 0,ξ = 0,B = 5 F = 0,ξ = 5,B = 0 F = 5,ξ = 0,B = 0 F = 5,ξ = 5,B = 5

0 0 −1.9506173 −0.7787423 −0.0110816 −5.6230782 −442781.81
1 −0.1763182 45.526807 −0.0610759 −429.21011 −1531518.6
2 −0.0402301 322.22539 −0.1840939 −8108.2092 −4097404.3
3 −0.0095952 1205.8498 −0.4474275 −59209.163 −9368766.0

1 0 −0.1757576 37.480492 −0.0457138 −331.74021 −1165313.9
1 −0.0397546 295.42900 −0.1557682 −7372.9206 −3447360.5
2 −0.0091772 1150.9283 −0.3980985 −56391.583 −8295285.1
3 −0.0071157 3166.5554 −0.8757537 −256567.21 −17523495

−1 0 −1.9500000 −4.4500000 −0.0000247 −1.9500000 −139391.73
1 −1.9500000 −4.4500000 −0.0178498 −1.9500000 −596024.65
2 −0.1757576 32.480492 −0.0736449 −331.74021 −1831141.1
3 −0.0397546 290.42900 −0.2072696 −7372.9206 −4629258.8
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FIG. 3. Variation of energy values for the hydrogen atom in quantum plasmas and under the influence of the magnetic field and the AB
flux field and electric field in atomic units using the fitting parameters m = n = 0 and λD = 20 (a) as a function of external magnetic field with
various ξ and F = 0.0001. (b) Same as (a) but with m = −1 and n = 2. (c) Same as (a) but with F = 1.2. All values are expressed in a.u.

comparison of Figs. 4(a)–4(c). From Fig. 4(a) it can be seen
that when the hydrogen atom is under a low AB flux field,
the gap between energy levels when F = 0.0001 and 1.2 is
tiny. However, in Fig. 4(b), where we increase the intensity a
little (say, ξ = 2), it can be observed that the energy values
of the process gradually increase from negative to positive
as the magnetic field increases. Moreover, the gap between

F = 0.0001 and 1.2 becomes wide. Furthermore, we double
the intensity of the formal AB flux (i.e., ξ = 4) as displayed
in the inset of Fig. 4(b). We observe that for a very weak
electric field and strong magnetic field, there exists a positive
energy, whereas for a low magnetic field, the energy of the
hydrogen atom in quantum plasma becomes negative. From
these figures we observe that the AB flux field seems to be
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FIG. 4. Variation of energy values for the hydrogen atom in quantum plasmas and under the influence of the magnetic field and the AB
flux field and electric field in atomic units using the fitting parameters m = n = 0 and λD = 20 (a) as a function of external magnetic field
with various F and ξ = 1. (b) Same as (a) but with ξ = 2; the inset is for ξ = 4. (c) Same as (b) but as a function of magnitude of the external
electric field with various ξ and B = 1.
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the key parameter. All these justify the superior effect of the
AB flux over magnetic and electric fields on the hydrogen
atom in quantum plasmas. This can be understood further if
we consider a strong electric field (i.e., F = 1.2) and then
calculate �Enm = Enm|B=5 − Enm|B=0 for the three plots we
discussed above: in Fig. 4(a), where ξ = 1 and �Enm ≈ 38;
in Fig. 4(b), where ξ = 2 and �Enm ≈ 160, and in the inset
of Fig. 4(b), where ξ = 4 and �Enm ≈ 2500.

In Fig. 3(c) we find that the external electric field either will
have no effect on the energy of the hydrogen atom in quantum
plasmas or will decrease the energy values under high intensity.
It can be concluded from Figs. 3 and 4 that the confinement ef-
fect of the AB flux field on the hydrogen atom dominates on the
external electric field and is even more dominant on the mag-
netic field. Therefore, the AB flux field can be regarded as a key
control parameter for energy levels or localization of the quan-
tum state of the hydrogen atom in quantum plasmas. In other
words, to maintain a low energy for the hydrogen atom in quan-
tum plasmas, a strong electric field and weak magnetic field
are required, whereas the AB flux field can serve as a regulator.

III. CONCLUSION

In this paper we have studied the effects of the electric
field, AB flux field, and uniform magnetic field directed
along the z axis on the hydrogen atom in quantum plasmas.
The overall effects indicate that the system is strongly
attractive while the localizations of quantum levels change and
the eigenvalues decrease. Also, as we have demonstrated, the
combined effect of the fields is stronger than individual effects
and consequently there is a considerably shift in the bound
state energy of the system. We found that to maintain a low
energy for the hydrogen atom in quantum plasmas, a strong
electric field and weak magnetic field are required, whereas
the AB flux field can be used as a regulator or a booster. The
application of the perturbation technique we utilized in this
paper is not limited to plasma physics; it can also be applied
in molecular physics. Finally, we suggest a possible extension
of the present work for inclusion of quantum effects with two
and three- particle correlations [22,23].
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APPENDIX: EXACT SOLUTION TO A GENERAL
POTENTIAL FORM UNDER THE INFLUENCE OF AB

FLUX AND EXTERNAL MAGNETIC FIELDS

In this appendix we show in detail the derivation of
Eq. (1) for a general form of potential model V (r), i.e.,

(i� �∇ − e/c �A)2ψ = 2μ[Enm − V (r)]ψ . For convenience, let
us introduce K = −e/c, so that Eq. (1) becomes

−�
2∇2ψ + i�K �∇ · ( �Aψ) + i�K �A · �∇ψ + �K2 �A · �A�

= 2μ[Enm − V (r)]ψ. (A1)

Using the property �∇ · ( �Aψ) = �A · �∇ψ + ψ �∇ · �A and

�∇ · �A =
(

∂

∂r
r̂ + 1

r

∂

∂φ
φ̂ + ∂

∂z
ẑ

)
·
(

Br

2
+ φAB

2πr

)
φ̂

= 1

r

∂

∂φ
�A = 0, (A2)

Eq. (A1) becomes

−�
2∇2ψ + 2i�T �A · �∇ψ + �K2 �A · �A� = 2μ[Enm −V (r)]ψ.

(A3)

Now we obtain an expression for ∇2ψ and �A · �∇ψ as

∇2ψ = 1

r
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(
r
∂ψ

∂r

)
+ 1

r2

∂2ψ

∂φ2
+ ∂2ψ

∂z2

= r−1/2eimφ

(H(r)

4r2
+ H′′(r) − m2

r2
H(r)

)
,

�A · �∇ψ =
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Br
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(
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r

∂ψ
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φ̂ + ∂ψ

∂z
ẑ
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= im

r

(
Br

2
+ φAB

2πr

)
. (A4)

Substituting Eq. (A4) into Eq. (A3), we have

−�
2H′′(r) − �

2H(r)

4r2
+ m2H(r)�2

r2

−2�mK
r

(
Br

2
+ φAB

2πr

)
H(r) + K2 �A · �AH(r)

= 2μ[Enm − V (r)]H(r). (A5)

If we use e = c = 1, thenK = −1, so we obtain a more explicit
expression

H′′(r) + 2μ

�2

{
E −

[
V (r) − Fr + �

2

2μ

(
(m + ξ )2 − 1

4

r2

)

+ ωc�

2
(m + ξ ) +

(
μω2

c

8

)
r2

]}
H(r) = 0, (A6)

where we have introduced ξ = φAB/φ0 with φ0 = hc/e and
electric field F .
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